
Chapter 29

Random Walks I
By Sariel Har-Peled, March 21, 2024① “A drunk man will find his way home; a drunk bird

may wander forever.”

Anonymous,

29.1. Definitions
Let G = G(V,E) be an undirected connected graph. For v ∈ V, let Γ(v) denote the set of neighbors of v in G;
that is, Γ(v) =

{
u

∣∣∣ vu ∈ E(G)
}
. A random walk on G is the following process: Starting from a vertex v0, we

randomly choose one of the neighbors of v0, and set it to be v1. We continue in this fashion, in the ith step
choosing vi, such that vi ∈ Γ(vi−1). It would be interesting to investigate the random walk process. Questions of
interest include:

(A) How long does it take to arrive from a vertex v to a vertex u in G?
(B) How long does it take to visit all the vertices in the graph.
(C) If we start from an arbitrary vertex v0, how long the random walk has to be such that the location of the

random walk in the ith step is uniformly (or near uniformly) distributed on V(G)?

Example 29.1.1. In the complete graph Kn, visiting all the vertices takes in expectation O(n log n) time, as this
is the coupon collector problem with n − 1 coupons. Indeed, the probability we did not visit a specific vertex v
by the ith step of the random walk is ≤ (1 − 1/n)i−1 ≤ e−(i−1)/n ≤ 1/n10, for i = Ω(n log n). As such, with high
probability, the random walk visited all the vertex of Kn. Similarly, arriving from u to v, takes in expectation
n − 1 steps of a random walk, as the probability of visiting v at every step of the walk is p = 1/(n − 1), and the
length of the walk till we visit v is a geometric random variable with expectation 1/p.

29.1.1. Walking on grids and lines

Lemma 29.1.2 (Stirling’s formula). For any integer n ≥ 1, it holds n! ≈
√

2πn (n/e)n.

29.1.1.1. Walking on the line

Lemma 29.1.3. Consider the infinite random walk on the integer line, starting from 0. Here, the vertices are
the integer numbers, and from a vertex k, one walks with probability 1/2 either to k − 1 or k + 1. The expected
number of times that such a walk visits 0 is unbounded.

Proof: The probability that in the 2ith step we visit 0 is 1
22i

(
2i
i

)
, As such, the expected number of times we visit

the origin is
∞∑

i=1

1
22i

(
2i
i

)
≥

∞∑
i=1

1

2
√

i
= ∞,

since
22i

2
√

i
≤

(
2i
i

)
≤

22i

√
2i

[MN98, p. 84]. This can also be verified using the Stirling formula, and the resulting

sequence diverges. ■
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Figure 29.1: A walk in the integer grid, when rotated by 45 degrees, results, in two independent walks on one
dimension.

29.1.1.2. Walking on two dimensional grid

A random walk on the integer grid Zd, starts from a point of this integer grid, and at each step if it is at
point (i1, i2, . . . , id), it chooses a coordinate and either increases it by one, or decreases it by one, with equal
probability.

Lemma 29.1.4. Consider the infinite random walk on the two dimensional integer grid Z2, starting from (0, 0).
The expected number of times that such a walk visits the origin is unbounded.

Proof: Rotate the grid by 45 degrees, and consider the two new axes X′ and Y ′, see Figure 29.1.. Let xi be
the projection of the location of the ith step of the random walk on the X′-axis, and define yi in a similar
fashion. Clearly, xi are of the form j/

√
2, where j is an integer. By scaling by a factor of

√
2, consider the

resulting random walks x′i =
√

2xi and y′i =
√

2yi. Clearly, xi and yi are random walks on the integer grid,
and furthermore, they are independent. As such, the probability that we visit the origin at the 2ith step is

P
[
x′2i = 0 ∩ y′2i = 0

]
= P

[
x′2i = 0

]2
=

(
1

22i

(
2i
i

))2
≥ 1/4i. We conclude, that the infinite random walk on the grid

Z2 visits the origin in expectation

∞∑
i=0

P
[
x′i = 0 ∩ y′i = 0

]
≥

∞∑
i=0

1
4i
= ∞,

as this sequence diverges. ■

29.1.1.3. Walking on three dimensional grid

In the following, let
(

i
a b c

)
=

i!
a! b! c!

denote the multinomial coefficient. The multinomial theorem states

that

(x1 + x2 + · · · + xm)n =
∑

k1+k2+···+km=n k1,k2,··· ,km≥0

(
n

k1, k2, . . . , km

) m∏
t=1

xkt
t .

In particular, we have

1n = (1/3 + 1/3 + 1/3)n =
∑

a+b+c=n, a,b,c≥0

(
n

a b c

)
1
3n . (29.1)

2



Lemma 29.1.5. Consider the infinite random walk on the three dimensional integer grid Z3, starting from
(0, 0, 0). The expected number of times that such a walk visits the origin is bounded.

Proof: The probability of a neighbor of a point (x, y, z) to be the next point in the walk is 1/6. Assume that
we performed a walk for 2i steps, and decided to perform 2a steps parallel to the x-axis, 2b steps parallel to
the y-axis, and 2c steps parallel to the z-axis, where a + b + c = i. Furthermore, the walk on each dimension is
balanced, that is we perform a steps to the left on the x-axis, and a steps to the right on the x-axis. Clearly, this
corresponds to the only walks in 2i steps that arrives to the origin.

Next, the number of different ways we can perform such a walk is (2i)!
a!a!b!b!c!c! , and the probability to perform

such a walk, summing over all possible values of a, b and c, is

αi =
∑

a+b+c=i
a,b,c≥0

(2i)!
a!a!b!b!c!c!

1
62i =

(
2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

(
i!

a! b! c!

)2(1
3

)2i

=

(
2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

 ( i
a b c

)(
1
3

)i 2

Consider the case where i = 3m. We have that
(

i
a b c

)
≤

(
i

m m m

)
. As such, we have

αi ≤

(
2i
i

)
1

22i

(
1
3

)i( i
m m m

) ∑
a+b+c=i
a,b,c≥0

(
i

a b c

)(
1
3

)i

︸                  ︷︷                  ︸
=1 by Eq. (29.1)

.

By the Stirling formula, we have (
i

m m m

)
≈

√
2πi(i/e)i(√

2πi/3
(

i
3e

)i/3
)3 = c

3i

i
,

for some constant c. As such, αi = O
 1
√

i

(
1
3

)i 3i

i

 = O
(

1
i3/2

)
. Thus,

∞∑
m=1

α6m =
∑

i

O
(

1
i3/2

)
= O(1).

Finally, observe that α6m ≥ (1/6)2α6m−2 and α6m ≥ (1/6)4α6m−4. Thus,
∞∑

m=1

αm = O(1). ■

29.2. Bibliographical notes
The presentation here follows [Nor98].
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