Chapter 29

Random Walks I

By Sariel Har-Peled, March 21, 2024^{\circledR}

"A drunk man will find his way home; a drunk bird may wander forever."

Anonymous,

29.1. Definitions

Let $\mathrm{G}=\mathrm{G}(\mathrm{V}, \mathrm{E})$ be an undirected connected graph. For $v \in \mathrm{~V}$, let $\Gamma(v)$ denote the set of neighbors of v in G ; that is, $\Gamma(v)=\{u \mid v u \in \mathrm{E}(\mathrm{G})\}$. A random walk on G is the following process: Starting from a vertex v_{0}, we randomly choose one of the neighbors of v_{0}, and set it to be v_{1}. We continue in this fashion, in the i th step choosing v_{i}, such that $v_{i} \in \Gamma\left(v_{i-1}\right)$. It would be interesting to investigate the random walk process. Questions of interest include:
(A) How long does it take to arrive from a vertex v to a vertex u in G ?
(B) How long does it take to visit all the vertices in the graph.
(C) If we start from an arbitrary vertex v_{0}, how long the random walk has to be such that the location of the random walk in the i th step is uniformly (or near uniformly) distributed on $\mathrm{V}(\mathrm{G})$?

Example 29.1.1. In the complete graph K_{n}, visiting all the vertices takes in expectation $O(n \log n)$ time, as this is the coupon collector problem with $n-1$ coupons. Indeed, the probability we did not visit a specific vertex v by the i th step of the random walk is $\leq(1-1 / n)^{i-1} \leq e^{-(i-1) / n} \leq 1 / n^{10}$, for $i=\Omega(n \log n)$. As such, with high probability, the random walk visited all the vertex of K_{n}. Similarly, arriving from u to v, takes in expectation $n-1$ steps of a random walk, as the probability of visiting v at every step of the walk is $p=1 /(n-1)$, and the length of the walk till we visit v is a geometric random variable with expectation $1 / p$.

29.1.1. Walking on grids and lines

Lemma 29.1.2 (Stirling's formula). For any integer $n \geq 1$, it holds $n!\approx \sqrt{2 \pi n}(n / e)^{n}$.

29.1.1.1. Walking on the line

Lemma 29.1.3. Consider the infinite random walk on the integer line, starting from 0 . Here, the vertices are the integer numbers, and from a vertex k, one walks with probability $1 / 2$ either to $k-1$ or $k+1$. The expected number of times that such a walk visits 0 is unbounded.

Proof: The probability that in the $2 i$ th step we visit 0 is $\frac{1}{2^{2 i}}\binom{2 i}{i}$, As such, the expected number of times we visit the origin is

$$
\sum_{i=1}^{\infty} \frac{1}{2^{2 i}}\binom{2 i}{i} \geq \sum_{i=1}^{\infty} \frac{1}{2 \sqrt{i}}=\infty
$$

since $\frac{2^{2 i}}{2 \sqrt{i}} \leq\binom{ 2 i}{i} \leq \frac{2^{2 i}}{\sqrt{2 i}}$ [MN98, p. 84]. This can also be verified using the Stirling formula, and the resulting sequence diverges.

[^0]

Figure 29.1: A walk in the integer grid, when rotated by 45 degrees, results, in two independent walks on one dimension.

29.1.1.2. Walking on two dimensional grid

A random walk on the integer grid \mathbb{Z}^{d}, starts from a point of this integer grid, and at each step if it is at point $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$, it chooses a coordinate and either increases it by one, or decreases it by one, with equal probability.

Lemma 29.1.4. Consider the infinite random walk on the two dimensional integer grid \mathbb{Z}^{2}, starting from $(0,0)$. The expected number of times that such a walk visits the origin is unbounded.

Proof: Rotate the grid by 45 degrees, and consider the two new axes X^{\prime} and Y^{\prime}, see Figure 29.1.. Let x_{i} be the projection of the location of the i th step of the random walk on the X^{\prime}-axis, and define y_{i} in a similar fashion. Clearly, x_{i} are of the form $j / \sqrt{2}$, where j is an integer. By scaling by a factor of $\sqrt{2}$, consider the resulting random walks $x_{i}^{\prime}=\sqrt{2} x_{i}$ and $y_{i}^{\prime}=\sqrt{2} y_{i}$. Clearly, x_{i} and y_{i} are random walks on the integer grid, and furthermore, they are independent. As such, the probability that we visit the origin at the $2 i$ th step is $\mathbb{P}\left[x_{2 i}^{\prime}=0 \cap y_{2 i}^{\prime}=0\right]=\mathbb{P}\left[x_{2 i}^{\prime}=0\right]^{2}=\left(\frac{1}{2^{i i}}\binom{2 i}{i}\right)^{2} \geq 1 / 4 i$. We conclude, that the infinite random walk on the grid \mathbb{Z}^{2} visits the origin in expectation

$$
\sum_{i=0}^{\infty} \mathbb{P}\left[x_{i}^{\prime}=0 \cap y_{i}^{\prime}=0\right] \geq \sum_{i=0}^{\infty} \frac{1}{4 i}=\infty
$$

as this sequence diverges.

29.1.1.3. Walking on three dimensional grid

In the following, let $\left(\begin{array}{cc}i \\ a & b \\ c\end{array}\right)=\frac{i!}{a!b!c!}$ denote the multinomial coefficient. The multinomial theorem states that

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{k_{1}+k_{2}+\cdots+k_{m}=n}\binom{n}{k_{1}, k_{2}, \cdots, k_{m} \geq 0} \prod_{t=1}^{m} x_{t}^{k_{t}} .
$$

In particular, we have

$$
1^{n}=(1 / 3+1 / 3+1 / 3)^{n}=\sum_{a+b+c=n, a, b, c \geq 0}\left(\begin{array}{c}
n \tag{29.1}\\
a
\end{array} b c c\right) \frac{1}{3^{n}}
$$

Lemma 29.1.5. Consider the infinite random walk on the three dimensional integer grid \mathbb{Z}^{3}, starting from $(0,0,0)$. The expected number of times that such a walk visits the origin is bounded.

Proof: The probability of a neighbor of a point (x, y, z) to be the next point in the walk is $1 / 6$. Assume that we performed a walk for $2 i$ steps, and decided to perform $2 a$ steps parallel to the x-axis, $2 b$ steps parallel to the y-axis, and $2 c$ steps parallel to the z-axis, where $a+b+c=i$. Furthermore, the walk on each dimension is balanced, that is we perform a steps to the left on the x-axis, and a steps to the right on the x-axis. Clearly, this corresponds to the only walks in $2 i$ steps that arrives to the origin.

Next, the number of different ways we can perform such a walk is $\frac{(2 i)!}{a!a!b!b!c!c!}$, and the probability to perform such a walk, summing over all possible values of a, b and c, is

$$
\alpha_{i}=\sum_{\substack{a+b+c=i \\
a, b, c \geq 0}} \frac{(2 i)!}{a!a!b!b!c!c!} \frac{1}{6^{2 i}}=\binom{2 i}{i} \frac{1}{2^{2 i}} \sum_{\substack{a+b+c=i \\
a, b, c \geq 0}}\left(\frac{i!}{a!b!c!}\right)^{2}\left(\frac{1}{3}\right)^{2 i}=\binom{2 i}{i} \frac{1}{2^{2 i}} \sum_{\substack{a+b+c=i \\
a, b, c \geq 0}}\left(\left(\begin{array}{cc}
a & b \\
a & c
\end{array}\right)\left(\frac{1}{3}\right)^{i}\right)^{2}
$$

Consider the case where $i=3 m$. We have that $\left(\begin{array}{cc}i & i \\ a & b\end{array}\right) \leq\left(\begin{array}{cc}i \\ m & m\end{array}\right)$. As such, we have

$$
\alpha_{i} \leq\binom{ 2 i}{i} \frac{1}{2^{2 i}}\left(\frac{1}{3}\right)^{i}\left(\begin{array}{cc}
i \\
m & m \\
m
\end{array}\right) \underbrace{\sum_{\substack{a+b+c=i \\
a, b, c \geq 0}}\left(\begin{array}{cc}
i \\
a & b \\
c
\end{array}\right)}_{=1 \text { by Eq. }(29.1)} \text { (} \frac{1}{3})^{i} .
$$

By the Stirling formula, we have

$$
\left(\begin{array}{ccc}
i \\
m & m & m
\end{array}\right) \approx \frac{\sqrt{2 \pi i}(i / e)^{i}}{\left(\sqrt{2 \pi i / 3}\left(\frac{i}{3 e}\right)^{i / 3}\right)^{3}}=c \frac{3^{i}}{i},
$$

for some constant c. As such, $\alpha_{i}=O\left(\frac{1}{\sqrt{i}}\left(\frac{1}{3}\right)^{i} \frac{3^{i}}{i}\right)=O\left(\frac{1}{i^{3 / 2}}\right)$. Thus,

$$
\sum_{m=1}^{\infty} \alpha_{6 m}=\sum_{i} O\left(\frac{1}{i^{3 / 2}}\right)=O(1)
$$

Finally, observe that $\alpha_{6 m} \geq(1 / 6)^{2} \alpha_{6 m-2}$ and $\alpha_{6 m} \geq(1 / 6)^{4} \alpha_{6 m-4}$. Thus,

$$
\sum_{m=1}^{\infty} \alpha_{m}=O(1)
$$

29.2. Bibliographical notes

The presentation here follows [Nor98].

References

[MN98] J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford Univ Press, 1998.
[Nor98] J. R. Norris. Markov Chains. Statistical and Probabilistic Mathematics. Cambridge Press, 1998.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

