
Chapter 27

Approximating the Number of Distinct Elements
in a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university environment: the
ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, March 21, 2024①

27.1. Counting number of distinct elements

27.1.1. First order statistic

Let X1, . . . , Xu be u random variables uniformly distributed in [0, 1]. Let Y = min(X1, . . . , Xu). The value Y is
the first order statistic of X1, . . . , Xu.

For a continuous variable X, the probability density function (i.e., pdf) is the “probability” of X having
this value. Since this is not well defined, one looks on the cumulative distribution function F(x) = P[X ≤].
The pdf is then the derivative of the cdf. Somewhat abusing notations, the pdf of the Xis is P[Xi = x] = 1.

The following proof is somewhat dense, check any standard text on probability for more details.

Lemma 27.1.1. The probability density function of Y is f (x) =
(

u
1

)
1(1 − x)u−1.

Proof: Considering the pdf of X1 being x, and all other Xis being bigger. We have that this pdf is

g(x) = P
[
(X1 = x) ∩

u⋂
i=2

(Xi > X1)
]
= P

[u⋂
i=2

(Xi > X1)
∣∣∣∣ X1 = x

]
P[X1 = x] = (1 − x)u−1.

Since every one of the Xi has equal probability to realize Y , we have f (x) = ug(x). ■

Lemma 27.1.2. We have E[Y] = 1
u+1 , E

[
Y2

]
= 2

(u+1)(u+2) , and V[Y] = u
(u+1)2(u+2) .

Proof: Using integration by guessing, we have

E[Y] =
∫ 1

y=0
yP

[
Y = y

]
dy =

∫ 1

y=0
y ·

(
u
1

)
1(1 − y)u−1 dy =

∫ 1

y=0
uy(1 − y)u−1 dy

=
[
−y(1 − y)u −

(1 − y)u+1

u + 1

]1

y=0
=

1
u + 1

.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Using integration by guessing again, we have

E
[
Y2

]
=

∫ 1

y=0
y2 P

[
Y = y

]
dy =

∫ 1

y=0
y2 ·

(
u
1

)
1(1 − y)u−1 dy =

∫ 1

y=0
uy2(1 − y)u−1 dy

=
[
−y2(1 − y)u −

2y(1 − y)u+1

u + 1
−

2(1 − y)u+2

(u + 1)(u + 2)

]1

y=0
=

2
(u + 1)(u + 2)

.

We conclude that

V[Y] = E
[
X2

]
− (E[X])2 =

2
(u + 1)(u + 2)

−
1

(u + 1)2 =
1

u + 1

(
2

u + 2
−

1
u + 1

)
=

u
(u + 1)2(u + 2)

. ■

27.1.2. The algorithm
A single estimator. Assume that we have a perfectly random hash function h that randomly maps N =
{1, . . . , n} to [0, 1]. Assume that the stream has u unique numbers in N. Then the set {h(s1), . . . , h(sm)} contains
u random numbers uniformly distributed in [0.1]. The algorithm as such, would compute X = mini h(si).

Explanation. Note, that X is not an estimator for u – instead, as E[X] = 1/(u+1), we are estimating 1/(u+1).
The key observation is that an 1 ± ε estimator for 1/(u + 1), is 1 ± O(ε) estimator for u + 1, which is in turn an
1 ± O(ε) estimator for u.

Lemma 27.1.3. Let ε, φ ∈ (0, 1) be parameters. Given a stream S of items from {1, . . . , n} one can return an
estimate X, such that P

[
(1 − ε/4) 1

u+1 ≤ X ≤ (1 + ε/4) 1
u+1

]
≥ 1−φ, where u is the number of unique elements in

S. This requires O
(

1
ε2

log 1
φ

)
space.

Proof: The basic estimator Y has µ = E[Y] = 1
u+1 and ν = V[Y] = u

(u+1)2(u+2) . We now plug this estimator into
the mean/median framework. By Lemma 27.1.2, for c some absolute constant, this requires maintaining M
estimators, where M is larger than

c
4 · 16ν
ε2µ2 log

1
φ
= O

(
u2

ε2u2 log
1
φ

)
= O

(
1
ε2 log

1
φ

)
. ■

Observe that if (1 − ε/4) 1
u+1 ≤ X ≤ (1 + ε/4) 1

u+1 then

u + 1
1 − ε/4

− 1 ≥
1
X
− 1 ≥

u + 1
1 + ε/4

− 1,

which implies

(1 + ε)u ≥
(1 + ε/4)u

1 − ε/4
≥

u + ε/4
1 − ε/4

≥
1
X
− 1 ≥

u + 1
1 + ε/4

− 1 ≥ (1 − ε)u.

Namely, 1/X − 1 is a good estimator for the number of distinct elements.

The algorithm revisited. Compute X as above, and output the quantity 1/X − 1.

This immediately implies the following.

Lemma 27.1.4. Under the unreasonable assumption that we can sample perfectly random functions from
{1, . . . , n} to [0, 1], and storing such a function requires O(1) words, then one can estimate the number of
unique elements in a stream, using O(ε−2 logφ−1) words.

2

27.2. Sampling from a stream with “low quality” randomness
Assume that we have a stream of elements S = s1, . . . , sm, all taken from the set {1, . . . , n}. In the following, let
set(S) denote the set of values that appear in S . That is

F0 = F0(S) = |set(S)|

is the number of distinct values in the stream S.
Assume that we have a random sequence of bits B ≡ B1, . . . , Bn, such that P[Bi = 1] = p, for some p.

Furthermore, we can compute Bi efficiently. Assume that the bits of B are pairwise independent.

The sampling algorithm. When the ith arrives si, we compute Bsi . If this bit is 1, then we insert si into the
random sample R (if it is already in R, there is no need to store a second copy, naturally).

This defines a natural random sample

R = {i | Bi = 1 and i ∈ S } ⊆ S .

Lemma 27.2.1. For the above random sample R, let X = |R|. We have that E[X] = pν and V[X] = pν − p2ν,
where ν = F0(S) is the number of district elements in S .

Proof: Let X = |R|, and we have
E[X] = E

[∑
i∈S

Bi

]
=

∑
i∈S

E[Bi] = pν.

As for the E
[
X2

]
, we have

E
[
X2

]
= E

[
(
∑
i∈S

Bi)2
]
=

∑
i∈S

E
[
B2

i

]
+ 2

∑
i, j∈S , i< j

E
[
BiB j

]
= pν + 2

∑
i, j∈S , i< j

E[Bi]E[B j] = pν + 2p2
(
ν

2

)
.

As such, we have

V[X] = V[|R|] = E
[
X2

]
− (E[X])2 = pν + 2p2

(
ν

2

)
− p2ν2 = pν + 2p2 ν(ν − 1)

2
− p2ν2

= pν + p2ν(ν − 1) − p2ν2 = pν − p2ν. ■

Lemma 27.2.2. Let ε ∈ (0, 1/4). Given O(1/ε2) space, and a parameter N. Consider the task of estimating
the size of F0 = |set(S)|, where F0 > N/4. Then, the algorithm described below outputs one of the following:

(A) F0 > 2N.
(B) Output a number ρ such that (1 − ε)F0 ≤ ρ ≤ (1 + ε)F0.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability ≥ 7/8.

Proof: We set p = c
Nε2 , where c is a constant to be determined shortly. Let T = pN = O(1/ε2). We sample a

random sample R from S , by scanning the elements of S , and adding i ∈ S to R if Bi = 1, If the random sample
is larger than 8T , at any point, then the algorithm outputs that |S | > 2N.

In all other cases, the algorithm outputs |R| /p as the estimate for the size of S , together with R.
To bound the failure probability, consider first the case that N/4 < |set(S)|. In this case, we have by the

above, that

P[|X − E[X]| > εE[X]] ≤ P
[
|X − E[X]| > ε E[X]

√
V[X]

√
V[X]

]
≤ ε2 V[X]

(E[X])2 ≤
1
8
,

3

if V[X]
ε2(E[X])2 ≤

1
8 , For ν = F0 ≥ N/4, this happens if pν

ε2 p2ν2
≤ 1

8 . This in turn is equivalent to 8/ε2 ≤ pν. This is in
turn happens if

c
Nε2 ·

N
4
≥

8
ε2 ,

which implies that this holds for c = 32. Namely, the algorithm in this case would output a (1± ε)-estimate for
|S |.

If the sample get bigger than 8T , then the above readily implies that with probability at least 7/8, the size
of S is at least (1 − ε)8T/p > 2N, Namely, the output of the algorithm is correct in this case. ■

Lemma 27.2.3. Let ε ∈ (0, 1/4) and φ ∈ (0, 1). Given O(ε−2 logφ−1) space, and a parameter N, and the task
is to estimate F0 of S, given that F0 > N/4. Then, there is an algorithm that would output one of the following:

(A) F0 > 2N.
(B) Output a number ρ such that (1 − ε)F0 ≤ ρ ≤ (1 + ε)F0.

(Note, that the two options are not disjoint.) The output of this algorithm is correct, with probability ≥ 1 − φ.

Proof: We run O(logφ−1) copies of the of Lemma 27.2.2. If half of them returns that F0 > 2N, then the
algorithm returns that F0 > 2N. Otherwise, the algorithm returns the median of the estimates returned, and
return it as the desired estimated. The correctness readily follows by a repeated application of Chernoff’s
inequality. ■

Lemma 27.2.4. Let ε ∈ (0, 1/4). Given O(ε−2 log2 n) space, one can read the stream S once, and output a
number ρ, such that (1−ε)F0 ≤ ρ ≤ (1+ε)F0. The estimate is correct with high probability (i.e., ≥ 1−1/nO(1)).

Proof: Let Ni = 2i, for i = 1, . . . ,M =
⌈
lg n

⌉
. Run M copies of Lemma 27.2.3, for each value of Ni, with

φ = 1/nO(1). Let Y1, . . . ,YM be the outputs of these algorithms for the stream. A prefix of these outputs, are
going to be “F0 > 2Ni”, Let j be the first Y j that is a number. Return this number as the desired estimate.
The correctness is easy – the first estimate that is a number, is a correct estimate with high probability. Since
NM ≥ n, it also follows that YM must be a number. As such, there is a first number in the sequence, and the
algorithm would output an estimate.

More precisely, there is an index i, such that Ni/4 ≤ F0 ≤ 2F0, and Yi is a good estimate, with high
probability. If any of the Y j, for j < i, is an estimate, then it is correct (again) with high probability. ■

27.3. Bibliographical notes

27.4. From previous lectures

Theorem 27.4.1. Let D be a non-negative distribution with µ = E[D] and ν = V[D], and let ε, φ ∈ (0, 1)

be parameters. For some absolute constant c > 0, let M ≥ 24
⌈ 4ν

ε2µ2

⌉
ln 1
φ
, and consider sampling variables

X1, . . . , XM ∼ D. One can compute, in, O(M) time, a quantity Z from the sampled variables, such that

P
[
(1 − ε)µ ≤ Z ≤ (1 + ε)µ

]
≥ 1 − φ.

Theorem 27.4.2 (Chebyshev’s inequality). Let X be a real random variable, with µX = E[X], and σX =√
V[X]. Then, for any t > 0, we have P

[
|X − µX | ≥ tσX

]
≤ 1/t2.

4

Lemma 27.4.3. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . , n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ ∈ (0, 4), we have

P
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

Theorem 27.4.4. let p be a prime number, and pick independently and uniformly k values b0.b1, . . . , bk−1 ∈ Zp,
and let g(x) =

∑k−1
i=0 bixi mod p. Then the random variables

Y0 = g(0), . . . ,Yp−1 = g(p − 1).

are uniformly distributed in Zp and are k-wise independent.

References
[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University

Press, 1995.

5

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Approximating the Number of Distinct Elements in a Stream
	Counting number of distinct elements
	First order statistic
	The algorithm

	Sampling from a stream with ``low quality'' randomness
	Bibliographical notes
	From previous lectures

