
Chapter 26

Frequency Estimation over a Stream

“See? Genuine-sounding indignation. I programmed that myself. It’s the first thing you need in a university environment: the
ability to take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity
By Sariel Har-Peled, March 19, 2024①

26.1. The art of estimation

26.1.1. The problem

Assume we would like to estimate well some quantity ρ > 0 - specifically, for a fixed parameter ε ∈ (0, 1),
we would like to compute a quantity ρ′ such that ρ′ ∈ [(1 − ε)ρ, (1 + ε)ρ] with good probability. To this end,
assume we have access to a distribution D, such that if we sample X according to this distribution (i.e., X ∼ D),
we have that E[X] = ρ. We can use X to estimate our desired quantity, but this might not provide the desired
estimation.

Example: Estimating p for a coin. Assume we have a coin that is head with probability p. A natural way to
estimate p is to flip the coin once and return 1 if it is head, and zero otherwise. Let X be the result of the coin
flip, and observe that E[X] = p. But this is not very useful estimator.

26.1.2. Averaging estimator: Success with constant probability

26.1.2.1. The challenge

The basic problem is that X ∼ D might be much bigger than ρ. Or more specifically, its variance might be
huge, where D is a distribution we have access to. Let

ρ = E[D] and ν = V[D] .

We would to generate a variable Z, such that

E[Z] = ρ and V[Z] ≤ (ε2/4)ρ2. (26.1)

This would imply by Chebychev’s inequality that

P
[
|Z − ρ| ≥ ερ

]
= P

[
|Z − E[Z] | ≥ 2

√
(ε2/4)ρ2

]
≤ P

[
|Z − E[Z] | ≥ 2

√
V[Z]

]
≤

1
4
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

26.1.2.2. Taming of the variance

The basic idea is to take α =
⌈
ν
ρ

⌉
independent variables X1, . . . , Xα ∼ D, and let Y =

∑
i Xi/α. We have by

linearity of expectation that
E[Y] =

∑
i

E[Xi] /α = E[X] = ρ.

Using the independence of X1, . . . , Xα, we have

V[Y] = V
∑

i

Xi/α

 = 1
α2 V

∑
i

Xi

 = 1
α2

∑
i

V[Xi] =
1
α2αν =

ν

α
.

Guided by Eq. (26.1), we want this quantity to be smaller than ≤ (ε2/4)ρ2. Thus,

ν

α
≤ (ε2/4)ρ2 ⇐= α ≥

⌈
4
ε2 ·
ν

ρ2

⌉
=

⌈
4V[X]
ε2 E[X]2

⌉
.

We thus summarize the result.

Lemma 26.1.1. Let D be a non-negative distribution with ρ = E[D] and ν = V[D], and let ε ∈ (0, 1) be a

parameter. For α ≥
⌈ 4V[D]
ε2(E[D])2

⌉
, consider sampling variables X1, . . . , Xα ∼ D, and let Z =

∑α
i=1 Xi/α. Then Z

is a “good” estimator for ρ. Formally, we have

P
[
(1 − ε)ρ ≤ Z ≤ (1 + ε)ρ

]
≥

3
4
.

26.1.3. Median estimator: Success with high probability
We would like to get a better estimator, where the probability of success is high probability. Formally, we
would have parameter φ, and we would like the estimator to succeed with probability ≥ 1 − φ. A natural
approach is to try and use Chernoff to bound the probability of failure for the averaging estimator. This would
work in some cases, but is limited to the case when Z lies in a small bounded range. This would not work in
general if sampling from D might return a huge value with tiny probability. Instead, we are going to boost the
averaging estimator. Assume, we generating

β = O
(
log

1
φ

)
instances of the averaging estimators: Z1, . . . ,Zβ of Lemma 26.1.1. The median estimator returns the median
value of the Zs as the desired estimate.

Analysis. Let Ei be the event that Zi ∈ [(1 − ε)ρ, (1 + ε)ρ]. Let Gi be an indicator variable for Ei. By
Lemma 26.1.1, P[Ei] = P[Gi = 1] ≥ 3/4. The median estimator fails if

∑β
i=1 Gi < β/2. Using Chernoff

inequality, we get that this happens with probability ≤ φ. We thus get the following.

Theorem 26.1.2. Let D be a non-negative distribution with µ = E[D] and ν = V[D], and let ε, φ ∈ (0, 1)

be parameters. For some absolute constant c > 0, let M ≥ 24
⌈ 4ν

ε2µ2

⌉
ln 1
φ
, and consider sampling variables

X1, . . . , XM ∼ D. One can compute, in, O(M) time, a quantity Z from the sampled variables, such that

P
[
(1 − ε)µ ≤ Z ≤ (1 + ε)µ

]
≥ 1 − φ.

2

Proof: Let m =
⌈
4ν/(ε2µ2)

⌉
and M =

⌈
24 ln 1

φ

⌉
. Build M averaging estimators, each one using m samples. That

is let Zi be the average of m samples si,1, . . . , si,m from D, for i = 1, . . . ,M. Formally,

Zi =
1
m

m∑
j=1

si, j for i = 1, . . . ,M.

The estimate returned is the value median(Z1, . . . ,ZM).
By Lemma 26.1.1 each one of the averaging estimator is in the “good” range with probability ≥ 3/4. As

such, let Xi, for i = 1, . . . ,M, be an indicator variable, that is 1 if the ith averaging estimator is in the range
[(1 − ε)µ, (1 + ε)µ]. Let Y =

∑M
i=1 Xi. We have that E[Y] ≥ (3/4)M. As such, by Lemma ??, we have

P
[
bad output

]
= P

[
Y < (1/2)M

]
≤ P

[
Y < (1 − 1/3)E[Y]

]
≤ exp

(
−

(1/3)2

2 E[Y]
)
.

The later quantity is bounded by exp
(
− 1

18
3
4 M

)
= exp(−M/24) = exp

(
−

⌈
24 lnφ−1

⌉
/24

)
≤ φ. ■

26.2. Frequency estimation over a stream for the kth moment
Let S = (s1, . . . , sm) be a stream (i.e., sequence) of m elements from N = {1, . . . , n}. Let fi be the number of
times the number i appears in S. For k ≥ 0, let

Fk =

n∑
i=1

f k
i

be the kth frequency moment of S. The quantity, F1 = m is the length of the stream S. Similarly, F0 is the
number of distinct elements (where we use the convention that 00 = 0 and any other quantity to the power 0 is
1). It is natural to define F∞ = maxi fi.

Here, we are interested in approximating up to a factor of 1± ε the quantity Fk, for k ≥ 1 using small space,
and reading the stream S only once.

26.2.1. An estimator for the kth moment

26.2.1.1. Basic estimator

One can pick a representative element from a stream uniformly at random by using reservoir sampling. That
is, sample the ith element si to be the representative with probability 1/i. Once sampled, the algorithm counts
how many times it see the representative value later on in the stream (the counter is initialized to 1, to account
for the chosen representative itself). In particular, if sp is the chosen representative in the end of the stream
(i.e., the algorithm might change the representative several times), then the counter value is

r =
∣∣∣∣{ j

∣∣∣ j ≥ p and s j = sp

}∣∣∣∣ .
The output of the algorithm is the quantity

X = m
(
rk − (r − 1)k),

where m is the number of elements seen in the stream. Let V be the random variable that is the value of the
representative in the end of the sequence.

3

26.2.1.2. Analysis

Lemma 26.2.1. We have E[X] = Fk.

Proof: Observe that since we choose the representative uniformly at random, we have

E[X | V = i] =
fi∑

j=1

1
fi

m
(
jk − (j − 1)k) = m

fi

fi∑
j=1

(
jk − (j − 1)k) = m

fi
f k
i .

As such, we have E[X] = E
[
E[X | V]

]
=

∑
i: fi,0

fi
m

m
fi

f k
i =

∑
i f k

i = Fk. ■

Remark 26.2.2. In the above, we estimated the function g(x) = xk, over the frequency numbers f1, . . . , fk, but
the above argumentation, on the expectation of X, would work for any function g(x) such that g(0) = 0, and
g(x) ≥ 0, for all x ≥ 0.

Lemma 26.2.3. For k > 1, we have
∑n

i=1

(
ik − (i − 1)k

)2
≤ kn2k−1.

Proof: Observe that for x ≥ 1, we have that xk − (x − 1)k ≤ kxk−1. As such, we have

n∑
i=1

(
ik − (i − 1)k

)2
≤

n∑
i=1

kik−1
(
ik − (i − 1)k

)
≤ knk−1

n∑
i=1

(
ik − (i − 1)k

)
= knk−1nk = kn2k−1. ■

Lemma 26.2.4. We have E
[
X2

]
≤ kmF2k−1.

Proof: By Lemma 26.2.3, we have

E
[
X2

∣∣∣ V = i
]
=

fi∑
j=1

1
fi

m2(jk − (j − 1)k)2
≤

m2

fi
k f 2k−1

i = m2k f 2k−2
i ,

and thus E[X2] = E
[
E[X2 | V]

]
=

∑
i: fi,0

fi

m
· m2k f 2k−2

i = mkF2k−1. ■

Lemma 26.2.5. For any non-negative numbers f1, . . . , fn, and k ≥ 1, we have

n∑
i=1

fi ≤ n(k−1)/k
(n∑

i=1

f k
i

)1/k
.

Proof: This is immediate from Hölder inequality, but here is a self contained proof. The above is equivalent

to proving that
∑

i fi/n ≤
(∑n

i=1 f k
i /n

)1/k
. Raising both sides to the power k, we need to show that (

∑
i fi/n)k

≤∑n
i=1 f k

i /n. Setting g(x) = xk, we have g(
∑

i fi/n) ≤
∑n

i=1 g(fi)/n. The last inequality holds by the convexity of
the function g(x) (indeed, g′(x) = kxk−1 and g′′(x) = k(k − 1)xk−2 ≥ 0, for x ≥ 0). ■

Lemma 26.2.6. For any n numbers f1, . . . , fn ≥ 0, we have
(∑

i fi

)(∑
i f 2k−1

i

)
≤ n1−1/k

(∑
i f k

i

)2
.

4

Proof: Let M = maxi fi and m =
∑

i fi. We have∑
i

f 2k−1
i ≤ Mk−1

∑
i

f k
i ≤ Mk(k−1)/k

∑
i

f k
i ≤

(∑
i

f k
i

)(k−1)/k ∑
i

f k
i ≤

(∑
i

f k
i

)(2k−1)/k
.

By Lemma 26.2.5, we have
∑n

i=1 fi ≤ n(k−1)/k
(∑

i f k
i

)1/k
. Multiplying the above two inequality implies the

claim. ■

Lemma 26.2.7. We have V[X] ≤ kn1−1/kF2
k .

Proof: Since m =
∑

i fi, Lemma 26.2.4 and Lemma 26.2.6 together implies that

V[X] = E
[
X2

]
− (E[X])2 ≤ E

[
X2

] L26.2.4︷︸︸︷
≤ kmF2k−2 = k

(∑
i

fi

)(∑
i

f 2k−1
i

) L26.2.6︷︸︸︷
≤ kn1−1/kF2

k . ■

26.2.2. An improved estimator: Plugin
We have an estimator for Fk using constant space O(1). Specifically, µ = E[X] = Fk see Lemma 26.2.1, and
ν = V[X] ≤ kn1−1/kF2

k . Let

M = 24
⌈ 4ν
ε2µ2

⌉
ln

1
φ

We compute M estimators as the above (in parallel on the stream), and combine them as specified by Theo-
rem 26.1.2, to get a new estimate Z. We have that

P
[
(1 − ε)µ ≤ Z ≤ (1 + ε)µ

]
≥ 1 − φ.

Thus, the amount of space this streaming algorithm is using is proportional to M, and we have

M = O
(
ν

ε2µ2
ln

1
φ

)
= O

(
kn1−1/kF2

k

ε2F2
k

ln
1
φ

)
= O

(
kn1−1/k

ε2 ln
1
φ

)
.

We thus proved the following.
In the following, we consider a computer word to be sufficiently large to contain lg n or lg m bits. This

readily implies the following.

Theorem 26.2.8. Let S = (s1, . . . , sn) be a stream of numbers from the set {1, . . . , n}. Let k ≥ 1 be a parameter.
Given ε, φ ∈ (0, 1), one can build a data-structure using O(kn1−1/kε−2 logφ−1) words, such that one can (1± ε)-
approximate the kth moment of the elements in the stream; that is, the algorithm outs a number Z, such that
(1 − ε)Fk ≤ Z ≤ (1 + ε)Fk, where Fk =

∑n
i=1 f k

i , and fi is the number of times i appears in the stream S. The
algorithm succeeds with probability ≥ 1 − φ.

26.3. Better estimation for F2

26.3.1. Pseudo-random k-wide independent sequence of signed bits
In the following, assume that we sample O(log n) bits, such that given an index i, one can compute (quickly!) a
random signed bit b(i) ∈ {−1,+1}. We require that the resulting bits b(1), b(2), . . . , b(n) are 4-wise independent.

5

To this end, pick a prime p, that is, say bigger than n10. This can easily be done by sampling a number in the
range [n10, n11], and checking if it is prime (which can done in polynomial time).

Once we have such a prime, we generate a random polynomial g(i) =
∑5

i=0 cixi mod p, by choosing
c0, . . . , c5 from Zp =

{
0, . . . , p − 1

}
. We had seen that g(0), g(1), . . . , g(n) are uniformly distributed in Zp,

and they are, say, 6-wise independent (see Theorem 26.5.4).
We define

b(i) =

0 g(i) = p − 1
+1 g(i) is odd
−1 g(i) is even.

Clearly, the sequence b(1), . . . , b(n) are 6-wise independent. There is a chance that one of these bits might
be zero, but the probability for that is at most n/p, which is so small, that we just assume it does not happen.
There are known constructions that do not have this issue at all (one of the bits is zero), but they are more
complicated.

Lemma 26.3.1. Given a parameter φ ∈ (0, 1), in polynomial time in O(log(n/φ)), one can construct a function
b(·), requiring O(log(n/φ)) bits of storage (or O(1) words), such that b(1), . . . , b(n) ∈ {−1,+1} with equal
probability, an they are 6-wise independent. Furthermore, given i, one can compute b(i) in O(1) time.

The probability of this sequence to fail having the desired properties is smaller than φ.

Proof: We repeat the above construction, but picking a prime p in the range, say, n10/φ . . . n11/φ. ■

26.3.2. Estimator construction for F2

26.3.2.1. The basic estimator

As before we have the stream S = s1. . . . , sm of numbers from the set 1, . . . , n. We compute the 6-wise
independent sequence of random bits of Lemma 26.3.1, and in the following we assume this sequence is good
(i.e., has only −1 and +1 in it). We compute the quantity

T =
m∑

i=1

b(i) fi =

m∑
j=1

b(s j),

which can be computed on the fly using O(1) words of memory, and O(1) time per time in the stream.
The algorithm returns X = T 2 as the desired estimate.

Analysis.

Lemma 26.3.2. We have E[X] =
∑

i f 2
i = F2 and V[X] ≤ 2F2

2 .

Proof: We have that E[X] = E
[(∑n

i=1 b(i) fi

)2]
, and as such

E[X] = E
[n∑

i=1

(b(i))2 f 2
i + 2

∑
i< j

b(i)b(j) fi f j

]
=

m∑
i=1

f 2
i + 2

∑
i< j

fi f j E
[
b(i)b(j)

]
=

m∑
i=1

f 2
i = F2,

since E[b(i)] = 0, E
[
b(i)2

]
= 1, and E

[
b(i)b(j)

]
= E[b(i)]E

[
b(j)

]
= 0 (assuming the sequence b(1), . . . , b(n)

has not failed), by the 6-wise Independence of the sequence of signed bits.

We next compute E
[
X2

]
. To this end, let N = {1, . . . , n}, and Γ = N × N × N × N. We split this set into

several sets, as follows:

6

(i) Γ0 =
{
(i, i, i, i) ∈ N4

}
: All quadruples that are all the same value.

(ii) Γ1: Set of all quadruples (i, j, k, l) where there is at least one value that appears exactly once.
(iii) Γ2: Set of all (i, j, k, ℓ) with only two distinct values, each appearing exactly twice.

Clearly, we have N4 = Γ0 ∪ Γ1 ∪ Γ2.
For a tuple (i, i, i, i) ∈ Γ0, we have E[b(i)b(i)b(i)b(i)] = E

[
b(i)4

]
= 1.

For a tuple (i, j, k, ℓ) ∈ Γ1 with i being the unique value, we have that

E
[
b(i)b(j)b(k)b(ℓ)

]
= E[b(i)]E

[
b(j)b(k)b(ℓ)

]
= 0E

[
b(j)b(k)b(ℓ)

]
= 0,

using that the signed bits are 4-wise independent.
For a tuple (i, i, j, j) ∈ Γ2, we have E

[
b(i)b(i)b(j)b(j)

]
= E

[
b(i)2b(j)2

]
= E

[
b(i)2

]
E
[
b(j)2

]
= 1, and the same

argumentation applies to any tuple of Γ2. Observe that for any i < j, there are
(

4
2

)
= 6 different tuples in Γ2 that

are made out of i and j. As such, we have

E
[
X2

]
= E

[(n∑
i=1

b(i) fi

)4]
= E

[∑
(i, j,k,ℓ)∈Γ

b(i)b(j)b(k)b(ℓ) fi f j fk fℓ
]

=
∑

(i,i,i,i)∈Γ0

E
[
b(i)4

]
f 4
i +

∑
(i, j,k,ℓ)∈Γ1

fi f j fk fℓ E
[
b(i)b(j)b(k)b(ℓ)

]
+ 6

∑
i< j

E
[
b(i)2b(j)2

]
f 2
i f 2

j

=

n∑
i=1

f 4
i + 6

∑
i< j

f 2
i f 2

j .

As such, we have

V[X] = E
[
X2

]
− (E[X])2 =

n∑
i=1

f 4
i + 6

∑
i< j

f 2
i f 2

j −
(m∑

i=1

f 2
i

)2
= 4

∑
i< j

f 2
i f 2

j ≤ 2F2
2 . ■

26.3.3. Improving the estimator
We repeat the same scheme as above. Let φ, ε ∈ (0, 1) be parameters. In the following, let

α = 16/ε2 and β = 4 ln
1
φ
.

Let Xi, j be a basic estimator for F2, using the estimator of Section 26.3.2.1, for i = 1, . . . , β and j = 1, . . . , α.
Let Yi =

∑α
j=1 Xi, j/α, for i = 1, . . . , β. Let Z be the median of Y1, . . . ,Yβ, and the algorithm returns Z as the

estimator.

Theorem 26.3.3. Given a stream S = s1, . . . , sm of numbers from {1, . . . , n}, and parameters ε, φ ∈ (0, 1), one
can compute an estimate Z for F2(S), such that P[|Z − F2| > εF2] ≤ φ. This algorithm requires O(ε−2 logφ−1)
space (in words), and this is also the time to handle a new element in the stream.

Proof: The scheme is described above. As before, using Chebychev’s inequality, we have that

P[|Yi − F2| > εF2] = P
[
|Yi − F2| >

εF2
√
V[Yi]

√
V[Yi]

]
≤

V[Yi]
ε2F2

2

=
V[X] /α
ε2F2

2

≤
2F2

2

αε2F2
2

=
1
8
,

by Lemma 26.3.2. Let U be the number of estimators in Y1, . . . ,Yβ that are outside the acceptable range.
Arguing as in Lemma ??, we have

P[Z is bad] ≤ P
[
U ≥ β/2

]
= P

[
U ≥ (1 + 3)β/8

]
≤ exp(−(β/8)32/4) ≤ exp

(
− ln

1
φ

)
= φ,

by Chernoff inequality (Lemma 26.5.2), and ■

7

26.4. Bibliographical notes
The beautiful results of this chapter are from a paper from Alon et al. [AMS99].

26.5. From previous lectures
Theorem 26.5.1 (Chebyshev’s inequality). Let X be a real random variable, with µX = E[X], and σX =√
V[X]. Then, for any t > 0, we have P

[
|X − µX | ≥ tσX

]
≤ 1/t2.

Lemma 26.5.2. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . , n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ ∈ (0, 4), we have

P
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

Lemma 26.5.3. Let X1, . . . , Xn ∈ {0, 1} be n independent random variables, with pi = P
[
Xi = 1

]
, for all i. For

X =
∑n

i=1 Xi, and µ = E
[
X
]
=

∑
i pi, we have that P

[
X < (1 − δ)µ

]
< exp

(
−µδ2/2

)
.

Theorem 26.5.4. let p be a prime number, and pick independently and uniformly k values b0.b1, . . . , bk−1 ∈ Zp,
and let g(x) =

∑k−1
i=0 bixi mod p. Then the random variables

Y0 = g(0), . . . ,Yp−1 = g(p − 1).

are uniformly distributed in Zp and are k-wise independent.

References
[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency mo-

ments. J. Comput. Syst. Sci., 58(1): 137–147, 1999.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

8

http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1006/jcss.1997.1545
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Frequency Estimation over a Stream
	The art of estimation
	The problem
	Averaging estimator: Success with constant probability
	Median estimator: Success with high probability

	Frequency estimation over a stream for the kth moment
	An estimator for the kth moment
	An improved estimator: Plugin

	Better estimation for F2
	Pseudo-random k-wide independent sequence of signed bits
	Estimator construction for F2
	Improving the estimator

	Bibliographical notes
	From previous lectures

