
Chapter 25

Streaming and the Multipass Model

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me. It seems
to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come back to him again -
being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat
By Sariel Har-Peled, March 19, 2024①

25.1. The secretary problem

Assume that we are seeing n applications: α1, . . . , αn, where the quality of each one of them is an independent
random event. We would like to hire the best one, but we have to make an immediate decision – we see
candidate αi, we either hire them (and then we are stuck with them), or we let them go and see the next
candidate. We win the game if we hire the best candidate out of the n candidate.

The question is what is the natural strategy to win the game? Let P(r) be the probability that we win, when
the strategy is to see the first r− 1 candidates, and then hire the first candidate we see in αr, . . . , αn that is better
than all the candidates seen in α1, . . . , αr−1. We have that

P(r) =
n∑

i=1

P
[
applicant i is selected ∩ applicant i is the best

]
=

n∑
i=1

P
[
applicant i is selected

∣∣∣ applicant i is the best
]
· P

[
applicant i is the best

]
=

 r−1∑
i=1

0 +
n∑

i=r

P
(

the best of the first i − 1 applicants
is in the first r − 1 applicants

∣∣∣∣∣∣ applicant i is the best
) · 1

n

=

 n∑
i=r

r − 1
i − 1

 · 1
n

=
r − 1

n

n∑
i=r

1
i − 1
.

Observe that
n∑

i=r

1
i − 1

≤

∫ n−1

x=r−2

1
x

dx = ln(n − 2) − ln(r − 2) ≈ ln
n
r
.

For r = n/e, we have that P(r) ≈ r
n ln n

r =
1
e ln e = 1/e.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

25.2. Reservoir sampling: Fishing a sample from a stream

Imagine that you are given a stream of elements s1, s2, . . ., and you need to sample k numbers from this stream
(say, without repetition) – assume that you do not know the length of the stream in advance, and furthermore,
you have only O(k) space available for you. How to do that efficiently?

There are two natural schemes:

(A) Whenever an element arrives, generate a random number for it in the range [0, 1]. Maintain a heap
with the k elements with the lowest priority. Implemented naively this requires O(log k) comparisons
after each insertion, but it is not difficult to improve this to O(1) comparisons in the amortized sense per
insertion. Clearly, the resulting set is the desired random sample

(B) Let S t be the random sample maintained in the tth iteration. When the ith element arrives, the algorithm
flip a coin that is heads with probability min(1, k/i). If the coin is heads then it inserts si to S i−1 to get S i.
If S i−1 already have k elements, then first randomly delete one of the elements.

Theorem 25.2.1. Given a stream of elements, one can uniformly sample k elements (without repetition), from
the stream using O(k) space, where O(1) time is spent for handling each incoming element.

Proof: We implement the scheme (B) above. We only need to argue that this is a uniform random sample. The
claim trivially hold for i = k. So assume the claim holds for i < t, and we need to prove that the set after getting
tth element is still a uniform random sample.

So, consider a specific set K ⊆ {s1, . . . , st} of k elements. The probability of K to be a random sample of
size k from a set of t elements is 1/

(
t
k

)
. We need to argue that this probability remains the same for this scheme.

So, if st < K, then we have

P[K = S t] = P[K = S t−1 and st was not inserted] =
1(

t−1
k

)(1 − k
t

)
=

k!(t − 1 − k)!(t − k)
(t − 1)!t

=
1(
t
k

) .
If st ∈ K, then

P
[
K = S t

]
= P

 K \ {st} ⊆ S t−1,
st was inserted

and S t−1 \ K thrown out of S t−1

 = t − 1 − (k − 1)(
t−1
k

) AAk
t

1
AAk
=

(t − k)k!(t − 1 − k)!
(t − 1)!t

=
1(
t
k

) ,
as desired. Indeed, there are t − 1− (k − 1) subsets of size k of {s1, . . . , st−1} that contains K \ {st} – since we fix
k − 1 of the t − 1 elements. ■

25.3. Sampling and median selection revisited

Let B[1, . . . , n] be a set of n numbers. We would like to estimate the median, without computing it outright. A
natural idea, would be to pick k elements e1, . . . , ek randomly from B, and return their median as the guess for
the median of B.

In the following, let B⟨t⟩ be the tth smallest number in the array B.

Observation 25.3.1. For any ε ∈ (0, 1), we have that 1
1−ε ≥ 1 + ε.

2

Lemma 25.3.2. Let ε ∈ (0, 1/2) be a fixed parameter, and let B be a set of n numbers. Let Z be the median of
the random sample (with replacement) of B of size k. We have that

P
[
B⟨ 1−ε

2 n⟩ ≤ Z ≤ B⟨ 1+ε
2 n⟩

]
≥ 1 − δ, where k ≥

⌈
12
ε2 ln

2
δ

⌉
.

Namely, with probability at least 1 − δ, the returned value Z is (ε/2)n positions away from the true median.

Proof: Let L = B⟨(1−ε)n/2⟩, and let ei be the ith sample number, for i = 1, . . . , k. Let Xi = 1 if and only if ei ≤ L.
We have that

P[Xi = 1] =
(1 − ε)n/2

n
=

1 − ε
2
.

As such, setting Y =
∑k

i=1 Xi, we have

µ = E[Y] =
1 − ε

2
k ≥

k
4
≥

3
ε2 ln

2
δ
.

One case of failure of the algorithm is if Y ≥ k/2. Since 1
1−ε ≥ 1 + ε, we have that

P[Y ≥ k/2] = P
[
Y ≥

1/2
(1 − ε)/2

·
1 − ε

2
k
]
≤ P

[
Y ≥ (1 + ε)µ

]
≤ exp

(
−
ε2µ

3

)
≤ exp

(
−
ε2

3
·

3
ε2 ln

2
δ

)
≤
δ

2
.

by Chernoff’s inequality (see Lemma 25.6.1).
This implies that P

[
B⟨(1−ε)n/2⟩ > Z

]
≤ δ/2. The claim now follows by realizing that by symmetry (i.e.,

revering the order), we have that
P
[
Z > B⟨(1+ε)n/2⟩

]
≤ δ/2,

and putting these two inequalities together. ■

The above already implies that we can get a good estimate for the median. We need something somewhat
stronger – we state it without proof since it follows by similarly mucking around with Chernoff’s inequality.

Lemma 25.3.3. Let ε ∈ (0, 1/2), B an array of n elements, and let S = {e1, . . . , ek} be a set of k samples picked
uniformly and randomly from B. Then, for some absolute constant c, and an integer k, such that k ≥

⌈
c
ε2

ln 1
δ

⌉
,

we have that
P
[
S ⟨k−⟩ ≤ B⟨n/2⟩ ≤ S ⟨k+⟩

]
≥ 1 − δ.

for k− = ⌊(1 − ε)k/2⌋, and k+ = ⌊(1 + ε)k/2⌋.
One can prove even a stronger statement:

P
[
B⟨(1−2ε)n/2⟩ ≤ S ⟨(1−ε)k/2⟩ ≤ B⟨n/2⟩ ≤ S ⟨(1+ε)k/2⟩ ≤ B⟨(1+2ε)n/2⟩

]
≥ 1 − δ

(the constant c would have to be slightly bigger).

25.3.1. A median selection with few comparisons
The above suggests a natural algorithm for computing the median (i.e., the element of rank n/2 in B). Pick a
random sample S of k = O(n2/3 log n) elements. Next, sort S , and pick the elements L and R of ranks (1 − ε)k
and (1 + ε)k in S , respectively. Next, scan the elements, and compare them to L and R, and keep only the
elements that are between. In the end of this process, we have computed:

3

(A) α: The rank of the number L in the set B.
(B) T = {x ∈ B | L ≤ x ≤ H}.

Compute, by brute force (i.e., sorting) the element of rank n/2 − α in T . Return it as the desired median. If
n/2 − α is negative, then the algorithm failed, and it tries again.

Lemma 25.3.4. The above algorithm performs 2n + O(n2/3 log n) comparisons, and reports the median. This
holds with high probability.

Proof: Set ε = 1/n1/3, and δ = 1/nO(1), and observe that Lemma 25.3.3 implies that with probability ≥ 1− 1/δ,
we have that the desired median is between L and H. In addition, Lemma 25.3.3 also implies that |T | ≤ 4εn ≤
4n2/3, which readily implies the correctness of the algorithm.

As for the bound on the number of comparisons, we have, with high probability, that the number of com-
parisons is

O
(
|S | log |S | + |T | log |T |

)
+ 2n = O

(√
n log2 n + n2/3 log n

)
+ 2n,

since deciding if an element is between L and H requires two comparisons. ■

Lemma 25.3.5. The above algorithm can be modified to perform (3/2)n + O(n2/3 log n) comparisons, and
reports the median correctly. This holds with high probability.

Proof: The trick is to randomly compare each element either first to L or first to H with equal probability. For
elements that are either smaller than L or bigger than H, this requires (3/2)n comparisons in expectation. Thus
improving the bound from 2n to (3/2)n. ■

Lemma 25.3.6. Consider a stream B of n numbers, and assume we can make two passes over the data. Then,
one can compute exactly the median of B using:

(I) O(n2/3) space.
(II) 1.5n + O(n2/3 log n) comparisons.

The algorithm reports the median correctly, and it succeeds with high probability.

Proof: Implement the above algorithm, using the random sampling from Theorem 25.2.1. ■

Remark 25.3.7. Interestingly, one can do better if one is more careful. The basic idea is to do thinning – given
two sorted sequence of sizes s, consider merging the sets, and then picking all the even rank elements into a
new sequence. Clearly, the element of rank i in the output sequence, has rank 2i in the union of the two original
sequences. A sequence that is the result of i such rounds of thinning is of level i. We maintain O(log n) such
sequences as we read the stream. At any time, we have two buffers of size s, that we fill up from the stream.
Whenever the two buffers fill up completely, we perform the thinning operation on them, creating a sequence
of level 1.

If during this process we have two sequences of the same level, we merge them and perform thinning on
them. As such, we maintain O(log n) buffers sequences each of size s. Assume that our stream has size n, and
n is a power for 2. Then in the end of process, we would have only a single sequence of level h = log2(n/s).
By induction, it is easy to prove that an element of rank r in this sequence, has rank between 2h(r − 1) and 2hr
in the original stream.

Thus, setting s =
√

n, we get that after a single pass, using O(
√

n log n) space, we have a sorted sequence,
where the rank of the elements is roughly

√
n approximation to the true rank. We pick the two consecutive

elements (or more carefully, the predecessor, and successor), and filter the stream again, keeping only the
elements in between these two elements. It is to show that O(

√
n) would be kept, and we can extract the

median using O(
√

n log n) time.
We thus got that one can compute the median in two passes using O(

√
n log n) space. It is not hard to extend

this algorithm to α-passes, where the space required becomes O(n1/α log n).
This elegant algorithm goes back to 1980, and it is by Munro and Paterson [MP80].

4

25.4. Big data and the streaming model
Here, we are interested in doing some computational tasks when the amount of data we have to handle is quite
large (think terabytes or larger). The main challenge in many of these cases is that even reading the data once
is expensive. Running times of O(n log n) might not be acceptable. Furthermore, in many cases, we can not
load all the data into memory.

In the streaming model, one reads the data as it comes in, but one can not afford to keep all the data. A
natural example would be a internet router, which has gazillion of packets going through it every minute. We
might still be interested in natural questions about these packets, but we want to do this without storing all the
packets.

25.5. Heavy hitters
The problem. Imagine a stream s1, . . ., where elements might repeat, and we would like to maintain a list of
elements that appear at least εn times, where ε ∈ (0, 1) is some parameter. The purpose here is to do this using
as little space as possible.

25.5.1. A randomized algorithm
Am easy randomized algorithm, would maintain a random sample of size m = ⌈(1/ε) ln(1/φ)⌉, using reservoir
sampling. The probability the sample fails to contain a heavy hitter after t insertions is

(1 − ε)m ≤ exp(−εm) ≤ exp
(
−ε

⌈
1
ε

ln
1
φ

⌉)
≤ exp

(
− ln

1
φ

)
= exp(φ) = φ.

25.5.2. A deterministic algorithm
Disclaimer: The following is a deterministic algorithm, but it is too elegant to hold this against it, and we will
present it anyway.

The algorithm. To this end, let
k = ⌈1/ε⌉ .

At each point in time, we maintain a set S of k elements, with a counter for each element. Let S t be the version
of S after t were inserted. When st+1 arrives, we increase its counter if it is already in S t. If |S t| < k, then we
just insert st+1 to the set, and set its counter to 1. Otherwise, |S t| = k and st+1 < S t. We then decrease all the k
counters of elements in S t by 1. If a counter of an element in S t+1 is zero, then we delete it from the set.

Correctness.

Lemma 25.5.1. The above algorithm, after the insertion of t elements, the set S t+1 would contain all the
elements in the stream that appears at least εt times.

Proof: Conceptually, imagine that the algorithm keeps counters for all the distinct elements seen in the stream.
Whenever a decrease of the counters happens – the algorithm decrease not k counters – but k+ 1 counters – the
additional counter being a counter of the new element, which has value one, and goes down to zero. Clearly,
the number of distinct remaining elements in any point in time is at most k – that is, the number of counters

5

that have a non-zero value. Consider an element e that appears u ≥ εt times in the stream. The counter for e is
going to be increased u times, and decreased at most α time, where α(k + 1) ≤ t.We have that the counter for
u in the end of the stream must have value at least

u −
t

k + 1
≥ εt −

t
k + 1

= εt −
t

⌈1/ε⌉ + 1
≥ t
⌈1/ε⌉ ε + ε − 1
⌈1/ε⌉ + 1

≥ t
ε

⌈1/ε⌉ + 1
> 0.

This implies that the counter of u is strictly larger than 0, which implies that u appears in S t+1. ■

25.6. From previous lectures
Lemma 25.6.1. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . , n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ, ∈ (0, 1), we have

P
[
X > (1 + δ)µ

]
< exp

(
−µδ2/3

)
.

References
[MP80] J. I. Munro and M. Paterson. Selection and sorting with limited storage. Theo. Comp. Sci., 12: 315–

323, 1980.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

6

http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Streaming and the Multipass Model
	The secretary problem
	Reservoir sampling: Fishing a sample from a stream
	Sampling and median selection revisited
	A median selection with few comparisons

	Big data and the streaming model
	Heavy hitters
	A randomized algorithm
	A deterministic algorithm

	From previous lectures

