
Chapter 21

The power of two choices
By Sariel Har-Peled, March 19, 2024①

The Peace of Olivia. How sweat and peaceful it sounds! There the great powers noticed for the first time that the land of the
Poles lends itself admirably to partition.

The tin drum, Gunter Grass

Consider the problem of throwing n balls into n bins. It is well known that the maximum load isΘ(log n/ log log n)
with high probability. Here we show that if one is allowed to pick d bins for each ball, and throw it into the
bin that contains less balls, then the maximum load of a bin decreases to Θ(log log n/ log d). A variant of this
approach leads to maximum load Θ((log log n)/d).

As a concrete example, for n = 109, this leads to maximum load 13 in the regular case, compared to
maximum load of 4, with only two-choices – see Figure 21.1.

21.1. Balls and bins with many rows

21.1.1. The game
Consider throwing n balls into n bins. Every bin can contain a single ball. As such, as we throw the balls, some
balls would be rejected because their assigned bin already contains a ball. We collect all the rejected balls, and
throw them again into a second row of n bins. We repeat this process till all the balls had found a good and
loving home (i.e., an empty bin). How many rows one needs before this process is completed?

21.1.2. Analysis
Lemma 21.1.1. Let m = αn balls be thrown into n bins. Let Yend the number of bins that are not empty in the
end of the process (here, we allow more than one ball into a bin).

(A) For α ∈ (0, 1], we have µ = E[Yend] ≥ (m − α) exp(−α) ≥ αn − α2n − 1.
(B) If α ≥ 1, then µ = E[Yend] ≥ n

(
1 − exp(−α)

)
.

(C) We have P
[
|Yend − µ| >

√
3cm log n

]
≤ 1/nc.

Proof: (A) The probability of the ith ball to be the first ball in its bin, is
(
1 − 1

n

)i−1
. To see this we use backward

analysis – throw in the ith ball, and now throw in the earlier i − 1 balls. The probability that none of the earlier
balls hit the same bin as the ith ball is as stated. Now, the expected number of non-empty bins is the number of
balls that are first in their bins, which in turn is

µ =

m−1∑
i=0

(
1 −

1
n

)i

≥ m(1 − 1/n)m−1 ≥ (m − α)(1 − 1/n)m−α

= (m − α)(1 − 1/n)α(n−1) ≥ (m − α) exp(−α)

≥ (m − α)(1 − α) = αn − α2n − α + α2 ≥
m − α

e
,

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

using m = αn ≤ n, and (1 − 1/n)n−1 ≥ 1/e, see Lemma 21.6.3.

(B) We repeat the above analysis from the point of view of the bin. The probability of a bin to be empty is
(1 − 1/n)αn. As such, we have that

µ = E[Yend] = n(1 − (1 − 1/n)αn) ≥ n
(
1 − exp(−α)

)
,

using 1 − 1/n ≤ exp(−1/n).

(C) Let Xi be the index of the bin the ith ball picked. Let Yi = E[Yend | X1, . . . , Xi]. This is a Doob martingale,
with |Yi − Yi−1| ≤ 1. As such, Azuma’s inequality implies, for λ =

√
3cm ln n, that

P
[
|Yend − E[Yend]| ≥ λ

]
≤ 2 exp

(
−λ2/2m

)
≤ 1/nc. ■

Remark. The reader might be confused by cases (A) and (B) of Lemma 21.1.1 for α = 1, as the two lower
bounds are different. Observe that (A) is loose if α is relatively large and close to 1.

Back to the problem. Let α1 = 1 and n1 = α1n. For i > 1, inductively, assume that numbers of balls being
thrown in the ith round is

ni = αin + O(
√
αi−1n log n).

By Lemma 21.1.1, with high probability, the number of balls stored in the ith row is

si = ni exp(−αi) ± O(
√

ni log n).

As such, as long as the first term is significantly large than the second therm, we have that si = nαi exp(−αi)(1±
o(1)). For the time being, let us ignore the o(1) term. We have that

ni+1 = ni − si = n(αi − αi exp(−αi)) ≤ n(αi − αi(1 − αi)) = nα2
i ,

since exp(−αi) ≥ 1 − αi.

Definition. For a number x > 0, we use lg x = log2 x.

Observation 21.1.2. Consider the sequence α1 = 1, c = α2 = 1 − 1/e, and αi+1 = α
2
i , for i > 2. We have that

αi+1 = c2i−2
. In particular, for

∆ = 3 + lg log1/c n = 3 + lg
lg n

lg(1/c)
= 3 + lg lg n − lg lg

1
1 − 1/e

≤ 3 + lg lg n.

we have that α∆ = c2∆−2
< 1/n.

The above observation almost implies that we need ∆ rows. The problem is that the above calculations
(i.e., the high probability guarantee in Lemma 21.1.1) breaks down when ni = O(log n) – that is, when αi =

O((log n)/n). However, if one throws in O(log n) balls into n bins, the probability of a single collision is at most
O((log n)2/n). In particular, this implies that after roughly additional c rows, the probability of any ball left is
≤ 1/nc.

The above argumentation, done more carefully, implies the following – we omit the details because (essen-
tially) the same analysis for a more involved case is done next (the lower bound stated follows also from the
same argumentation).

Theorem 21.1.3. Consider the process of throwing n balls into n bins in several rounds. Here, a ball that can
not be placed in a round, because their chosen bin is already occupied, are promoted to the next round. The
next round throws all the rejected balls from the previous round into a new row of n empty bins. This process,
with high probability, ends after M = lg lg n + Θ(1) rounds (i.e., after M rounds, all balls are placed in bins).

2

21.1.3. With only d rows

Lemma 21.1.4. For α ∈ (0, 1/4], let γ1 = α, and γi = 2γ2
i−1. We have that γd+1 ≤ α

(2d+1)/2.

Proof: The proof, minimal as it may be, is by induction:

γi+1 = 2γ2
i ≤ 2

(
α(2i−1+1)/2

)2
= 2α(2i+2)/2 ≤ α(2i+1)/2,

since 2
√
α ≤ 1. ■

Lemma 21.1.5. Let m = αn balls be thrown into n bins, with d rows, where α > 0. Here every bin can contain
only a single ball, and if inserting the ball into ith row failed, then we throw it in the next row, and so on, till it
finds an empty bin, or it is rejected because it failed on the dth row. Let Y(d, n,m) be the number of balls that
did not get stored in this matrix of bins. We have

(A) For a constant α < 1/4, we have Y(d, n, αn) ≤ nα(2d+1)/2, with high probability.
(B) We E

[
Y(d, n, dn)

]
= O(n log d).

(C) For a constant c > 1, we have E
[
Y(d, n, cn log d)

]
= n/e−d/2, assuming d is sufficiently large.

Proof: (A) By Lemma 21.1.1, in expectation, at least s1 = nα exp(−α) balls are placed in the first row. As such,
in expectation n2 = nα(1− exp(−α)) ≤ nα2 balls get thrown into the second row. Using Chenroff inequality, we
get that n2 ≤ 2α2n, with high probability. Setting γ1 = α, and γi = 2γ2

i−1, we get the claim via Lemma 21.1.4.
(B) As long as we throw Ω(n log d) balls into a row, we expect by Lemma 21.1.1 that at least n(1 − 1/dO(1))

balls to get stored in this row. As such, let D = O(log d), and observe that the first d − D rows in expectation
contains n(d−D)(1−1/dO(1)) balls. This implies that only O(Dn) are not stored in these first d−D rows, which
implies the claim.

(C) Break the d rows into two groups. The first group of size

D =
⌈
(c log d − 1)/(1 − 1/e)

⌉
+ 1 = O(log d),

and the second group is the remaining rows. As long as the number of balls arriving to a row is larger than n,
we expect at least n(1 − 1/e) of them to be stored in this row. As such, after the first D rows, we expect the
number of remaining balls to be ≤ n. Indeed, if we have i such rows, then the expected number of balls moving
on to the (i + 1)th row is at most

ni+1 = cn log d − in(1 − 1/e).

Solving for ni+1 ≤ n, we have cn log d − in(1 − 1/e) ≤ n =⇒ i(1 − 1/e) ≥ c log d − 1 =⇒ i ≥ (c log d −
1)/(1 − 1/e) ≥ D − 1. As such, nD ≤ n, for i ≥ D.

The same argumentation implies that the number of balls arriving to the D+ i row, in expectation, is at most
n/ei. In particular, we get that the number of balls failed to be placed is at most n/ed−D ≤ n/ed/2. ■

21.2. The power of two choices
Making d choices. Let us throw n balls into n bins. For each ball, we first pick randomly d ≥ 2 bins, and
place the ball in the bin (among these d bins) that currently contains the smallest number of balls (here, a bin
might contain an arbitrary number of balls). If there are several bins with the same minimum number of bins,
we resolve it arbitrarily.

Here, we will show the surprising result that the maximum number of balls in any bin is bounded by
O
(log log n

log d

)
with high probability in the end of this process. For d = 1, which is the regular balls into bins setting,

we already seen that this quantity is Θ
(log n

log log n

)
, so this result is quite surprising.

3

21.2.1. Upper bound
Definition 21.2.1. The load of a bin is the number of balls in it. The height of a ball, is the load of the bin it
was inserted into, just after it was inserted.

Some notations:
(A) βi: An upper bound on the number of bins that have load at least i by the end of the process.
(B) h(i): The height of the ith ball.
(C) ⊔≥i(t): Number of bins with load at least i at time t.
(D) o≥i(t): Number of balls with height at least i at time t.

Observation 21.2.2. ⊔≥i(t) ≤ o≥i(t).

Let |≥i = ⊔≥i(n) be the number of bins, in the end of the process, that have load ≥ i.

Observation 21.2.3. Since every bin counted in |≥i contains at least i balls, and there are n balls, it follows
that |≥i ≤ n/i. In particular, we have |≥4 ≤ n/4.

Lemma 21.2.4. Let β1 = n, β2 = n/2, β3 = n/3, and β4 = n/4, and let

βi+1 = 2n(βi/n)d,

for i ≥ 4. Let I be the last iteration, such that βI ≥ 16c ln n, where c > 1 is an arbitrary constant. Then, with
probability ≥ 1 − 1/nc, we have that

(A) |≥i ≤ βi, for i = 1, . . . , I.
(B) |≥I+1 ≤ c′ log n, for some constant c′.
(C) For j > 0, and any constant ε > 0, we have P

[
|≥I+1+ j > 0

]
≤ O(1/n(d−1−ε) j).

(D) With probability ≥ 1 − 1/nc, the maximum load of a bin is I + O(c).

Proof: (A) The claim for i = 1, 2, 3, 4 follows readily from Observation 21.2.3.
Let Bi be the bad event that |≥i > βi, for i = 1, . . . , n. The following analysis is conditioned on none of

these bad events happening. Let Gk = ∩
k
i=1Bi be the good event. Let Yt be an indicator variable that is one

⇐⇒ h(t) ≥ i + 1 conditioned on Gi−1 (for clarity, we omit mentioning this conditioning explicitly). We have
that

τ j = P
[
Y j = 1

]
≤ pi for pi = (βi/n)d,

as all d probes must hit bins of height at least i, and there are at most βi such bins. This readily implies
that E

[
o≥i+1(n)

]
≤ pin. The variables Y1, . . . ,Yn are not independent, but consider a variable Y ′j that is 1 if

Y j = 1, or if Y j = 0, then Y ′j is 1 with probability pi − τ j. Clearly, the variables Y ′1, . . . ,Y
′
n are independent, and∑

i Y ′j ≥
∑

i Yi. For i < I, setting
βi+1 = 2npi = 2n(βi/n)d,

we have, by Chernoff’s inequality, that

αi+1 = P[Bi+1] = P
[
o≥i+1(n) > βi+1

]
= P

[
o≥i+1(n) > 2npi

]
≤ P

[∑
i

Y ′t > (1 + 1)npi

]
≤ exp(−npi/4) = exp(−βi+1/8) < 1/n2c.

(B) We have βI+1 ≤ 16c log n. Setting ∆ = 2e · 16c log n, and conditioning on the good event G1, consider
the sequence Y ′1, . . .Y

′
n as above, where the Yi is the indicator that the ith ball has height ≥ I + 1. Arguing as

above, for Y ′ =
∑

i Y ′i , we have E[Y] ≤ βi+1. As such, we have

P[|≥I+1 > ∆] ≤ P
[
o≥I+1(n) > ∆

]
≤ P

[
Y ′ >

∆

E[Y ′] E
[
Y ′

]]
≤ 2−∆ ≤

1
nc ,

4

by Lemma 21.6.4, as E[Y ′] ≤ βI+1, and ∆/βI+1 > 2e.
As for the conditioning used in the above, we have that

P[GI+1] =
I+1∏
ℓ=4

P
[
Bℓ+1

∣∣∣∣ ∩ℓk=1B1

]
=

∏
i

(1 − αi) ≥ 1 − 1/nc−1,

since I ≤ n.

(C) Observe that ⊔≥i+1(n) ≤ ⊔≥i(n). As such, for all j > 0, we have that ⊔≥I+1+ j(n) ≤ o≥I+1(n) ≤ ∆ =
2e · 16c log n, by (B). As such, we have

E
[
o≥I+1+ j(n)

]
≤ n(∆/n)d = O(logd n/nd−1) = O(1/nd−1−ε) ≪ 1,

for ε > 0 an arbitrary constant, and n sufficient large. Using Markov’s inequality, we get that q = P
[
o≥I+1+ j(n) ≥ 1

]
=

O(1/nd−1−ε). The probability that the first j such rounds fail (i.e., that o≥I+1+ j(n) > 0) is at most q j, as claimed.

(D) This follows immediately by picking ε = 1/2, and then using (C) with j = O(c). ■

Lemma 21.2.5. For i = 4, . . . , I, we have that βi ≤ n/2di−4+1.

Proof: The proof is by induction. For i = 4, we have β4 ≤ n/4, as claimed. Otherwise, we have

βi+1 = 2n(βi/n)d
≤ 2n

(
1/2di−4+1

)d
= n/2di+1−4+d−1 ≤ n/2di+1−4+1. ■

Theorem 21.2.6. When throwing n balls into n bins, with d choices, with probability ≥ 1 − 1/nO(1), we have
that the maximum load of a bin is O(1) + lg lg n

lg d

Proof: By Lemma 21.2.4, with the desired probability the βis bound the load in the bins for i ≤ I. By
Lemma 21.2.5, it follows that for I = O(1) + lg lg n

lg d , we have that βI ≤ o(log n). Thus giving us the desired
bound. ■

It is not hard to verify that our upper bounds (i.e., βi) are not too badly off, and as such the maximum load
in the worst case is (up to additive constant) the same. We state the result without proof.

Theorem 21.2.7. When throwing n balls into n bins, with d choices (where the ball is placed with the bin with
the least load), with probability ≥ 1 − o(1/n), we have that the maximum load of a bin is at least lg lg n

lg d − O(1).

21.2.2. Applications

As a direct application, we can use this approach for open hashing, where we use two hash functions, and place
an element in the bucket of the hash table with fewer elements. By the above, this improves the worst case
search time from O(log n/ log log n) to O(log log n). This comes at the cost of doubling the time it takes to do
lookup on average.

5

21.2.3. The power of restricted d choices: Always go left
The always go left rule. Consider throwing a ball into n bins (which might already have some balls in them) as
follows – you pick uniformly a number Xi ∈ Jn/dK, for i = 1, . . . , d. Next, you try locations Y1, . . . ,Yd, where
Y j = X j + j(n/d), for j = 1, . . . , d. Let L j be the load of bin Y j, for j = 1, . . . , d, and let L = min j L j be the
minimum load of any bin. Let τ be the minimum index such that L j = L. We throw the ball into Yτ.

What the above scheme does, is to partition the n bins into d groups each of size n/d, placed from left to
right. We pick a bin uniformly from each group, and always throw the ball in the leftmost location that realizes
the minimum load.

The following proof is informal for the sake of simplicity.

Theorem 21.2.8. When throwing n balls into n bins, using the always-go-left rule, with d groups of size n/d,
the maximum load of a bin is O(1) + log log n

d , with high probability.

Proof: (Sketch.) We consider each of the d groups to be a row in the matrix being filled. So each row has n/d
entries, and there are d rows. We can now think about the above algorithm as first trying to place the ball in the
first row (if there is an empty bin), otherwise, trying the new row and so on. If all the d locations are full, in the
row filling game we fail to place this ball. By Lemma 21.1.5 (B), we have that the number of unplaced balls is
E
[
Y
(
d, n/d, (n/d)d

)]
= O

(
(n/d) log d

)
. Thus, we have that the number of balls that get placed as the first ball in

their bin is

≥ n
(
1 −

O(log d)
d

)
,

and the height of these balls is one.
We now use the same argumentation for balls of height 2 – Lemma 21.1.5 (C) implies that at most dn/e−d/2

balls have height strictly larger than 2.
Lemma 21.1.5 (A) implies that now we can repeat the same analysis as the power of two choices, the

critical difference is that every one of the d groups, behaves like a separate height. Since there are O(log log n)
maximum height in the regular analysis, this implies that we get O((log log n)/d) maximum load, with high
probability. ■

21.3. Avoiding terrible choices
Interestingly, one can prove that two choices are not really necessary. Indeed, consider the variant where the ith
ball randomly chooses a random location ri. The ball then is placed in the bin with least load among the bins ri

and ri−1 (the first ball inspects only a single bin – r1). It is not difficult to show that the above analysis applies
in this settings, and the maximum load is O(log log n) – despite making only n choices for n balls. Intuitively,
what is going on is that the power of two choices lies in the ability to avoid following a horrible, no good,
terrible choice, by having an alternative. This alternative choice does not have to be quite of the same quality
as the original choice - it can be stolen from the previous ball, etc.

21.4. Escalated choices

A variant that seems to work even better in practice, is the following escalated choices algorithm: The idea is
to try more than one bin only if you need to. To this end, try a random bin. If it is empty, then the algorithm
stores the ball in it. Otherwise, the algorithm tries harder. In the jth iteration, for j > 1, the algorithm picks a

6

balls in bin Regular 2-choices 2-choices+go left
0 369,899,815 240,525,897 228,976,604
1 365,902,266 528,332,061 546,613,797
2 182,901,437 221,765,420 219,842,639
3 61,604,865 9,369,389 4,566,915
4 15,760,559 7,233 45
5 3,262,678
6 568,919
7 86,265
8 11,685
9 1,347

10 143
11 17
12 2
13 2

Figure 21.1: Simulation of the three schemes described here. This was done with n = 1, 000, 000, 000 balls
thrown into n bins. Since log log n is so small (i.e., ≈ 3 in this case, there does not seem to be any reasonable
cases where the is a significant differences between d-choices and the go-left variant. In the simulations, the
go-left variant always has a somewhat better distribution, as shown above.

random location. If any of the j locations have load < ⌈ j/2⌉, then the algorithm places the ball in the min-load
bin among these. Otherwise, the algorithm continues to the next iteration.

Experiments shows that on average, this algorithm only probes 1.96 bins per ball (thus, making less probes
than 2-choices). In this settings, the experiments show that 4-choices with move left do better, but if one use
the threshold < ⌈ j/3⌉, then the average number of probes is 2.30179, while having again a better performance.
The intuition is that a sequence of really bad choices are rare, and one can afford to try harder in such cases to
get out of them.

A theoretical analysis of this variant should be interesting.
(I “invented” this variant, but it might already be known.)

21.5. Bibliographical notes
The multi-row balls into bins (Section 21.1) is from the work by Broder and Karlin [BK90]. The power of two
choices (Section 21.2) is from Azar et al. [ABKU99].

The restricted d choices structure, the always go-left rule, described in Section 21.2.3, is from [Vöc03].

21.6. From previous lectures
Theorem 21.6.1 (Azuma’s Inequality - Stronger Form). Let X0, X1, . . . , be a martingale sequence such that
for each k, |Xk − Xk−1| ≤ ck, where ck may depend on k. Then, for all t ≥ 0, and any λ > 0, we have

P
[
|Xt − X0| ≥ λ

]
≤ 2 exp

(
−

λ2

2
∑t

k=1 c2
k

)
.

7

Lemma 21.6.2. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . , n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ ∈ (0, 4), we have

P
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

Lemma 21.6.3. For any positive integer n, we have:
(i) (1 + 1/n)n ≤ e.

(ii) (1 − 1/n)n−1 ≥ e−1.
(iii) n! ≥ (n/e)n.

(iv) For any k ≤ n, we have:
(n
k

)k
≤

(
n
k

)
≤

(ne
k

)k
.

Lemma 21.6.4. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . , n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ > 2e − 1, we have P

[
X > (1 + δ)µ

]
< 2−µ(1+δ).

References
[ABKU99] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Balanced allocations. SIAM Journal on Computing,

29(1): 180–200, 1999.

[BK90] A. Z. Broder and A. R. Karlin. Multilevel adaptive hashing. Proc. 1th ACM-SIAM Sympos. Dis-
crete Algs. (SODA), 43–53, 1990.

[Vöc03] B. Vöcking. How asymmetry helps load balancing. J. ACM, 50(4): 568–589, 2003.

8

http://dx.doi.org/10.1137/S0097539795288490
http://dl.acm.org/citation.cfm?id=320176.320181
http://dx.doi.org/10.1145/792538.792546

	The power of two choices
	Balls and bins with many rows
	The game
	Analysis
	With only d rows

	The power of two choices
	Upper bound
	Applications
	The power of restricted d choices: Always go left

	Avoiding terrible choices
	Escalated choices
	Bibliographical notes
	From previous lectures

