
Chapter 20

Martingales II
By Sariel Har-Peled, March 19, 2024①

“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed tedious dishes for
you, thus saving you the bother of washing them yourself, video recorders watched tedious television for you, thus saving you
the bother of looking at it yourself; Electric Monks believed things for you, thus saving you what was becoming an increasingly
onerous task, that of believing all the things the world expected you to believe.”

Dirk Gently’s Holistic Detective Agency, Douglas Adams

20.1. Filters and Martingales

Definition 20.1.1. A σ-field (Ω,F ) consists of a sample space Ω (i.e., the atomic events) and a collection of
subsets F satisfying the following conditions:

(A) ∅ ∈ F .
(B) C ∈ F ⇒ C ∈ F .
(C) C1,C2, . . . ∈ F ⇒ C1 ∪C2 . . . ∈ F .

Definition 20.1.2. Given a σ-field (Ω,F ), a probability measure P : F → R+ is a function that satisfies the
following conditions.

(A) ∀A ∈ F , 0 ≤ P[A] ≤ 1.
(B) P

[
Ω
]
= 1.

(C) For mutually disjoint events C1,C2, . . . , we have P
[
∪iCi

]
=

∑
i P

[
Ci

]
.

Definition 20.1.3. A probability space (Ω,F ,P) consists of a σ-field (Ω,F ) with a probability measure P
defined on it.

Definition 20.1.4. Given a σ-field (Ω,F ) with F = 2Ω, a filter (also filtration) is a nested sequence F0 ⊆ F1 ⊆

· · · ⊆ Fn of subsets of 2Ω, such that:
(A) F0 = {∅,Ω}.
(B) Fn = 2Ω.
(C) For 0 ≤ i ≤ n, (Ω,Fi) is a σ-field.

Definition 20.1.5. An elementary event or atomic event is a subset of a sample space that contains only one
element of Ω.

Intuitively, when we consider a probability space, we usually consider a random variable X. The value of
X is a function of the elementary event that happens in the probability space. Formally, a random variable is a
mapping X : Ω → R. Thus, each Fi defines a partition of Ω into atomic events. This partition is getting more
and more refined as we progress down the filter.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Example 20.1.6. Consider an algorithm Alg that uses n random bits. As such, the underlying sample space is
Ω =

{
b1b2 . . . bn

∣∣∣ b1, . . . , bn ∈ {0, 1}
}
. That is, the set of all binary strings of length n. Next, let Fi be the σ-field

generated by the partition of Ω into the atomic events Bw, where w ∈ {0, 1}i; here w is the string encoding the
first i random bits used by the algorithm. Specifically,

Bw =
{
wx ∈ Ω

∣∣∣ x ∈ {0, 1}n−i
}
,

and the set of atomic events in Fi isAi =
{
Bw

∣∣∣ w ∈ {0, 1}i
}
. The set Fi is the closure of this set of atomic events

under complement and union. In particular, we conclude that F0,F1, . . . ,Fn form a filter.
As a concrete example, for i = 3, the set A3 contains 23 = 8 sets, and the set F3 would contain all sets

formed by finite unions of these sets (including the empty union). As such, the set F3 would have 223
= 256

sets.

Definition 20.1.7. A random variable X is said to be Fi-measurable if for each x ∈ R, the event X ≤ x is in Fi;
that is, the set

{
ω ∈ Ω

∣∣∣ X(ω) ≤ x
}

is in Fi.

Example 20.1.8. Let F0, . . . ,Fn be the filter defined in Example 20.1.6. Let X be the parity of the n bits.
Clearly, X = 1 is a valid event only in Fn (why?). Namely, it is only measurable in Fn, but not in Fi, for i < n.

As such, a random variable X is Fi-measurable, only if it is a constant on the elementary events of Fi. This
gives us a new interpretation of what a filter is – its a sequence of refinements of the underlying probability
space, that is achieved by splitting the atomic events of Fi into smaller atomic events in Fi+1. Putting it
explicitly, an atomic event E of Fi, is a subset of 2Σ. As we move to Fi+1 the event E might now be split
into several atomic (and disjoint events) E1, . . . ,Ek. Now, naturally, the atomic event that really happens is an
atomic event of Fn. As we progress down the filter, we “zoom” into this event.

Definition 20.1.9 (Conditional expectation in a filter). Let (Ω,F ) be any σ-field, and Y any random variable
that takes on distinct values on the elementary events in F . Then E[X | F ] = E[X | Y].

20.2. Martingales
Definition 20.2.1. A sequence of random variables Y1,Y2, . . . , is a martingale difference sequence if for all

i ≥ 0, we have E
[
Yi

∣∣∣ Y1, . . . ,Yi−1

]
= 0.

Clearly, X1, . . . , is a martingale sequence if and only if Y1,Y2, . . . , is a martingale difference sequence where
Yi = Xi − Xi−1.

Definition 20.2.2. A sequence of random variables Y1,Y2, . . . , is

a super martingale sequence if ∀i E
[
Yi

∣∣∣ Y1, . . . ,Yi−1

]
≤ Yi−1,

and a sub martingale sequence if ∀i E
[
Yi

∣∣∣ Y1, . . . ,Yi−1

]
≥ Yi−1.

20.2.1. Martingales – an alternative definition
Definition 20.2.3. Let (Ω,F ,P) be a probability space with a filter F0,F1, . . . . Suppose that X0, X1, . . ., are
random variables such that, for all i ≥ 0, Xi is Fi-measurable. The sequence X0, . . . , Xn is a martingale
provided that, for all i ≥ 0, we have E

[
Xi+1 | Fi

]
= Xi.
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Lemma 20.2.4. Let (Ω,F ) and (Ω,G) be two σ-fields such that F ⊆ G. Then, for any random variable X, we
have E

[
E[X | G]

∣∣∣ F ]
= E[X | F ] .

Proof: E
[
E
[
X

∣∣∣G] ∣∣∣F ]
= E

[
E
[
X

∣∣∣G = g
] ∣∣∣ F = f

]

= E
[∑

x xP
[
X = x ∩G = g

]
P
[
G = g

] ∣∣∣ F = f
]
=

∑
g∈G

∑
x xP[X=x∩G=g]

P[G=g] · P
[
G = g ∩ F = f

]
P
[
F = f

]
=

∑
g∈G,g⊆ f

∑
x xP[X=x∩G=g]

P[G=g] · P
[
G = g ∩ F = f

]
P
[
F = f

] =
∑

g∈G,g⊆ f

∑
x xP[X=x∩G=g]

P[G=g] · P
[
G = g

]
P
[
F = f

]
=

∑
g∈G,g⊆ f

∑
x xP

[
X = x ∩G = g

]
P
[
F = f

] =

∑
x x

(∑
g∈G,g⊆ f P

[
X = x ∩G = g

])
P
[
F = f

]
=

∑
x xP

[
X = x ∩ F = f

]
P
[
F = f

] = E
[
X

∣∣∣F ]
. ■

Theorem 20.2.5. Let (Ω,F ,P) be a probability space, and let F0, . . . ,Fn be a filter with respect to it. Let X be
any random variable over this probability space and define Xi = E

[
X

∣∣∣Fi

]
then, the sequence X0, . . . , Xn is a

martingale.

Proof: We need to show that E
[
Xi+1

∣∣∣Fi

]
= Xi. Namely,

E[Xi+1 | Fi] = E
[
E
[
X

∣∣∣Fi+1

] ∣∣∣Fi

]
= E

[
X

∣∣∣Fi

]
= Xi,

by Lemma 20.2.4 and by definition of Xi. ■

Definition 20.2.6. Let f : D1 × · · · × Dn → R be a real-valued function with a arguments from possibly
distinct domains. The function f is said to satisfy the Lipschitz condition if for any x1 ∈ D1, . . . , xn ∈ Dn, and
i ∈ {1, . . . , n} and any yi ∈ Di, we have∣∣∣ f (x1, . . . , xi−1, xi, xi+1, . . . , xn) − f (x1, . . . , xi−1, yi, xi+1, . . . , xn)

∣∣∣ ≤ 1.

Specifically, a function is c-Lipschitz, if the inequality holds with a constant c (instead of 1).

Definition 20.2.7. Let X1, . . . , Xn be a sequence of independent random variables, and a function f = f (X1, . . . , Xn)
defined over them, such that f satisfies the Lipschitz condition. The Doob martingale sequence Y0, . . . ,Ym is
defined by Y0 = E

[
f (X1, . . . , Xn)

]
and

Yi = E
[
f (X1, . . . , Xn)

∣∣∣ X1, . . . , Xi
]
, for i = 1, . . . , n.

Clearly, a Doob martingale Y0, . . . ,Yn is a martingale, by Theorem 20.2.5. Furthermore, if |Xi − Xi−1| ≤ 1,
for i = 1, . . . , n, then |Yi − Yi−1| ≤ 1. and we can use Azuma’s inequality on such a sequence.
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20.3. Occupancy Revisited
We have m balls thrown independently and uniformly into n bins. Let Z denote the number of bins that remains
empty in the end of the process. Let Xi be the bin chosen in the ith trial, and let Z = F(X1, . . . , Xm), where F
returns the number of empty bins given that m balls had thrown into bins X1, . . . , Xm. , By Azuma’s inequality
we have that P

[∣∣∣Z − E[Z]
∣∣∣ > λ√m

]
≤ 2 exp

(
−λ2/2

)
.

The following is an extension of Azuma’s inequality shown in class. We do not provide a proof but it is
similar to what we saw.

Theorem 20.3.1 (Azuma’s Inequality - Stronger Form). Let X0, X1, . . . , be a martingale sequence such that
for each k, |Xk − Xk−1| ≤ ck, where ck may depend on k. Then, for all t ≥ 0, and any λ > 0, we have

P
[
|Xt − X0| ≥ λ

]
≤ 2 exp

(
−

λ2

2
∑t

k=1 c2
k

)
.

Theorem 20.3.2. Let r = m/n, and Zend be the number of empty bins when m balls are thrown randomly into n
bins. Then µ = E

[
Zend

]
= n

(
1 − 1

n

)m
≈ n exp(−r), and for any λ > 0, we have

P
[∣∣∣Zend − µ

∣∣∣ ≥ λ] ≤ 2 exp
(
−
λ2(n − 1/2)

n2 − µ2

)
.

Proof: Let z(Y, t) be the expected number of empty bins in the end, if there are Y empty bins in time t. The
probability of an empty bin to remain empty is (1 − 1/n)m−t, and as such

z(Y, t) = Y
(
1 −

1
n

)m−t
.

In particular, µ = z(n, 0) = n(1 − 1/n)m.
Let Ft be the σ-field generated by the bins chosen in the first t steps. Let Zend be the number of empty bins

at time m, and let Zt = E
[
Zend

∣∣∣Ft

]
. Namely, Zt is the expected number of empty bins after we know where

the first t balls had been placed. The random variables Z0,Z1, . . . ,Zm form a martingale. Let Yt be the number
of empty bins after t balls where thrown. We have Zt−1 = z(Yt−1, t − 1). Consider the ball thrown in the t-step.
Clearly:

(A) With probability 1 − Yt−1/n the ball falls into a non-empty bin. Then Yt = Yt−1, and Zt = z(Yt−1, t). Thus,

∆t = Zt − Zt−1 = z(Yt−1, t) − z(Yt−1, t − 1) = Yt−1

(1 − 1
n

)m−t

−

(
1 −

1
n

)m−t+1
=

Yt−1

n

(
1 −

1
n

)m−t

≤

(
1 −

1
n

)m−t

.

(B) Otherwise, with probability Yt−1/n the ball falls into an empty bin, and Yt = Yt−1 − 1. Namely, Zt =

z(Yt − 1, t). And we have that

∆t = Zt − Zt−1 = z(Yt−1 − 1, t) − z(Yt−1, t − 1) = (Yt−1 − 1)
(
1 −

1
n

)m−t

− Yt−1

(
1 −

1
n

)m−t+1

=

(
1 −

1
n

)m−t(
Yt−1 − 1 − Yt−1

(
1 −

1
n

))
=

(
1 −

1
n

)m−t(
−1 +

Yt−1

n

)
= −

(
1 −

1
n

)m−t(
1 −

Yt−1

n

)
≥ −

(
1 −

1
n

)m−t

.
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Thus, Z0, . . . ,Zm is a martingale sequence, where |Zt − Zt−1| ≤ |∆t| ≤ ct, where ct =
(
1 − 1

n

)m−t
. We have

m∑
t=1

c2
t =

m∑
t=1

(
1 −

1
n

)2(m−t)

=

m−1∑
t=0

(
1 −

1
n

)2t

=
1 − (1 − 1/n)2m

1 − (1 − 1/n)2 =
n2

(
1 − (1 − 1/n)2m

)
2n − 1

=
n2 − µ2

2n − 1
.

Now, deploying Azuma’s inequality, yield the result. ■

20.3.1. Lets verify this is indeed an improvement

Consider the case where m = n ln n. Then, µ = n
(
1 − 1

n

)m
≤ 1. And using the “weak” Azuma’s inequality

implies that

P
[∣∣∣Zend − µ

∣∣∣ ≥ λ√n
]
= P

[∣∣∣Zend − µ
∣∣∣ ≥ λ√ n

m
√

m
]
≤ 2 exp

(
−
λ2n
2m

)
= 2 exp

(
−
λ2

2 ln n

)
,

which is interesting only if λ >
√

2 ln n. On the other hand, Theorem 20.3.2 implies that

P
[
|Zend − µ| ≥ λ

√
n
]
≤ 2 exp

(
−
λ2n(n − 1/2)

n2 − µ2

)
≤ 2 exp

(
−λ2

)
,

which is interesting for any λ ≥ 1 (say).
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