
Chapter 19

Martingales
By Sariel Har-Peled, March 19, 2024①

‘After that he always chose out a “dog command” and sent them ahead. It had the task of informing the inhabitants in the village
where we were going to stay overnight that no dog must be allowed to bark in the night otherwise it would be liquidated. I was
also on one of those commands and when we came to a village in the region of Milevsko I got mixed up and told the mayor
that every dog-owner whose dog barked in the night would be liquidated for strategic reasons. The mayor got frightened,
immediately harnessed his horses and rode to headquarters to beg mercy for the whole village. They didn’t let him in, the
sentries nearly shot him and so he returned home, but before we got to the village everybody on his advice had tied rags round
the dogs muzzles with the result that three of them went mad.’

The good soldier Svejk, Jaroslav Hasek

19.1. Martingales

19.1.1. Preliminaries
Let X and Y be two random variables. Let ρ(x, y) = P

[
(X = x) ∩ (Y = y)

]
. Observe that

P
[
X = x | Y = y

]
=
ρ(x, y)

P
[
Y = y

] = ρ(x, y)∑
z ρ(z, y)

and E
[
X

∣∣∣ Y = y
]
=

∑
x

xP
[
X = x

∣∣∣ Y = y
]
=

∑
x xρ(x, y)∑
z ρ(z, y)

=

∑
x xρ(x, y)
P
[
Y = y

] .
The conditional expectation of X given Y , is the random variable E

[
X

∣∣∣ Y ]
is the random variable f (y) =

E
[
X

∣∣∣ Y = y
]
.

As a reminder, for any two random variables X and Y , we have
(I) Lemma 19.3.1: E

[
E[X | Y]

]
= E

[
X
]
.

(II) Lemma 19.3.2: E
[
Y · E[X | Y]

]
= E

[
XY

]
.

19.1.2. Martingales
Intuitively, martingales are a sequence of random variables describing a process, where the only thing that
matters at the beginning of the ith step is where the process was in the end of the (i − 1)th step. That is, it does
not matter how the process arrived to a certain state, only that it is currently at this state.

Definition 19.1.1. A sequence of random variables X0, X1, . . . , is said to be a martingale sequence if for all
i > 0, we have E[Xi | X0, . . . , Xi−1] = Xi−1.

In particular, note that for a martingale, we have E[Xi | X0, . . . , Xi−1] = E[Xi | Xi−1] = Xi−1.

Lemma 19.1.2. Let X0, X1, . . . , be a martingale sequence. Then, for all i ≥ 0, we have E
[
Xi

]
= E

[
X0

]
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Proof: By (I), and the martingale property, we have

E[Xi] = E
[
E[Xi | Xi−1]

]
= E[Xi−1] = E[Xi−2] = · · · = E[X0] . ■

19.1.2.1. Examples of martingales

Example 19.1.3. Consider the sum of money after participating in a sequence of fair bets. That is, let Xi be
the amount of money a gambler has after playing i rounds. In each round it either gains one dollar, or loses one
dollar (with equal probability). Clearly, we have

E[Xi | X0, . . . , Xi−1] = E[Xi | Xi−1] = Xi−1 +
1
2
· (+1) +

1
2
· (−1) = Xi−1.

Example 19.1.4. Let Yi = X2
i − i, where Xi is as defined in the above example. We claim that Y0,Y1, . . . is a

martingale. Let us verify that this is true. Given Yi−1, we have Yi−1 = X2
i−1 − (i − 1). We have that

E
[
Yi

∣∣∣ Yi−1

]
= E

[
X2

i − i
∣∣∣ X2

i−1 − (i − 1)
]
=

1
2

(
(Xi−1 + 1)2

− i)
)
+

1
2

(
(Xi−1 − 1)2

− i
)

= X2
i−1 + 1 − i = X2

i−1 − (i − 1) = Yi−1,

which implies that indeed it is a martingale.

Example 19.1.5. Let U be a urn with b black balls, and w white balls. We repeatedly select a ball and replace
it by c balls having the same color. Let Xi be the fraction of black balls after the first i trials. We claim that the
sequence X0, X1, . . . is a martingale.

Indeed, let ni = b + w + i(c − 1) be the number of balls in the urn after the ith trial. Clearly,

E
[
Xi

∣∣∣ Xi−1, . . . , X0

]
= Xi−1 ·

(c − 1) + Xi−1ni−1

ni
+ (1 − Xi−1) ·

Xi−1ni−1

ni

=
Xi−1(c − 1) + Xi−1ni−1

ni
= Xi−1

c − 1 + ni−1

ni
= Xi−1

ni

ni
= Xi−1.

Example 19.1.6. Let G be a random graph on the vertex set V = {1, . . . , n} obtained by independently choosing
to include each possible edge with probability p. The underlying probability space over random graphs is
denoted by Gn,p. Arbitrarily label the m = n(n−1)/2 possible edges with the sequence 1, . . . ,m. For 1 ≤ j ≤ m,
define the indicator random variable I j, which takes values 1 if the edge j is present in G, and has value 0
otherwise. These indicator variables are independent and each takes value 1 with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique number, which is
defined as being the size of the largest complete subgraph. The edge exposure martingale is the sequence of
random variables X0, . . . , Xm such that

Xi = E
[
f (G) | I1, . . . , Ii

]
,

while X0 = E
[
f (G)

]
and Xm = f (G). This sequence of random variable begin a martingale follows immediately

from a theorem that would be described in the next lecture.
One can define similarly a vertex exposure martingale, where the graph Gi is the graph induced on the first

i vertices of the random graph G.

Example 19.1.7 (The sheep of Mabinogion). The following is taken from medieval Welsh manuscript based
on Celtic mythology:
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“And he came towards a valley, through which ran a river; and the borders of the valley were
wooded, and on each side of the river were level meadows. And on one side of the river he saw a
flock of white sheep, and on the other a flock of black sheep. And whenever one of the white sheep
bleated, one of the black sheep would cross over and become white; and when one of the black
sheep bleated, one of the white sheep would cross over and become black.” – Peredur the son of
Evrawk, from the Mabinogion.

More concretely, we start at time 0 with w0 white sheep, and b0 black sheep. At every iteration, a random
sheep is picked, it bleats, and a sheep of the other color turns to this color. the game stops as soon as all the
sheep have the same color. No sheep dies or get born during the game. Let Xi be the expected number of black
sheep in the end of the game, after the ith iteration. For reasons that we would see later on, this sequence is a
martingale.

The original question is somewhat more interesting – if we are allowed to take a way sheep in the end of
each iteration, what is the optimal strategy to maximize Xi?

19.1.2.2. Azuma’s inequality

A sequence of random variables X0, X1, . . . has bounded differences if |Xi − Xi−1| ≤ ∆, for some ∆.

Theorem 19.1.8 (Azuma’s Inequality.). Let X0, . . . , Xm be a martingale with X0 = 0, and

|Xi+1 − Xi| ≤ 1, for i = 0, . . . ,m − 1.

For any λ > 0, we have P
[
Xm > λ

√
m
]
< exp

(
−λ2/2

)
.

Proof: Let α = λ/
√

m. Let Yi = Xi − Xi−1, so that |Yi| ≤ 1 and E[Yi | X0, . . . , Xi−1] = 0.
We are interested in bounding E

[
eαYi

∣∣∣ X0, . . . , Xi−1

]
. Note that, for −1 ≤ x ≤ 1, we have

f (x) = eαx ≤ h(x) =
eα + e−α

2
+

eα − e−α

2
x,

as f (x) = eαx is a convex function, h(−1) = e−α = f (−1), h(1) = eα = f (+1), and h(x) is a linear function.
Thus,

E
[
eαYi

∣∣∣ X0, . . . , Xi−1

]
≤ E

[
h(Yi)

∣∣∣ X0, . . . , Xi−1

]
= h

(
E
[
Yi

∣∣∣ X0, . . . , Xi−1

])
= h

(
0
)
=

eα + e−α

2

=
(1 + α + α

2

2! +
α3

3! + · · · ) + (1 − α + α
2

2! −
α3

3! + · · · )
2

= 1 +
α2

2
+
α4

4!
+
α6

6!
+ · · ·

≤ 1 +
1
1!

(
α2

2

)
+

1
2!

(
α2

2

)2

+
1
3!

(
α2

2

)3

+ · · · = exp
(
α2/2

)
,

as (2i)! ≥ 2ii!.
We have that

τ = E
[
eαXm

]
= E

[ m∏
i=1

eαYi
]
= E

[
g(X0, . . . , Xm−1)eαYm

]
, where g(X0, . . . , Xm−1) =

m−1∏
i=1

eαYi .
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By the martingale property, we have that

E[Yi | X0, . . . , Xm−1] = E
[
Yi | g(X0, . . . , Xm−1)

]
= 0.

By the above, this implies that E
[
eαYi | g(X0, . . . , Xi−1)

]
≤ exp

(
α2/2

)
. Hence, by Lemma 19.3.2, we have that

τ = E
[
eαXm

]
= E

[ m∏
i=1

eαYi
]
= E

[
g(X0, . . . , Xm−1)eαYm

]
= E

[
g(X0, . . . , Xm−1)E

[
eαYm

∣∣∣ g(X0, . . . , Xm−1)
]]
≤ eα

2/2 E
[
g(X0, . . . , Xm−1)

]
≤ exp

(
mα2/2

)
.

Therefore, by Markov’s inequality, we have

P
[
Xm > λ

√
m
]
= P

[
eαXm > eαλ

√
m
]
=

E
[
eαXm

]
eαλ
√

m
= emα2/2−αλ

√
m

= exp
(
m(λ/

√
m)2/2 − (λ/

√
m)λ
√

m
)
= e−λ

2/2,

implying the result. ■

Here is an alternative form.

Theorem 19.1.9 (Azuma’s Inequality). Let X0, . . . , Xm be a martingale sequence such that and |Xi+1−Xi| ≤ 1

for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then P
[
|Xm − X0| > λ

√
m
]
< 2 exp

(
−λ2/2

)
.

Example 19.1.10. Let χ(H) be the chromatic number of a graph H. What is chromatic number of a random
graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let Xi = E
[
χ(G)

∣∣∣Gi

]
. Again, without proving it, we claim that

X0, . . . , Xn = X is a martingale, and as such, we have: P
[
|Xn − X0| > λ

√
n
]
≤ e−λ

2/2. However, X0 = E
[
χ(G)

]
,

and Xn = E
[
χ(G)

∣∣∣Gn

]
= χ(G). Thus,

P
[∣∣∣χ(G) − E

[
χ(G)

]∣∣∣ > λ√n
]
≤ e−λ

2/2.

Namely, the chromatic number of a random graph is highly concentrated! And we do not even (need to) know
what is the expectation of this variable!

19.2. Bibliographical notes
Our presentation follows [MR95].

19.3. From previous lectures

Lemma 19.3.1. For any two random variables X and Y, we have E
[
E[X | Y]

]
= E

[
X
]
.

Lemma 19.3.2. For any two random variables X and Y, we have E
[
Y · E[X | Y]

]
= E

[
XY

]
.
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