Chapter 18

Derandomization using Conditional Expectations

Yes, my guard stood hard when abstract threats Too noble to neglect Deceived me into thinking I had something to protect Good and bad, I define these terms Quite clear, no doubt, somehow Ah, but I was so much older then I'm younger than that now
By Sariel Har-Peled, March 19, $2024^{(1)}$
My Back Pages, Bob Dylan

18.1. Method of conditional expectations

Imagine that we have a randomized algorithm that uses as randomized input n bits X_{1}, \ldots, X_{n}, and outputs a solution of quality $f\left(X_{1}, \ldots, X_{n}\right)$. Assume that given values $v_{1}, \ldots, v_{k} \in\{0,1\}$, one can compute, efficiently and deterministicly, the quantity

$$
\mathbb{E} f\left(v_{1}, \ldots, v_{k}\right)=\mathbb{E}\left[f\left(v_{1}, \ldots, v_{k}, X_{k+1}, \ldots, X_{n}\right)\right]=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}=v_{1}, \ldots, X_{k}=v_{k}\right]
$$

by a given procedure eval $\mathbb{E}_{\mathbb{E} f}$. In such settings, one can compute efficiently and deterministicly an assignment v_{1}, \ldots, v_{n}, such that

$$
f\left(v_{1}, \ldots, v_{n}\right) \geq \mathbb{E} f, \quad \text { where } \quad \mathbb{E} f=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] .
$$

Or alternatively, one can find an assignment u_{1}, \ldots, u_{n} such that $f\left(u_{1}, \ldots, u_{n}\right) \leq \mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]$.

The algorithm. Assume the algorithm had computed a partial assignment for v_{1}, \ldots, v_{k}, such that $\alpha_{k}=$ $\mathbb{E} f\left(v_{1}, \ldots, v_{k}\right) \geq \mathbb{E} f$. The algorithm then would compute the two values

$$
\alpha_{k, 0}=\mathbb{E} f\left(v_{1}, \ldots, v_{k}, 0\right) \quad \text { and } \quad \alpha_{k, 1}=\mathbb{E} f\left(v_{1}, \ldots, v_{k}, 1\right)
$$

Observe that

$$
\alpha_{k}=\mathbb{E} f\left(v_{1}, \ldots, v_{k}\right)=\mathbb{P}\left[X_{k+1}=0\right] \mathbb{E} f\left(v_{1}, \ldots, v_{k}, 0\right)+\mathbb{P}\left[X_{k+1}=1\right] \mathbb{E} f\left(v_{1}, \ldots, v_{k}, 1\right)=\frac{\alpha_{k, 0}+\alpha_{k, 1}}{2}
$$

As such, there is an i, such that $\alpha_{k, i} \geq \alpha_{k}$. The algorithm sets $v_{k+1}=i$, and continues to the next iteration.

Correctness. This is hopefully clear. Initially, $\alpha_{0}=\mathbb{E} f$. In each iteration, the algorithm makes a choice, such that $\alpha_{k} \geq \alpha_{k-1}$. Thus,

$$
\alpha_{n}=\mathbb{E} f\left(v_{1}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{n}\right) \geq \alpha_{n-1} \geq \cdots \geq \alpha_{0}=\mathbb{E} f
$$

Running time. The algorithm performs $2 n$ invocations of $\operatorname{eval}_{\mathbb{E} f}$.

[^0]
Result.

Theorem 18.1.1. Given a function $f\left(X_{1}, \ldots, X_{n}\right)$ over n random binary variables, such that one can compute determinedly $\mathbb{E} f\left(v_{1}, \ldots v_{k}\right)=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid X_{1}=v_{1}, \ldots, X_{k}=v_{k}\right]$ in $T(n)$ time. Then, one can compute an assignment v_{1}, \ldots, v_{n}, such that $f\left(v_{1}, \ldots, v_{n}\right) \geq \mathbb{E} f=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]$. The running time of the algorithm is $O(n+n T(n))$.

18.1.1. Applications

18.1.1.1. Max k SAT

Given a boolean formula F with n variables and m clauses, where each clause has exactly k literals, let $f\left(X_{1}, \ldots, X_{n}\right)$ be the number of clauses the assignment X_{1}, \ldots, X_{n} satisfies. Clearly, one can compute f in $O(m k)$ time. More generally, given a partial assignment v_{1}, \ldots, v_{k}, one can compute $\alpha_{k}=\mathbb{E} f\left(v_{1}, \ldots, v_{k}\right)$. Indeed, scan F and assign all the literals that depends on the variables X_{1}, \ldots, X_{k} their values. A literal evaluating to one satisfies its clause, and we count it as such. What remains are clauses with at most k literals. A literal with i literals, have probability exactly $1-1 / 2^{i}$ to be satisfied. Thus, summing these probabilities on these leftover clauses given use the desired value. This takes $O(m k)$ time. Using Theorem 18.1.1 we get the following.

Lemma 18.1.2. Let F be a kSAT formula with n variables and m clauses. One can compute deterministicly an assignment that satisfies at least $\left(1-1 / 2^{k}\right)$ m clauses of F. This takes $O(m n k)$ time.

18.1.1.2. Max cut

18.1.1.3. Turán theorem

Lemma 18.1.3 (Turán's theorem). Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with n vertices and m edges. One can compute determinedly, in $O(n m)$ time, an independent set of size at least $\frac{n}{1+2 m / n}$.

Proof: Exercise.

References

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University Press, 1995.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

