Chapter 18

Derandomization using Conditional Expectations

Yes, my guard stood hard when abstract threats
Too noble to neglect

Deceived me into thinking

I had something to protect

Good and bad, I define these terms

Quite clear, no doubt, somehow

Ah, but I was so much older then

I’m younger than that now

By Sariel Har-Peled, March 19, 2024% My Back Pages, Bob Dylan

18.1. Method of conditional expectations

Imagine that we have a randomized algorithm that uses as randomized input # bits X, ..., X,, and outputs a
solution of quality f(Xj,..., X,). Assume that given values vy, ..., v; € {0, 1}, one can compute, efficiently and
deterministicly, the quantity

Ef(Vl,---,Vk) = E[f(Vl,---,Vk,XkH,---,Xn)] :E[f(Xl»---,Xn) | X1 =vi,..., Xk = Vk]

by a given procedure evalg;. In such settings, one can compute efficiently and deterministicly an assignment
Vi,...,Vy, such that
fvi,...,v) = Ef, where Ef = E[f(Xi,...,X,)].

Or alternatively, one can find an assignment v, ..., u, such that f(uy,...,u,) < E[f(X1,...,Xy)].

The algorithm. Assume the algorithm had computed a partial assignment for vy,..., v, such that a; =
Ef(vi,...,vw) = Ef. The algorithm then would compute the two values

o =Ef(v,...,»,0) and a =Ef(,..., v D).

Observe that

Qo + Q1

a,k =]Ef(Vl,. .. ,Vk) = P[Xk+1 = O]Ef(V1, .. .,Vk,O) + P[Xk+1 = I]Ef(V1, cees Vi 1) = 2

As such, there is an 7, such that a;; > a;. The algorithm sets v,; = i, and continues to the next iteration.

Correctness. This is hopefully clear. Initially, @y = Ef. In each iteration, the algorithm makes a choice, such
that a; > a;_;. Thus,

an:Ef(m,...,vn):f(vl,...,v,,)Zaxn_l 2"'2&’0:Ef.

Running time. The algorithm performs 2n invocations of evaly.

®This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

Result.

Theorem 18.1.1. Given a function f(Xi,...,X,) over n random binary variables, such that one can compute
determinedly Ef(vy,...vy) = E[f(X1,....X) | X1 =Vvi,..., Xk = v] in T(n) time. Then, one can compute an
assignment vy, ..., v, such that f(vy,...,v,) > Ef = E[f(X1,...,X,)]. The running time of the algorithm is
O(n + nT (n)).

18.1.1. Applications
18.1.1.1. Max kSAT

Given a boolean formula F with n variables and m clauses, where each clause has exactly k literals, let

f(Xi,...,X,) be the number of clauses the assignment X, ..., X, satisfies. Clearly, one can compute f in
O(mk) time. More generally, given a partial assignment vy, ..., V, one can compute a; = Ef(vy,...,v). In-
deed, scan F and assign all the literals that depends on the variables X1, . .., X; their values. A literal evaluating

to one satisfies its clause, and we count it as such. What remains are clauses with at most & literals. A literal with
i literals, have probability exactly 1 — 1/2 to be satisfied. Thus, summing these probabilities on these leftover
clauses given use the desired value. This takes O(mk) time. Using Theorem 18.1.1 we get the following.

Lemma 18.1.2. Let F be a kSAT formula with n variables and m clauses. One can compute deterministicly an
assignment that satisfies at least (1 — 1/2¥)m clauses of F. This takes O(mnk) time.

18.1.1.2. Max cut
18.1.1.3. Turan theorem

Lemma 18.1.3 (Turan’s theorem). Let G = (V, E) be a graph with n vertices and m edges. One can compute
determinedly, in O(nm) time, an independent set of size at least ———.
1+2m/n

Proof: Exercise. [

References

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge, UK: Cambridge University
Press, 1995.

http://us.cambridge.org/titles/catalogue.asp?isbn=0521474655

	Derandomization using Conditional Expectations
	Method of conditional expectations
	Applications

