
Chapter 9

Closest Pair
By Sariel Har-Peled, March 19, 2024① The events of September 8 prompted Foch to draft

the later legendary signal: “My centre is giving way,
my right is in retreat, situation excellent. I attack.” It
was probably never sent.

John Keegan, The first world war

9.1. How many times can a minimum change?
Let a1, . . . , an be a set of n numbers, and let us randomly permute them into the sequence b1, . . . , bn. Next,
let ci = mini

k=1 bi, and let X be the random variable which is the number of distinct values that appears in the
sequence c1, . . . , cn. What is the expectation of X?

Lemma 9.1.1. In expectation, the number of times the minimum of a prefix of n randomly permuted numbers
change, is O(log n). That is E[X] = O(log n).

Proof: Consider the indicator variable Xi, such that Xi = 1 if ci , ci−1. The probability for that is ≤ 1/i, since
this is the probability that the smallest number of b1, . . . , bi is bi. (Why is this probability not simply equal to

1/i?) As such, we have X =
∑

i Xi, and E[X] =
∑

i

E[Xi] =
n∑

i=1

1
i
= O(log n). ■

9.2. Closest Pair
Assumption 9.2.1. Throughout the discourse, we are going to assume that every hashing operation takes
(worst case) constant time. This is quite a reasonable assumption when true randomness is available (using
for example perfect hashing [CLRS01]). We will revisit this issue later in the course.

For a real positive number r and a point p = (x, y) in R2, define

Gr(p) :=
(⌊ x

r

⌋
r ,
⌊y
r

⌋
r
)
∈ R2.

The number r is the width of the grid Gr. Observe that Gr partitions the plane into square regions, which are
grid cells. Formally, for any i, j ∈ Z, the intersection of the half-planes x ≥ ri, x < r(i + 1), y ≥ r j and
y < r(j + 1) is a grid cell. Further a grid cluster is a block of 3 × 3 contiguous grid cells.

For a point set P, and a parameter r, the partition of P into subsets by the grid Gr, is denoted by Gr(P). More
formally, two points p, u ∈ P belong to the same set in the partition Gr(P), if both points are being mapped to
the same grid point or equivalently belong to the same grid cell.

Note, that every grid cell C of Gr, has a unique ID; indeed, let p = (x, y) be any point in C, and consider the
pair of integer numbers idC = id(p) = (⌊x/r⌋ , ⌊y/r⌋). Clearly, only points inside C are going to be mapped to
idC. This is useful, as one can store a set P of points inside a grid efficiently. Indeed, given a point p, compute
its id(p). We associate with each unique id a data-structure that stores all the points falling into this grid cell

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

(of course, we do not maintain such data-structures for grid cells which are empty). For our purposes here, the
grid-cell data-structure can simply be a linked list of points. So, once we computed id(p), we fetch the data
structure for this cell, by using hashing. Namely, we store pointers to all those data-structures in a hash table,
where each such data-structure is indexed by its unique id. Since the ids are integer numbers, we can do the
hashing in constant time.

We are interested in solving the following problem.

Problem 9.2.2. Given a set P of n points in the plane, find the pair of points closest to each other. Formally,
return the pair of points realizing CP(P) = minp,u∈P ∥p − u∥.

We need the following easy packing lemma.

Lemma 9.2.3. Let P be a set of points contained inside a square □, such that the
sidelength of □ is α = CP(P). Then |P| ≤ 4.

Proof: Partition □ into four equal squares □1, . . . ,□4, and observe that each of these
squares has diameter

√
2α/2 < α, and as such each can contain at most one point of P;

that is, the disk of radius α centered at a point p ∈ P completely covers the subsquare
containing it; see the figure on the right.

Note that the set P can have four points if it is the four corners of □. ■

α
p

Lemma 9.2.4. Given a set P of n points in the plane, and a distance r, one can verify in linear time, whether
or not CP(P) < r or CP(P) ≥ r.

Proof: Indeed, store the points of P in the grid Gr. For every non-empty grid cell, we maintain a linked list
of the points inside it. Thus, adding a new point p takes constant time. Indeed, compute id(p), check if id(p)
already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store p in
it. If a data-structure already exist for id(p), just add p to it.

This takes O(n) time. Now, if any grid cell in Gr(P) contains more than four points of P, then, by
Lemma 9.2.3, it must be that the CP(P) < r.

Thus, when inserting a point p, the algorithm fetch all the points of P that were already inserted, for the cell
of p, and the 8 adjacent cells. All those cells must contain at most 4 points of P (otherwise, we would already
have stopped since the CP(·) of the inserted points is smaller than r). Let S be the set of all those points, and
observe that |S | ≤ 4 · 9 = O(1). Thus, we can compute by brute force the closest point to p in S . This takes
O(1) time. If d(p, S) < r, we stop and return this distance (together with the two points realizing d(p, S) as a
proof that the distance is too short). Otherwise, we continue to the next point, where d(p, S) = mins∈S ∥p − s∥.

Overall, this takes O(n) time. As for correctness, first observe that if CP(P) > r then the algorithm would
never make a mistake, since it returns ‘CP(P) < r’ only after finding a pair of points of P with distance smaller
than r. Thus, assume that p, q are the pair of points of P realizing the closest pair, and ∥p − q∥ = CP(P) < r.
Clearly, when the later of them, say p, is being inserted, the set S would contain q, and as such the algorithm
would stop and return “CP(P) < r”. ■

Lemma 9.2.4 hints to a natural way to compute CP(P). Indeed, permute the points of P, in an arbitrary
fashion, and let P = ⟨p1, . . . , pn⟩. Next, let ri = CP

(
{p1, . . . , pi}

)
. We can check if ri+1 < ri, by just calling the

algorithm for Lemma 9.2.4 on Pi+1 and ri. If ri+1 < ri, the algorithm of Lemma 9.2.4, would give us back the
distance ri+1 (with the other point realizing this distance).

So, consider the “good” case where ri+1 = ri = ri−1. Namely, the length of the shortest pair does not change.
In this case we do not need to rebuild the data structure of Lemma 9.2.4 for each point. We can just reuse

2

it from the previous iteration. Thus, inserting a single point takes constant time as long as the closest pair
(distance) does not change.

Things become bad, when ri < ri−1. Because then we need to rebuild the grid, and reinsert all the points of
Pi = ⟨p1, . . . , pi⟩ into the new grid Gri(Pi). This takes O(i) time.

So, if the closest pair radius, in the sequence r1, . . . , rn, changes only k times, then the running time of the
algorithm would be O(nk). But we can do even better!

Theorem 9.2.5. Let P be a set of n points in the plane. One can compute the closest pair of points of P in
expected linear time.

Proof: Pick a random permutation of the points of P, and let ⟨p1, . . . , pn⟩ be this permutation. Let r2 =

∥p1 − p2∥, and start inserting the points into the data structure of Lemma 9.2.4. In the ith iteration, if ri = ri−1,
then this insertion takes constant time. If ri < ri−1, then we rebuild the grid and reinsert the points. Namely, we
recompute Gri(Pi).

To analyze the running time of this algorithm, let Xi be the indicator variable which is 1 if ri , ri−1, and 0
otherwise. Clearly, the running time is proportional to

R = 1 +
n∑

i=2

(1 + Xi · i).

Thus, the expected running time is

E
[
R
]
= 1 + E

[
1 +
∑n

i=2
(1 + Xi · i)

]
= n +

n∑
i=2

(
E[Xi] · i

)
= n +

n∑
i=2

i · P[X1 = 1],

by linearity of expectation and since for an indicator variable Xi, we have that E[Xi] = P[Xi = 1].
Thus, we need to bound P[Xi = 1] = P[ri < ri−1]. To bound this quantity, fix the points of Pi, and randomly

permute them. A point u ∈ Pi is critical if CP(Pi \ {u}) > CP(Pi).
(A) If there are no critical points, then ri−1 = ri and then P[Xi = 1] = 0.
(B) If there is one critical point, than P[Xi = 1] = 1/i, as this is the probability that this critical point would

be the last point in a random permutation of Pi.
(C) If there are two critical points, and let p, u be this unique pair of points of Pi realizing CP(Pi). The

quantity ri is smaller than ri−1, if either p or u are pi. But the probability for that is 2/i (i.e., the probability
in a random permutation of i objects, that one of two marked objects would be the last element in the
permutation).

Observe, that there can not be more than two critical points. Indeed, if p and u are two points that realize the
closest distance, than if there is a third critical point v, then CP(Pi \ {v}) = ∥p − u∥, and v is not critical.

We conclude that

E
[
R
]
= n +

n∑
i=2

i · P[X1 = 1] ≤ n +
n∑

i=2

i ·
2
i
≤ 3n.

As such, the expected running time of this algorithm is O(E[R]) = O(n). ■

Theorem 9.2.5 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers are all
distinct) can be solved in linear time. However, there is a lower bound of Ω(n log n) on uniqueness, using the
comparison tree model. This reality dysfunction, can be easily explained, once one realizes that the model of
computation of Theorem 9.2.5 is considerably stronger, using hashing, randomization, and the floor function.

3

9.3. Bibliographical notes
The closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplification of a result of the
celebrated result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00]. A generalization of
the closest pair algorithm was provided by Har-Peled and Raichel [HR15].

Surprisingly, Schönhage [Sch79] showed that assuming that the floor function is allowed, and the standard
arithmetic operation can be done in constant time, then every problem in PSPACE can be solved in polynomial
time. Since PSPACE includes NPC, this is bad news, as it implies that one can solve NPC problem in poly-
nomial time (finally!). The basic idea is that one can pack huge number of bits into a single number, and the
floor function enables one to read a single bit of this number. As such, a real RAM model that allows certain
operations, and put no limit on the bit complexity of numbers, and assume that each operation can take constant
time, is not a reasonable model of computation (but we already knew that).

References
[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press

/McGraw-Hill, 2001.

[GRSS95] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest pair
problems. Nordic J. Comput., 2: 3–27, 1995.

[HR15] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for Euclidean distance prob-
lems. J. Assoc. Comput. Mach., 62(6): 44:1–44:35, 2015.

[Rab76] M. O. Rabin. Probabilistic algorithms. Algorithms and Complexity: New Directions and Recent
Results. Ed. by J. F. Traub. Orlando, FL, USA: Academic Press, 1976, pp. 21–39.

[Sch79] A. Schönhage. On the power of random access machines. Proc. 6th Int. Colloq. Automata Lang.
Prog. (ICALP), vol. 71. 520–529, 1979.

[Smi00] M. Smid. Closest-point problems in computational geometry. Handbook of Computational Ge-
ometry. Ed. by J.-R. Sack and J. Urrutia. Amsterdam, The Netherlands: Elsevier, 2000, pp. 877–
935.

4

http://theory.lcs.mit.edu/~clr/
http://dx.doi.org/10.1145/2831230
http://dx.doi.org/10.1145/2831230
http://dx.doi.org/10.1007/3-540-09510-1_42

	Closest Pair
	How many times can a minimum change?
	Closest Pair
	Bibliographical notes

