
Chapter 4

Chebychev, Sampling and Selection
By Sariel Har-Peled, March 19, 2024① During a native rebellion in German East Africa, the

Imperial Ministry in Berlin issued the following
order to its representatives on the ground: “The
natives are to be instructed that on pain of harsh
penalties, every rebellion must be announced, in
writing, six weeks before it breaks out.”

Dead Funny: Humor in Hitler’s Germany,
Rudolph Herzog

4.1. Chebyshev’s inequality

4.1.1. Example: A better inequality via moments

Let Xi ∈ {−1,+1}with probability half for each value, for i = 1, . . . , n (all picked independently). Let Y =
∑

i Xi.
We have that

E
[
Y
]
= E

[∑
i

Xi

]
=

∑
i

E
[
Xi

]
= n · 0 = 0.

A more interesting quantity is

E
[
Y2

]
= E

[(∑
i

Xi

)2]
= E

[∑
i

X2
i + 2

∑
i< j

XiX j

]
=

∑
i

E
[
X2

i

]
+ 2E

[∑
i< j

XiX j

]
= n + 2

∑
i< j

E
[
XiX j

]
= n + 2

∑
i< j

E[Xi]E
[
X j

]
= n.

Lemma 4.1.1. Let Xi ∈ {−1,+1} with probability half for each value, for i = 1, . . . , n (all picked indepen-
dently). We have that P

[
|
∑

i Xi| > t
√

n
]
< 1/t2.

Proof: Let Y =
∑

i Xi and Z = Y2. We have

P
[∣∣∣∣∑

i

Xi

∣∣∣∣ > t
√

n
]
= P

[(∑
i

Xi

)2
> t2n

]
= P

[
Y2 > t2 E

[
Y2

]]
= P

[
Z > t2 E[Z]

]
≤ 1/t2,

by Markov’s inequality. ■

4.1.2. Chebychev’s inequality

As a reminder, the variance of a random variable X is V[X] = E
[
(X − µX)2

]
= E

[
X2

]
− µ2

X.

Theorem 4.1.2 (Chebyshev’s inequality). Let X be a real random variable, with µX = E[X], and σX =√
V[X]. Then, for any t > 0, we have P

[
|X − µX | ≥ tσX

]
≤ 1/t2.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Proof: Set Y = (X − µX)2, and observe that

σ2
X = V[X] = E[Y] = E

[
(X − µX)2

]
= E

[
X2

]
− µ2

X.

As such, we have that

P
[
|X − µX | ≥ tσX

]
= P

[
(X − µX)2

≥ t2σ2
X

]
= P

[
Y ≥ t2 E[Y]

]
≤

1
t2 ,

by Markov’s inequality. ■

4.2. Estimation via sampling
One of the big advantages of randomized algorithms, is that they sample the world; that is, learn how the input
looks like without reading all the input. For example, consider the following problem: We are given a set of U
of n objects u1, . . . , un. and we want to compute the number of elements of U that have some property. Assume,
that one can check if this property holds, in constant time, for a single object, and let ψ(u) be the function that
returns 1 if the property holds for the element u. and zero otherwise. Now, let Γ be the number of objects in U
that have this property. We want to reliably estimate Γ without computing the property for all the elements of
U.

A natural approach, would be to pick a random sample R of m objects, r1, . . . , rm from U (with replacement),
and compute Y =

∑m
i=1 ψ(r1). The estimate for Γ is β = (n/m)Y . It is natural to ask how far is β from the true

value Γ.

Lemma 4.2.1. Let U be a set of n elements, with Γ of them having a certain property ψ. Let R be a uniform
random sample from U (with repetition) of size m, and let Y be the number of elements in R that have the
property ψ, and let Z = (n/m)Y be the estimate for Γ. Then, for any t ≥ 1, we have that

P
[
Γ − t

n
2
√

m
≤ Z ≤ Γ + t

n
2
√

m

]
≥ 1 −

1
t2 .

Similarly, we have that P
[
E[Y] − t

√
m/2 ≤ Y ≤ E[Y] + t

√
m/2

]
≥ 1 − 1/t2.

Proof: Let Yi = ψ(ri) be an indicator variable that is 1 if the ith sample ri has the property ψ, for i = 1, . . . ,m.
Observe that

p = E[Yi] =
Γ

n
.

Consider the random variable Y =
∑

i Yi.
Variance of a binomial distribution. (I am including the following here as a way to remember this formula.) The
variable Y is a binomial distribution with probability p = Γ/n, and m samples; that is, Y ∼ Bin(m, p). Thus, Y is the sum
of m random variables Y1, . . . ,Ym that are independent indicator variables (i.e., Bernoulli distribution), with E[Yi] = p,
and V[Yi] = E

[
Y2

i

]
− E[Yi]2 = p − p2 = p(1 − p). Since the variance is additive for independent variables, we have

V[Y] = V
[∑

i Yi
]
=

∑m
i=1 V[Ti] = mp(1 − p).

Thus, we have

E[Y] = mp = m ·
Γ

n
=

m
n
Γ, and V[Y] = mp(1 − p).

The standard deviation of Y is
σY =

√
mp(1 − p) ≤

√
m/2,
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as
√

p(1 − p) is maximized for p = 1/2.
Consider the estimate Z = (n/m)Y for Γ, and observe that

E[Z] = E[(n/m)Y] =
n
m
E[Y] =

n
m

m
n
Γ = Γ.

By Chebychev’s inequality, we have that P
[
|Y − E[Y]| ≥ tσY

]
≤ 1/t2. Since (n/m)E[Y] = E[Z] = Γ, this

implies that

P
[
|Z − Γ| ≥ t

n
2
√

m

]
= P

[
|Z − Γ| ≥

n
m

t ·
√

m
2

]
≤ P

[
|Z − Γ| ≥

n
m

tσY

]
= P

[∣∣∣∣∣ n
m

Y −
n
m
E[Y]

∣∣∣∣∣ ≥ n
m

tσY

]
= P

[
|Y − E[Y]| ≥ tσY

]
≤

1
t2 ■

4.3. Randomized selection – Using sampling to learn the world

4.3.1. Inverse estimation
We are given a set U = {u1, . . . , un} of n distinct numbers. Let U⟨i⟩ denote the ith smallest number in U – that is
U⟨i⟩ is the number of rank i in U.

Lemma 4.3.1. Given a set U of n numbers, a number k, and parameters t ≥ 1 and m ≥ 1, one can compute, in
O(m log m) time, two numbers r−, r+ ∈ U, such that:

(A) The number of rank k in U is in the interval I = [r−, r+].
(B) There are at most 8tn/

√
m numbers of U in I.

The above two properties hold with probability ≥ 1 − 3/t2.
(Namely, as t increases, the interval I becomes bigger, and the probability it contains the desired element

increases.)

Proof: (A) Compute a random sample R of U of size m in O(m) time (assuming the input numbers are given
in an array, say). Next sort the numbers of R in O(m log m) time. Let

ℓ− =

⌊
m

k
n
− t
√

m/2
⌋
− 1 and ℓ+ =

⌈
m

k
n
+ t
√

m/2
⌉
+ 1.

Set r− = R[ℓ−] and r+ = R[ℓ+].
Let Y be the number of elements in the sample R that are ≤ U⟨k⟩. By Lemma 4.2.1, we have

P
[
E[Y] − t

√
m/2 ≤ Y ≤ E[Y] + t

√
m/2

]
≥ 1 − 1/t2.

In particular, if this happens, then r− ≤ U⟨k⟩ ≤ r+.

(B) Let g = k − t n
√

m − 3 n
m , and let gR be the number of elements in R that are smaller than U⟨g⟩. Arguing as

above, we have that P
[
gR ≤

g
nm + t

√
m/2

]
≥ 1 − 1/t2. Now

g
n

m + t
√

m/2 =
m
n

(
k − t

n
√

m
− 3

n
m

)
+ t
√

m/2 = k
m
n
− t
√

m − 3 + t
√

m/2 = k
m
n
− t
√

m/2 − 3 < ℓ−.
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This implies that the g smallest numbers in U are outside the interval [r−, r+] with probability ≥ 1 − 1/t2.
Next, let h = k + t n

√
m + 3 n

m . A similar argument, shows that all the n − h largest numbers in U are too large
to be in [r−, r+]. This implies that

|[r−, r+] ∩ U | ≤ h − g + 1 = 6
n
m
+ 2t

n
√

m
≤ 8

tn
√

m
. ■

4.3.1.1. Inverse estimation – intuition

Here we are trying to give some intuition to the proof of the previous lemma. Feel free to skip this part if you
feel you already understand what is going on.

Given k, we are interested in estimating sk = U⟨k⟩ quickly. So, let us take a sample R of size m. Let R≤sk be
the set of all the numbers in R that are ≤ sk. For Y =

∣∣∣R≤sk

∣∣∣, we have that µ = E[Y] = m k
n . Furthermore, for any

t ≥ 1, Lemma 4.2.1 implies that P
[
µ − t

√
m/2 ≤ Y ≤ µ + t

√
m/2

]
≥ 1 − 1/t2. In particular, with probability

≥ 1 − 1/t2 the number r− = R⟨ℓ−⟩, for ℓ− =
⌊
µ − t

√
m/2

⌋
− 1, is smaller than sk, and similarly, the number

r+ = R⟨ℓ+⟩ of rank ℓ+ =
⌈
µ + t

√
m/2

⌉
+ 1 in R is larger than sk.

One can conceptually think about the interval I(k) = [r−, r+] as a confidence interval – we know that
sk ∈ I(k) with probability ≥ 1 − 1/t2. But how heavy is this interval? Namely, how many elements are there in
I(k) ∩ U?

To this end, consider the interval of ranks, in the sample, that might contain the kth element. By the above,
this is I(k, t) = k m

n +
[
−t
√

m/2 − 1, t
√

m/2 + 1
]
. In particular, consider the maximum ν ≤ k, such that I(ν, t) and

I(k, t) are disjoint. We have the condition that νm
n + t

√
m/2 + 1 ≤ k m

n − t
√

m/2 − 1 =⇒ ν ≤ k − t n
√

m − 2 n
m . Let

g = k − t n
√

m − 2 n
m and h = k + t n

√
m + 2 n

m . We have that I(g, t), I(k, t) and I(h, t) are all disjoint with probability
≥ 1 − 3/t2.

To this end, let g = k −
⌈
2
(
t n

2
√

m

)⌉
and h = k +

⌈
2
(
t n

2
√

m

)⌉
. It is easy to verify (using the same argumentation

as above) that with probability at least 1 − 3/t2, the three confidence I(g), I(k) and I(h) do not intersect. As
such, we have

∣∣∣I(k) ∩ U
∣∣∣ ≤ h − g ≤ 4

(
t n

2
√

m

)
.

4.3.2. Randomized selection

4.3.2.1. The algorithm

Given an array S of n numbers, and the rank k. The algorithm needs to compute S ⟨k⟩. To this end, set t =
⌈
n1/8

⌉
,

and m =
⌈
n3/4

⌉
.

Using the algorithm of Lemma 4.3.1, in O(m log m) time, we get two numbers r− and r+, such that S ⟨k⟩ ∈
[ri, r+], and

|S ∩ (ri, r+)︸       ︷︷       ︸
S m

| = O
(
tn/
√

m
)
= O

(
n1/8n/m3/8

)
= O(n3/4).

To this end, we break S into three sets:
(i) S < = {s ∈ S | s ≤ r−},

(ii) S m = {s ∈ S | r− < s < r+},
(iii) S > = {s ∈ S | r+ ≤ s}.

This three way partition can be done using 2n comparisons and in linear time. We now can readily compute
the rank of r− in S (it is |S <|) and the rank of r+ in S (it is |S <| + |S m| + 1). If r−⟨S ⟩ > k or r+⟨S ⟩ < k then the
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algorithm failed. The other possibility for failure is that S m is too large. That is, larger than 8tn/
√

m = O(n3/4).
If any of these failures happen, then we rerun this algorithm from scratch.

Otherwise, the algorithm need to compute the element of rank k − |S <| in the set S m, and this can be done
in O(|S m| log |S m|) = O(n3/4 log n) time by using sorting.

4.3.2.2. Analysis

The correctness is easy – the algorithm clearly returns the desired element. As for running time, observe
that by Lemma 4.3.1, by probability ≥ 1 − 1/n1/4, we succeeded in the first try, and then the running time is
O(n + (m log m)) = O(n). More generally, the probability that the algorithm failed in the first α tries to get a
good interval [r−, r+] is at most 1/nα/4.

One can slightly improve the number of comparisons performed by the algorithm using the following
modifications.

Lemma 4.3.2. Given the numbers r−, r+, one can compute the sets S <, S m, S > using in expectation (only!)
1.5n + O(n3/4) comparisons.

Proof: We need to compute the sets S <, S m, S >. Namely, we need to compare all the numbers of S to r− and r+.
Since only O(n3/4) numbers fall in S m, almost all of the numbers are in either S < or S >. If a number of is in S <

(resp. S >), then comparing it r− (resp. r+) is enough to verify that this is indeed the case. Otherwise, perform
the other comparison and put the element in its proper set (in this case we had to perform two comparisons to
handle the element).

So let us guess, by a coin flip, for each element of S whether they are in S < or S >. If we are right, then
the algorithm would require only one comparison to put them into the right set. Otherwise, it would need two
comparisons. Let Xs be the random variable that is the number of comparisons used by this algorithm for an
element s ∈ S . We have that if s ∈ S < ∪ S > then E[Xs] = 1(1/2) + 2(1/2) = 3/2. If s ∈ S m then both
comparisons will be performed, and thus E[Xs] = 2 in this case.

Thus, the expected numbers of comparisons for all the elements of S , by linearity of expectations, is
3
2 (n − |S m|) + 2|S m| = (3/2)n + |S m|/2. ■

Theorem 4.3.3. Given an array S with n numbers and a rank k, one can compute the element of rank k
in S in expected linear time. Formally, the resulting algorithm performs in expectation 1.5n + O(n3/4 log n)
comparisons.

Proof: Let X be the random variable that is the number of iteration till the interval is good. We have that X
is a geometric variable with probability of success ≥ 1 − 1/n1/4. As such, the expected number of rounds till
success is ≤ 1/p ≤ 1 + 2/n1/4. As such, the expected number of comparisons performed by the algorithm is
E
[
X ·

(
1.5n + O(n3/4 log n)

)]
= 1.5n + O(n3/4 log n). ■
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