
Chapter 3

Analyzing QuickSort and QuickSelect via Expec-
tation
By Sariel Har-Peled, March 19, 2024①

NOBODY expects the Spanish Inquisition! Our chief weapon is surprise...surprise and fear...fear and surprise.... Our two
weapons are fear and surprise...and ruthless efficiency.... Our three weapons are fear, surprise, and ruthless efficiency...and an
almost fanatical devotion to the Pope.... Our four...no... Amongst our weapons.... Amongst our weaponry...are such elements
as fear, surprise....

The Spanish Inquisition, Monty Python

3.1. QuickSort
Let the input be a set T = {t1, . . . , tn} of n items to be sorted. We remind the reader, that the QuickSort
algorithm randomly pick a pivot element (uniformly), splits the input into two subarrays of all the elements
smaller than the pivot, and all the elements larger than the pivot, and then it recurses on these two subarrays
(the pivot is not included in these two subproblems). Here we will show that the expected running time of
QuickSort is O(n log n).

Let S 1, . . . , S n be the elements in their sorted order (i.e., the output order). Let Xi j = 1 be the indicator
variable which is one ⇐⇒ QuickSort compares S i to S j, and let pi j denote the probability that this happens.
Clearly, the number of comparisons performed by the algorithm is C =

∑
i< j Xi j. By linearity of expectations,

we have

E
[
C
]
= E
[∑

i< j
Xi j

]
=
∑
i< j

E
[
Xi j

]
=
∑
i< j

pi j.

We want to bound pi j, the probability that the S i is compared to S j. Consider the last recursive call involving
both S i and S j. Clearly, the pivot at this step must be one of S i, . . . , S j, all equally likely. Indeed, S i and S j

were separated in the next recursive call.
Observe, that S i and S j get compared if and only if pivot is S i or S j. Thus, the probability for that is

2/(j − i + 1). Indeed,

pi j = P
[
S i or S j picked

∣∣∣ picked pivot from S i, . . . , S j

]
=

2
j − i + 1

.

Thus,

n∑
i=1

∑
j>i

pi j =

n∑
i=1

∑
j>i

2/(j − i + 1) =
n∑

i=1

n−i+1∑
k=1

2
k
≤ 2

n∑
i=1

n∑
k=1

1
k
≤ 2nHn ≤ n + 2n ln n,

where Hn is the harmonic number② Hn =
∑n

i=1 1/i.We thus proved the following result.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

②Using integration to bound summation, we have Hn ≤ 1 +
∫ n

x=1
1
x dx ≤ 1 + ln n. Similarly, Hn ≥

∫ n
x=1

1
x dx = ln n.

1

http://creativecommons.org/licenses/by-nc/3.0/

Lemma 3.1.1. QuickSort performs in expectation at most n + 2n ln n comparisons, when sorting n elements.

Note, that this holds for all inputs. No assumption on the input is made. Similar bounds holds not only in
expectation, but also with high probability.

This raises the question, of how does the algorithm pick a random element? We assume we have access to
a random source that can get us number between 1 and n uniformly.

Note, that the algorithm always works, but it might take quadratic time in the worst case.

Remark 3.1.2 (Wait, wait, wait). Let us do the key argument in the above more slowly, and more carefully.
Imagine, that before running QuickSort we choose for every element a random priority, which is a real number
in the range [0, 1]. Now, we re-implement QuickSort such that it always pick the element with the lowest
random priority (in the given subproblem) to be the pivot. One can verify that this variant and the standard
implementation have the same running time. Now, ai gets compares to a j if and only if all the elements
ai+1, . . . , a j−1 have random priority larger than both the random priority of ai and the random priority of a j. But
the probability that one of two elements would have the lowest random-priority out of j − i + 1 elements is
2 ∗ 1/(j − i + 1), as claimed.

3.2. QuickSelect: Median selection in linear time

3.2.1. Analysis via expectation and indicator variables

We remind the reader that QuickSelect receives an array T [1 . . . n] of n real numbers, and a number k, and
returns the element of rank k in the sorted order of the elements of T , see Figure 3.1. We can of course, use
QuickSort, and just return the kth element in the sorted array, but a more efficient algorithm, would be to mod-
ify QuickSelect, so that it recurses on the subproblem that contains the element we are interested in. Formally,
QuickSelect chooses a random pivot, splits the array according to the pivot. This implies that we now know
the rank of the pivot, and if its equal to m, we return it. Otherwise, we recurse on the subproblem containing
the required element (modifying m as we go down the recursion. Namely, QuickSelect is a modification of
QuickSort performing only a single recursive call (instead of two).

As before, to bound the expected running time, we will bound the expected number of comparisons. As
before, let S 1, . . . , S n be the elements of t in their sorted order. Now, for i < j, let Xi j be the indicator variable
that is one if S i is being compared to S j during the execution of QuickSelect. There are several possibilities to
consider:

(i) If i < j < m: Here, S i is being compared to S j, if and only if the first pivot in the range S i, . . . , S k is
either S i or S j. The probability for that is 2/(k − i + 1). As such, we have that

α1 = E
[∑

i< j<m

Xi j

]
= E
[m−2∑

i=1

m−1∑
j=i+1

Xi j

]
=

m−2∑
i=1

m−1∑
j=i+1

2
m − i + 1

=

med−2∑
i=1

2(m − i − 1)
m − i + 1

≤ 2
(
m − 2

)
.

(ii) If m < i < j: Using the same analysis as above, we have that P
[
Xi j = 1

]
= 2/(j −m + 1). As such,

α2 = E

 n∑
j=m+1

j−1∑
i=m+1

Xi j

 = n∑
j=m+1

j−1∑
i=m+1

2
j −m + 1

=

n∑
j=m+1

2(j −m − 1)
j −m + 1

≤ 2
(
n −m

)
.

2

QuickSelect(T J1 : nK , k)
// Input: T J1 : nK array with n numbers, parameter k.
// Assume all numbers in t are distinct.
// Task: Return kth smallest number in T.
y← random element of T .
r ← rank of y in T .
if r = k then return y
T< = array with all elements in T < than y
T> = all elements in T > than y
// By assumption |T<| + |T>| + 1 = |T |.
if r < k then

return QuickSelect(T>, k − r)
else

return QuickSelect(T<, k)

Figure 3.1: QuickSelect pseudo-code.

(iii) i < m < j: Here, we compare S i to S j if and only if the first indicator in the range S i, . . . , S j is either S i

or S j. As such, E
[
Xi j

]
= P
[
Xi j = 1

]
= 2/(j − i + 1). As such, we have

α3 = E

m−1∑
i=1

n∑
j=m+1

Xi j

 = m−1∑
i=1

n∑
j=m+1

2
j − i + 1

.

Observe, that for a fixed ∆ = j− i+ 1, we are going to handle the gap ∆ in the above summation, at most
∆ − 2 times. As such, α3 ≤

∑n
∆=3 2(∆ − 2)/∆ ≤ 2n.

(iv) i = m. We have α4 =

n∑
j=m+1

E
[
Xi j

]
=

n∑
j=m+1

2
j −m + 1

= ln n + 1.

(v) j = m. We have α5 =

m−1∑
i=1

E
[
Xi j

]
=

m−1∑
i=1

2
m − i + 1

≤ ln m + 1.

Thus, the expected number of comparisons performed by QuickSelect is bounded by∑
i

αi ≤ 2(m − 2) + 2(n −m) + 2n + ln n + 1 + ln m = 4n − 2 + ln n + ln m.

Theorem 3.2.1. In expectation, QuickSelect performs at most 4n−2+ ln n+ ln m comparisons, when selecting
the mth element out of n elements.

A different approach can reduce the number of comparisons (in expectation) to 1.5n + o(n). More on that
later in the course.

3.2.2. Analysis of QuickSelect via conditional expectations
Consider the problem of given a set X of n numbers, and a parameter k, to output the kth smallest number
(which is the number with rank k in X). This can be easily be done by modifying QuickSort only to perform
one recursive call. See Figure 3.1 for a pseud-code of the resulting algorithm.

Intuitively, at each iteration of QuickSelect the input size shrinks by a constant factor, leading to a linear
time algorithm.

3

Theorem 3.2.2. Given a set X of n numbers, and any integer k, the expected running time of QuickSelect(X, n)
is O(n).

Proof: Let X1 = X, and Xi be the set of numbers in the ith level of the recursion. Let yi and ri be the random
element and its rank in Xi, respectively, in the ith iteration of the algorithm. Finally, let ni = |Xi|. Observe that
the probability that the pivot yi is in the “middle” of its subproblem is

α = P
[ni

4
≤ ri ≤

3
4

ni

]
≥

1
2
,

and if this happens then

ni+1 ≤ max(ri − 1, ni − ri) ≤
3
4

ni.

We conclude that

E[ni+1 | ni] ≤ P
[
yi in the middle

]3
4

ni + P
[
yi not in the middle

]
ni

≤ α
3
4

ni + (1 − α)ni = ni(1 − α/4) ≤ ni(1 − (1/2)/4) = (7/8)ni.

Now, we have that

mi+1 = E[ni+1] = E[E[ni+1 | ni]] ≤ E[(7/8)ni] = (7/8)E[ni] = (7/8)mi

= (7/8)im0 = (7/8)in,

since for any two random variables we have that E[X] = E
[
E
[
X
∣∣∣Y]]. In particular, the expected running time

of QuickSelect is proportional to

E
∑

i

ni

 =∑
i

E[ni] ≤
∑

i

mi =
∑

i

(7/8)in = O(n),

as desired. ■

4

	Analyzing QuickSort and QuickSelect via Expectation
	QuickSort
	QuickSelect: Median selection in linear time
	Analysis via expectation and indicator variables
	Analysis of QuickSelect via conditional expectations

