
Chapter 2

Probability and Expectation
By Sariel Har-Peled, March 19, 2024① Everybody knows that the dice are loaded

Everybody rolls with their fingers crossed
Everybody knows the war is over
Everybody knows the good guys lost
Everybody knows the fight was fixed
The poor stay poor, the rich get rich
That’s how it goes
Everybody knows

Everybody knows, Leonard Cohen

2.1. Basic probability
Here we recall some definitions about probability. The reader already familiar with these definition can happily
skip this section.

2.1.1. Formal basic definitions: Sample space, σ-algebra, and probability
A sample space Ω is a set of all possible outcomes of an experiment. We also have a set of events F , where
every member of F is a subset of Ω. Formally, we require that F is a σ-algebra.

Definition 2.1.1. A single element of Ω is an elementary event or an atomic event.

Definition 2.1.2. A set F of subsets of Ω is a σ-algebra if:
(i) F is not empty,

(ii) if X ∈ F then X = (Ω \ X) ∈ F , and
(iii) if X,Y ∈ F then X ∪ Y ∈ F .

More generally, we require that if Xi ∈ F , for i ∈ Z, then ∪iXi ∈ F . A member of F is an event.

As a concrete example, if we are rolling a dice, then Ω = {1, 2, 3, 4, 5, 6} and F would be the power set of
all possible subsets of Ω.

Definition 2.1.3. A probability measure is a mapping P : F → [0, 1] assigning probabilities to events. The
function P needs to have the following properties:

(i) Additive: for X,Y ∈ F disjoint sets, we have that P
[
X ∪ Y

]
= P

[
X
]
+ P

[
Y
]
, and

(ii) P[Ω] = 1.

Observation 2.1.4. Let C1, . . . ,Cn be random events (not necessarily independent). Than

P
[
∪n

i=1Ci
]
≤

n∑
i=1

P[Ci].

(This is usually referred to as the union bound.) If C1, . . . ,Cn are disjoint events then

P
[
∪n

i=1Ci
]
=

n∑
i=1

P[Ci].

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Definition 2.1.5. A probability space is a triple (Ω,F ,P), where Ω is a sample space, F is a σ-algebra defined
over Ω, and P is a probability measure.

Definition 2.1.6. A random variable f is a mapping from Ω into some set G. We require that the probability
of the random variable to take on any value in a given subset of values is well defined. Formally, for any subset
U ⊆ G, we have that f −1(U) ∈ F . That is, P

[
f ∈ U

]
= P

[
f −1(U)

]
is defined.

Going back to the dice example, the number on the top of the dice when we roll it is a random variable.
Similarly, let X be one if the number rolled is larger than 3, and zero otherwise. Clearly X is a random variable.

We denote the probability of a random variable X to get the value x, by P[X = x] (or sometime P[x], if we
are lazy).

2.1.2. Expectation and conditional probability
Definition 2.1.7 (Expectation). The expectation of a random variable X, is its average. Formally, the expecta-
tion of X is

E
[
X
]
=

∑
x

xP
[
X = x

]
.

Definition 2.1.8 (Conditional Probability.). The conditional probability of X given Y , is the probability that
X = x given that Y = y. We denote this quantity by P

[
X = x | Y = y

]
.

One useful way to think about the conditional probability P[X | Y] is as a function, between the given value
of Y (i.e., y), and the probability of X (to be equal to x) in this case. Since in many cases x and y are omitted in
the notation, it is somewhat confusing.

The conditional probability can be computed using the formula

P
[
X = x | Y = y

]
=

P
[
(X = x) ∩ (Y = y)

]
P
[
Y = y

] .

For example, let us roll a dice and let X be the number we got. Let Y be the random variable that is true if
the number we get is even. Then, we have that

P
[
X = 2

∣∣∣ Y = true
]
=

1
3
.

Definition 2.1.9. Two random variables X and Y are independent if P
[
X = x

∣∣∣ Y = y
]
= P[X = x], for all x and

y.

Observation 2.1.10. If X and Y are independent then P
[
X = x

∣∣∣ Y = y
]
= P[X = x] which is equivalent to

P
[
X = x ∩ Y = y

]
P
[
Y = y

] = P[X = x]. That is, X and Y are independent, if for all x and y, we have that

P
[
X = x ∩ Y = y

]
= P

[
X = x

]
P
[
Y = y

]
.

Remark. Informally, and not quite correctly, one possible way to think about the conditional probability
P
[
X = x | Y = y

]
is that it measure the benefit of having more information. If we know that Y = y, do we

have any change in the probability of X = x?

2

Lemma 2.1.11 (Linearity of expectation). Linearity of expectation is the property that for any two random
variables X and Y, we have that E

[
X + Y

]
= E

[
X
]
+ E

[
Y
]
.

Proof: E
[
X + Y

]
=

∑
ω∈Ω

P[ω]
(
X(ω) + Y(ω)

)
=

∑
ω∈Ω

P[ω]X(ω) +
∑
ω∈Ω

P[ω]Y(ω) = E
[
X
]
+ E

[
Y
]
. ■

Lemma 2.1.12. If X and Y are two random independent variables, then E[XY] = E[X]E[Y].

Proof: Let U(X) the sets of all the values that X might have. We have that

E[XY] =
∑

x∈U(X),y∈U(Y)

xyP
[
X = x and Y = y

]
=

∑
x∈U(X),y∈U(Y)

xyP[X = x]P
[
Y = y

]
=

∑
x∈U(X)

∑
y∈U(Y)

xyP[X = x]P
[
Y = y

]
=

∑
x∈U(X)

xP[X = x]
∑

y∈U(Y)

yP
[
Y = y

]
= E[X]E[Y] . ■

2.1.3. Variance and standard deviation
Definition 2.1.13 (Variance and Standard Deviation). For a random variable X, let

V[X] = E
[
(X − µX)2

]
= E

[
X2

]
− µ2

X

denote the variance of X, where µX = E[X]. Intuitively, this tells us how concentrated is the distribution of X.
The standard deviation of X, denoted by σX is the quantity

√
V[X].

Observation 2.1.14. (i) For any constant c ≥ 0, we have V
[
cX

]
= c2 V

[
X
]
.

(ii) For X and Y independent variables, we have V
[
X + Y

]
= V

[
X
]
+ V

[
Y
]
.

2.2. Some distributions and their moments

2.2.1. Bernoulli distribution
Definition 2.2.1 (Bernoulli distribution). Assume, that one flips a coin and get 1 (heads) with probability p,
and 0 (i.e., tail) with probability q = 1 − p. Let X be this random variable. The variable X is has Bernoulli
distribution with parameter p.

We have that E[X] = 1 · p + 0 · (1 − p) = p, and

V
[
X
]
= E

[
X2

]
− µ2

X = E
[
X2

]
− p2 = p − p2 = p(1 − p) = pq.

Definition 2.2.2 (Binomial distribution). Assume that we repeat a Bernoulli experiment n times (independently!).
Let X1, . . . , Xn be the resulting random variables, and let X = X1 + · · · + Xn. The variable X has the binomial
distribution with parameters n and p. We denote this fact by X ∼ Bin(n, p). We have

b(k; n, p) = P
[
X = k

]
=

(
n
k

)
pkqn−k.

Also, E[X] = np, and V[X] = V
[∑n

i=1 Xi
]
=

∑n
i=1 V[Xi] = npq.

3

2.2.2. Geometric distribution
Definition 2.2.3. Consider a sequence X1, X2, . . . of independent Bernoulli trials with probability p for success.
Let X be the number of trials one has to perform till encountering the first success. The distribution of X is a
geometric distribution with parameter p. We denote this by X ∼ Geom(p).

Lemma 2.2.4. For a variable X ∼ Geom(p), we have, for all i, that P[X = i] = (1 − p)i−1 p. Furthermore,
E[X] = 1/p and V[X] = (1 − p)/p2.

Proof: The proof of the expectation and variance is included for the sake of completeness, and the reader is
of course encouraged to skip (reading) this proof. So, let f (x) =

∑∞
i=0 xi = 1

1−x , and observe that f ′(x) =∑∞
i=1 ixi−1 = (1 − x)−2. As such, we have

E[X] =
∞∑

i=1

i (1 − p)i−1 p = p f ′(1 − p) =
p

(1 − (1 − p))2 =
1
p
,

and V[X] = E
[
X2

]
−

1
p2 =

∞∑
i=1

i2 (1 − p)i−1 p −
1
p2 . = p + p(1 − p)

∞∑
i=2

i2 (1 − p)i−2 −
1
p2 .

Observe that

f ′′(x) =
∞∑

i=2

i(i − 1)xi−2 =
(
(1 − x)−1

)′′
=

2
(1 − x)3 .

As such, we have that

∆(x) =
∞∑

i=2

i2xi−2 =

∞∑
i=2

i(i − 1)xi−2 +

∞∑
i=2

ixi−2 = f ′′(x) +
1
x

∞∑
i=2

ixi−1 = f ′′(x) +
1
x
(
f ′(x) − 1

)
=

2
(1 − x)3 +

1
x

(
1

(1 − x)2 − 1
)
=

2
(1 − x)3 +

1
x

(
1 − (1 − x)2

(1 − x)2

)
=

2
(1 − x)3 +

1
x
·

x(2 − x)
(1 − x)2

=
2

(1 − x)3 +
2 − x

(1 − x)2 .

As such, we have that

V[X] = p + p(1 − p)∆(1 − p) −
1
p2 = p + p(1 − p)

(
2
p3 +

1 + p
p2

)
−

1
p2 = p +

2(1 − p)
p2 +

1 − p2

p
−

1
p2

=
p3 + 2(1 − p) + p − p3 − 1

p2 =
1 − p

p2 . ■

2.3. Application of expectation: Approximating 3SAT
Let F be a boolean formula with n variables in CNF form, with m clauses, where each clause has exactly k
literals. We claim that a random assignment for F, where value 0 or 1 is picked with probability 1/2, satisfies
in expectation (1 − 2−k)m of the clauses.

We remind the reader that an instance of 3SAT is a boolean formula, for example F = (x1 + x2 + x3)(x4 +

x1 + x2), and the decision problem is to decide if the formula has a satisfiable assignment. Interestingly, we can
turn this into an optimization problem.

4

Max 3SAT
Instance: A collection of clauses: C1, . . . ,Cm.
Question: Find the assignment to x1, ..., xn that satisfies the maximum number of clauses.

Clearly, since 3SAT is NP-Complete it implies that Max 3SAT is NP-Hard. In particular, the formula F
becomes the following set of two clauses:

x1 + x2 + x3 and x4 + x1 + x2.

Note, that Max 3SAT is a maximization problem.

Definition 2.3.1. Algorithm Alg for a maximization problem achieves an approximation factor α if for all
inputs, we have:

Alg(G)
Opt(G)

≥ α.

In the following, we present a randomized algorithm – it is allowed to consult with a source of random
numbers in making decisions. A key property we need about random variables, is the linearity of expectation
property defined above.

Definition 2.3.2. For an event E, let X be a random variable which is 1 if E occurred, and 0 otherwise. The
random variable X is an indicator variable.

Observation 2.3.3. For an indicator variable X of an event E, we have

E
[
X
]
= 0 · P

[
X = 0

]
+ 1 · P

[
X = 1

]
= P

[
X = 1

]
= P

[
E
]
.

Theorem 2.3.4. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in polynomial time.
Specifically, consider a 3SAT formula F with n variables and m clauses, and consider the randomized al-
gorithm that assigns each variable value 0 or 1 with equal probability (independently to each variable) . Then
this assignment satisfies (7/8)m clauses in expectation.

Proof: Let x1, . . . , xn be the n variables used in the given instance. The algorithm works by randomly assigning
values to x1, . . . , xn, independently, and equal probability, to 0 or 1, for each one of the variables.

Let Yi be the indicator variables which is 1 if (and only if) the ith clause is satisfied by the generated random
assignment, and 0 otherwise, for i = 1, . . . ,m. Formally, we have

Yi =

1 Ci is satisfied by the generated assignment,
0 otherwise.

Now, the number of clauses satisfied by the given assignment is Y =
∑m

i=1 Yi. We claim that E[Y] = (7/8)m,
where m is the number of clauses in the input. Indeed, we have

E
[
Y
]
= E

[m∑
i=1

Yi

]
=

m∑
i=1

E
[
Yi

]
,

by linearity of expectation. The probability that Yi = 0 is exactly the probability that all three literals appearing
in the clause Ci are evaluated to FALSE. Since the three literals, Say ℓ1, ℓ2, ℓ3, are instance of three distinct
variable these three events are independent, and as such the probability for this happening is

P
[
Yi = 0

]
= P[(ℓ1 = 0) ∧ (ℓ2 = 0) ∧ (ℓ3 = 0)] = P[ℓ1 = 0]P[ℓ2 = 0]P[ℓ3 = 0] =

1
2
∗

1
2
∗

1
2
=

1
8
.

5

(Another way to see this, is to observe that since Ci has exactly three literals, there is only one possible assign-
ment to the three variables appearing in it, such that the clause evaluates to FALSE. Now, there are eight (8)
possible assignments to this clause, and thus the probability of picking a FALSE assignment is 1/8.) Thus,

P
[
Yi = 1

]
= 1 − P

[
Yi = 0

]
=

7
8
,

and

E
[
Yi

]
= P

[
Yi = 0

]
∗ 0 + P

[
Yi = 1

]
∗ 1 =

7
8
.

Namely, E[# of clauses sat] = E[Y] =
∑m

i=1 E[Yi] = (7/8)m. Since the optimal solution satisfies at most m
clauses, the claim follows. ■

Curiously, Theorem 2.3.4 is stronger than what one usually would be able to get for an approximation
algorithm. Here, the approximation quality is independent of how well the optimal solution does (the optimal
can satisfy at most m clauses, as such we get a (7/8)-approximation. Curiouser and curiouser②, the algorithm
does not even look on the input when generating the random assignment.

Håstad [Hås01] proved that one can do no better; that is, for any constant ε > 0, one can not approximate
3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + ε. It is pretty amazing that a trivial
algorithm like the above is essentially optimal.

Remark 2.3.5. For k ≥ 3, the above implies (1 − 2−k)-approximation algorithm, for k-SAT, as long as the
instances are each of length at least k.

2.4. Markov’s inequality

2.4.1. Markov’s inequality
We remind the reader that for a random variable X assuming real values, its expectation is E[Y] =

∑
y y ·

P
[
Y = y

]
. Similarly, for a function f (·), we have E

[
f (Y)

]
=

∑
y f (y) · P

[
Y = y

]
.

Theorem 2.4.1 (Markov’s Inequality). Let Y be a random variable assuming only non-negative values. Then
for all t > 0, we have

P
[
Y ≥ t

]
≤

E
[
Y
]

t
.

Proof: Indeed,

E
[
Y
]
=

∑
y≥t

yP
[
Y = y

]
+

∑
y<t

yP
[
Y = y

]
≥

∑
y≥t

yP
[
Y = y

]
≥

∑
y≥t

t P
[
Y = y

]
= t P

[
Y ≥ t

]
. ■

Markov inequality is tight, as the following exercise testifies.

Exercise 2.4.2. For any (integer) k > 1, define a random positive variable Xk such that P[Xk ≥ kE[Xk]] = 1/k.
②“Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite forgot how to speak good

English). – Alice in wonderland, Lewis Carol

6

2.4.2. Example: A good approximation to kSAT with good probability
In Section 2.3 we saw a surprisingly simple algorithm that, for a formula F that is 3SAT with n variables and m
clauses, in expectation (in linear time) it finds an assignment that satisfies (7/8)m of the clauses (for simplicity,
here we set k = 3).

The problem is that the guarantee is only in expectation – and the assignment being output by the algorithm
might satisfy much fewer clauses. Namely, we would like to convert a guarantee that is in expectation into, a
good probability guarantee. So, let ε, φ ∈ (0, 1/2) be two parameters. We would like an algorithm that outputs
an assignment that satisfies (say) (1 − ε)(7/8)m clauses, with probability ≥ 1 − φ.

To this end, the new algorithm runs the previous algorithm

u =
⌈
1
ε

ln
1
φ

⌉
times, and returns the assignment satisfying the largest number of clauses.

Lemma 2.4.3. Given a 3SAT formula with n variables and m clauses, and parameters ε, φ ∈ (0, 1/2), the
above algorithm returns an assignment that satisfies ≥ (1 − ε)(7/8)m clauses of F, with probability ≥ 1 − φ.
The running time of the algorithm is O(ε−1(n + m) logφ−1).

Proof: Let Zi be the number of clauses not satisfied by the ith random assignment considered by the algorithm.
Observe that E[Zi] = m/8,as the probability of a clause not to be satisfied is 1/23. The ith iteration fails if

m − Zi < (1 − ε)(7/8)m =⇒ Zi > m
(
1 − (1 − ε)7/8

)
=

(
1 + 7ε

)m
8
=

(
1 + 7ε

)
E[Zi] .

Thus, by Markov’s inequality, the ith iteration fails with probability

p = P[m − Zi < (1 − ε)(7/8)m] = P
[
Zi > (1 + 7ε)E[Zi]

]
<

E[Zi]
(1 + 7ε)E[Zi]

=
1

1 + 7ε
< 1 − ε,

since (1 + 7ε)(1 − ε) = 1 + 6ε − 7ε2 > 1, for ε < 1/2.
For the algorithm to fail, all u iterations must fail. Since 1 − x ≤ exp(−x), we have that

pu ≤ (1 − ε)u ≤ exp(−ε)u ≤ exp(−εu) ≤ exp
(
−ε

⌈
1
ε

ln
1
φ

⌉)
≤ φ. ■

2.4.3. Example: Coloring a graph
Consider a graph G = (V,E) with n vertices and m edges. We would like to color it with k colors. As a
reminder, a coloring of a graph by k colors, is an assignment χ : V→ JkK of a color to each vertex of G, out of
the k possible colors JkK = {1, 2, . . . , k}. A coloring of an edge uv ∈ E is valid if χ(u) , χ(v).

Lemma 2.4.4. Consider a random coloring χ of the vertices of a graph G = (V,E), where each vertex is
assigned a color randomly and uniformly from JkK. Then, the expected number of edges with invalid coloring
is m/k, where m = |E(G)| is the number of edges in G.

Proof: Let E = {e1, . . . , em}. Let Xi be an indicator variable that is 1 ⇐⇒ ei is invalid colored by χ. Let
ei = uivi. We have that

P[Xi = 1] = P
[
χ(ui) = χ(vi)

]
=

1
k
.

7

Indeed, conceptually color ui first, and vi later. The probability that vi would be assigned the same color as ui

is 1/k. Let Z be the random variable that is the number of edges that are invalid for χ. We have that Z =
∑

i Xi.
By linearity of expectations, and the expectation of an indicator variable, we have

E[Z] =
m∑

i=1

E[Xi] =
m∑

i=1

P[Xi = 1] =
m∑

i=1

1
k
=

m
k
. ■

That is pretty good, but what about an algorithm that always succeeds? The above algorithm might always
somehow gives us a bad coloring. Well, not to worry.

Lemma 2.4.5. The above random coloring of G with k colors, has at most 2m/k invalid edges, with probability
≥ 1/2.

Proof: We have that E[Z] = m/k. As such, by Markov’s inequality, we have that

P[Z > 2m/k] ≤ P[Z ≥ 2m/k] ≤ E[Z]
2m/k

=
m/k

2m/k
=

1
2
.

Thus

P[Z ≤ 2m/k] = 1 − P[Z > 2m/k] ≥ 1 −
1
2
=

1
2
. ■

In particular, consider he modified algorithm – it randomly colors the graph G. If there are at most 2m/k
invalid edges, it output the coloring, and stops. Otherwise, it retries. The probability of every iteration to
succeeds is p ≥ 1/2, and as such, the number of iterations behaves like a geometric random variable. It
follows, that in expectation, the number of iterations is at most 1/p ≤ 2. Thus, the expected running time of
this algorithm is O(m). Indeed, let R be the number iterations performed by the algorithm. We have that the
expected running time is proportional to

E[Rm] = mE[R] = 2m.

Note, that this is not the full picture – P[R = i] ≤ 1/2i−1. So the probability of this algorithm tor for long
decreases quickly.

2.4.3.1. Getting a valid coloring

2.4.3.1.1. A fun algorithm. A natural approach is to run the above algorithm for k =
√

m (assume it is an
integer). Then identify all the invalid edges, and invalidate the color of all the vertices involved. We now repeat
the coloring algorithm on these invalid vertices and invalid edges, again using random coloring, but now using
colors {k+ 1, . . . , 2k}. If after this, there is a single invalid edge, we color one of its vertices by the color 2k+ 1,
and output this coloring. Otherwise, it fails.

Lemma 2.4.6. The above algorithm succeeds with probability at least 1/2.

Proof: Let Y be the number of invalid edges in the end of the second round. For an edge to be invalid, its
coloring must have failed in both rounds, and the probability for that is exactly (1/k) · (1/k) = 1/m since the
two events are independent. As such, arguing as above, we have E[Y] = 1. By Markov’s inequality, we have
that

P
[
algorithm fails

]
= P[Y > 1] = P[Y ≥ 2] ≤ E[Y]

2
=

1
2
. ■

Remark 2.4.7. This is a toy example - it is not hard to come up with a deterministic algorithm that uses (say)√
2m + 2 colors (how? think about it). However, this algorithm is a nice distributed algorithm - after three

rounds of communications, it colors the graph in a valid way, with probability at least half.

8

References

[Hås01] J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4): 798–859, 2001.

9

	Probability and Expectation
	Basic probability
	Formal basic definitions: Sample space, -algebra, and probability
	Expectation and conditional probability
	Variance and standard deviation

	Some distributions and their moments
	Bernoulli distribution
	Geometric distribution

	Application of expectation: Approximating 3SAT
	Markov's inequality
	Markov's inequality
	Example: A good approximation to kSAT with good probability
	Example: Coloring a graph

