CS 574: Randomized Algorithms, Spring 2024
Version: 1.0
Submission guidelines same as previous homework.

16 (100 PTs.) JL Lemma works for angles.
Show that the Johnson-Lindenstrauss lemma also ($1 \pm \varepsilon$)-preserves angles among triples of points of P (you might need to increase the target dimension however by a constant factor).
(Hint: Use the fact that the constructed dimension reduction operator is a linear operator that maps lines to lines. Specifically, for every angle, construct a Isosceles triangle that its edges are being preserved by the projection (add the vertices of those triangles [conceptually] to the point set being embedded). Argue, that this implies that the angle is being preserved.)
17 (100 PTS.) Set System and Hitting.
Let (U, \mathcal{F}) be a set system, where $|U|=n$, and $\mathcal{F} \subseteq 2^{U}$, and $|\mathcal{F}|=O(n \log n)$. Furthermore, for every set $f \in \mathcal{F}$, we have that $|f| \geq 10 \log n$. Prove, that there is a subset $X \subseteq U$, such that $|X|=O\left(n \frac{\log \log n}{\log n}\right)$, and for all $f \in \mathcal{F}$, we have $f \cap X \neq \emptyset$. (Hint: Course name.)
18 (100 PTS.) Estimate sum.
You are given a (multi)set of n number $X=\left\{x_{1}, \ldots, x_{n}\right\}$, all taken from $\llbracket m \rrbracket=\{1, \ldots, m\}$. You are given an oracle, that for any set $U \subseteq X$, and an interval $[\alpha . \beta]$ it returns if $U \cap[\alpha, \beta] \neq \emptyset$. Note, that you can not evaluate the value of x_{i} directly (you can of course figure out the value of x_{i} by doing a binary search using the oracle, for example, but that would be expensive).
You are also given parameters $\varepsilon, \delta \in(0,1)$, describe a randomized algorithm that output a number Y, such that with probability $\geq 1-\delta$, we have $(1-\varepsilon) \tau \leq Y \leq(1+\varepsilon) \tau$, where $\tau=\sum_{i} x_{i}$. Importantly, your algorithm should use as few oracle queries as possible. In particular, for credit, assuming ε is a constant, your algorithm should perform a polylogarithmic number of queries.
Hint: Consider the case that $m=2$. Then solve for the case that $m=4$, and so on. Of course, since m can be larger than n, you do not want to have linear dependency on m in your final solution. You can safely assume that $m=n^{O(1)}$.

