CS 574: Randomized Algorithms, Spring 2024
Version: $\mathbf{1 . 0}$
Instructions: As in first homework.
7 (100 PTS.) Lazy choices.
Question 17.2 from [MU17].
Consider the following variant of the balanced allocation paradigm: n balls are placed sequentially in n bins, with the bins labeled from 0 to $n-1$. Each ball chooses a bin i uniformly at random, and the ball is placed in the least loaded of bins

$$
i, \quad(i+1) \bmod n, \quad(i+2) \bmod n, \quad \ldots, \quad(i+d-1) \bmod n
$$

Argue that, when d is a constant, the maximum load grows as $\Theta(\log n / \log \log n)$. That is, the power of two chocies does not yield an $O(\log \log n)$ result in this case.
8 (100 PTS.) Parallel choices.
Question 17.6 from [MU17].
Consider a parallel version of the balanced allocation paradigm in which we have n / k rounds, where k new balls arrive in each round. Each ball is placed in the least loaded of its d choices, where in this setting the load of each bin is the load at the end of the previous round. Ties are broken randomly. Note that the k new balls cannot affect each other's placement. Give an upper bound on the maximum load as a function of n, d, and k.
9 (100 PTS.) Birthday with choices.
Question 17.14 from [MU17].
The birthday shows that if balls are sequentially thrown randomly into n bins, with constant probability there will be a collision after $\Theta(\sqrt{n})$ balls are thrown.
9.A. (50 PTS.) Suppose that balls are placed sequentially, each ball has two choices of where to be placed, and a ball will choose a bin that avoids a collision if that is possible. Show that there are constants c_{1} and c_{2} so that after $c_{1} n^{2 / 3}-o\left(n^{2 / 3}\right)$ balls are thrown no collision has occurred with probability at least $1 / 2$, and after $c_{2} n^{2 / 3}+o\left(n^{2 / 3}\right)$ balls are thrown at least one collision has occurred with probability at least $1 / 2$.
9.B. (10 PTs.) How close can you make the constants c_{1} and c_{2} ?
9.C. (30 PTS.) Extend your analysis to more than two choices. Specifically, show that if each ball has k choices for some constant k, there are constants $c_{1, k}$ and $c_{2, k}$ so that after $c_{1, k} n^{1-1 / k}-$ $o(n 61-1 / k)$ balls are thrown no collision has occurred with probability at least $1 / 2$, and after $c_{2, k} n^{1-1 / k}+o\left(n^{1-1 / k}\right)$ balls are thrown at least one collision has occurred with probability at least $1 / 2$.
9.D. (10 PTS.) How close can you make the constants $c_{1, k}$ and $c_{2, k}$?

References

[MU17] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, 2017.

