CS 574: Randomized Algorithms

Lecture 9. Lovász Local Lemma and more on Random k-SAT

September 22, 2015

Lecture 9. Lovász Local Lemma and more on Random k-SAT CS 574: Randomized Algorithms

 We saw: Probabilistic method provides non-constructive strategy of proving existence of object with some property.

- We saw: Probabilistic method provides non-constructive strategy of proving existence of object with some property.
- If object has property with high probability, that gives efficient random algorithm.

- We saw: Probabilistic method provides non-constructive strategy of proving existence of object with some property.
- If object has property with high probability, that gives efficient random algorithm.
- We often describe the selected objects in terms of bad events $\{A_1, \dots, A_n\}$, whose occurrences render the object undesirable. In such case, the desired property is avoiding all those events.

- We saw: Probabilistic method provides non-constructive strategy of proving existence of object with some property.
- If object has property with high probability, that gives efficient random algorithm.
- We often describe the selected objects in terms of bad events $\{A_1, \dots, A_n\}$, whose occurrences render the object undesirable. In such case, the desired property is avoiding all those events.
- If independent then

$$Pr[\bigcap_{i=1}^n \neg A_i] = \prod_{i=1}^n Pr[\neg A_i] \ge (1-p)^n > 0.$$

- We saw: Probabilistic method provides non-constructive strategy of proving existence of object with some property.
- If object has property with high probability, that gives efficient random algorithm.
- We often describe the selected objects in terms of bad events $\{A_1, \dots, A_n\}$, whose occurrences render the object undesirable. In such case, the desired property is avoiding all those events.
- If independent then $Pr[\bigcap_{i=1}^{n} \neg A_i] = \prod_{i=1}^{n} Pr[\neg A_i] \ge (1-p)^n > 0.$
- Lovász Local lemma is extending the above when there are dependencies among A_i . (Looking for a needle in a haystack?).

Definition

Event A is mutually independent from events $\{B_i\}$, if for any subset $b \subseteq \{B_i\} \cup \{\neg B_i\}$ we have Pr[A|b] = Pr[A].

- 4 同 6 4 日 6 4 日 6

э

Definition

Event A is mutually independent from events $\{B_i\}$, if for any subset $b \subseteq \{B_i\} \cup \{\neg B_i\}$ we have Pr[A|b] = Pr[A].

Lemma

(Lovász Local Lemma) Let A_1, \dots, A_n be a set of "bad" events with $Pr[A_i] \le p < 1$, and each event A_i is mutually independent of all but at most d of the other A_j . If $e \cdot p(d+1) \le 1$ (or, also, $4pd \le 1$), then

$$Pr[\cap_{i=1}^n \neg A_i] > 0$$

(人間) ト く ヨ ト く ヨ ト

Claim

Any instance ϕ of k-SAT in which no variable appears more than $\frac{2^{k-2}}{k}$ clauses is satisfiable.

∃ >

Claim

Any instance ϕ of k-SAT in which no variable appears more than $\frac{2^{k-2}}{k}$ clauses is satisfiable.

Proposition

Suppose that Z_1, \dots, Z_m is a sequence of independent events and suppose that each A_i is completely determined by some subset $S_i \subseteq \{Z_j\}$. If $S_i \cap S_j = \emptyset$ for $j = j_1, \dots, j_k$, then A_i is mutually independent of $\{A_{j_1}, \dots, A_{j_k}\}$.

Claim

Any instance ϕ of k-SAT in which no variable appears more than $\frac{2^{k-2}}{k}$ clauses is satisfiable.

Proposition

Suppose that Z_1, \dots, Z_m is a sequence of independent events and suppose that each A_i is completely determined by some subset $S_i \subseteq \{Z_j\}$. If $S_i \cap S_j = \emptyset$ for $j = j_1, \dots, j_k$, then A_i is mutually independent of $\{A_{j_1}, \dots, A_{j_k}\}$.

Next we see the proof of LLL.

• Assume *n* pairs of users need to communicate using edge-disjoint paths in a network.

- Assume *n* pairs of users need to communicate using edge-disjoint paths in a network.
- Each pair of users i = 1, ..., n can choose a path from a collection of m paths F_i.

- Assume *n* pairs of users need to communicate using edge-disjoint paths in a network.
- Each pair of users i = 1, ..., n can choose a path from a collection of m paths F_i.
- Show the following.
- Class Assignment: If any path in F_i shares edges with no more than k paths in F_j for all i ≠ j, then there is a way to choose n edge-disjoint paths connecting the n pairs, provided that 8nk/m ≤ 1.

Lemma

(General Lovász Local Lemma) Let A_1, \dots, A_n be a set of "bad" events and let $D_i \subseteq \{A_1, \dots, A_n\}$ be the dependency set of A_i . If there exists a set of real numbers $x_1, \dots, x_n \in [0, 1)$ such that $Pr[A_i] \leq x_i \prod_{j \in D_i} (1 - x_j)$ for all *i*, then

$$Pr[\cap_{i=1}^n \neg A_i] \geq \prod_{i=1}^n (1-x_i) > 0$$

Lecture 9. Lovász Local Lemma and more on Random k-SAT CS 574: Randomized Algorithms