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Coupon Collector

n types of coupons in cereal boxes,each time you purchase a
cereal box, one coupon is picked at random. How many boxes
one has to buy before picking all coupons?

m is the number of cereal boxes. We want to bound the
probability that m exceeds a certain number and we still did
not pick all coupons.

We now show a weak bound using Chebyshev, stronger
bounds later.

Show that for an r.v. Y with geom(p) distribution, E (Y ) = 1
p

and Var(Y ) = (1−p)
p2

.

For any t that

Pr [#boxes ≥ n log n + n + t · n π√
6

] ≤ 1

t2

Can you cast it in Balls-in-Bins framework?
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Coupon Collector, Revisited

What is the probability that the i-th coupon was not picked
the first r trials? (event Ei

r )

Stronger bound than before: Pr [X > βn log n] ≤ n−β+1.We
can do even better concentration for the probability that X
deviates from its expectation nHn by cn.

Theorem

Let the random variable X denote the number of trials for
collecting each of the n types of coupons. Then, for any constant
c ∈ R, and m = n ln n + cn, we have

lim
n→∞

Pr [X > m] = 1− exp(−e−c)

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



Coupon Collector, Revisited

What is the probability that the i-th coupon was not picked
the first r trials? (event Ei

r )

Stronger bound than before: Pr [X > βn log n] ≤ n−β+1.

We
can do even better concentration for the probability that X
deviates from its expectation nHn by cn.

Theorem

Let the random variable X denote the number of trials for
collecting each of the n types of coupons. Then, for any constant
c ∈ R, and m = n ln n + cn, we have

lim
n→∞

Pr [X > m] = 1− exp(−e−c)

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



Coupon Collector, Revisited

What is the probability that the i-th coupon was not picked
the first r trials? (event Ei

r )

Stronger bound than before: Pr [X > βn log n] ≤ n−β+1.We
can do even better concentration for the probability that X
deviates from its expectation nHn by cn.

Theorem

Let the random variable X denote the number of trials for
collecting each of the n types of coupons. Then, for any constant
c ∈ R, and m = n ln n + cn, we have

lim
n→∞

Pr [X > m] = 1− exp(−e−c)

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



Coupon Collector, Revisited

What is the probability that the i-th coupon was not picked
the first r trials? (event Ei

r )

Stronger bound than before: Pr [X > βn log n] ≤ n−β+1.We
can do even better concentration for the probability that X
deviates from its expectation nHn by cn.

Theorem

Let the random variable X denote the number of trials for
collecting each of the n types of coupons. Then, for any constant
c ∈ R, and m = n ln n + cn, we have

lim
n→∞

Pr [X > m] = 1− exp(−e−c)

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



Coupon Collector, Revisited

What is the probability that the i-th coupon was not picked
the first r trials? (event Ei

r )

Stronger bound than before: Pr [X > βn log n] ≤ n−β+1.We
can do even better concentration for the probability that X
deviates from its expectation nHn by cn.

Theorem

Let the random variable X denote the number of trials for
collecting each of the n types of coupons. Then, for any constant
c ∈ R, and m = n ln n + cn, we have

lim
n→∞

Pr [X > m] = 1− exp(−e−c)

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



How many cereal boxes and the Poisson Heuristic

Observe that as c goes from large positive to large negative
value, the probability goes from almost 1 to almost 0. So if
you have collected almost n log n cereal boxes, don’t give up!

We will prove an approximate version of that, using Poisson
approximation.
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Poisson Heuristic

Ni
r is number of times coupon i i selected the first r trials.

Follows Binomial(r , p = 1/n).

Pr [Ni
r = x ] =

(r
x

)
px(1− p)r−x .

An rv. Y follows Poison with parameter λ if
Pr [Y = x ] = λy e−λ

y ! .

Poisson(λ = rp) ≈ Binomial(r , p).

Now the events Ei
r almost independent.
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Class Assignment: Overview of Techniques

Unbalancing lights: Consider a square n × n array of lights (see
Figure on board). There is one switch corresponding to each row
and each column (i.e., 2n switches). Throwing a switch changes
the state of all the lights in the corresponding row or column. We
now consider the problem of setting the switches so as to maximize
the number of lights that are ON, starting from an arbitrary
configuration of switches. You need to show the following claim:

Claim

For any initial configuration of the lights, there exists a setting of
the switches for which the number of lights that are on is
asymptotically

n2

2
+

√
1

2π
n3/2

As an intermediate step, show that in expectation we achieve
about n2

2 + O(n) lights on.

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms



Class Assignment: Overview of Techniques

Unbalancing lights: Consider a square n × n array of lights (see
Figure on board). There is one switch corresponding to each row
and each column (i.e., 2n switches). Throwing a switch changes
the state of all the lights in the corresponding row or column. We
now consider the problem of setting the switches so as to maximize
the number of lights that are ON, starting from an arbitrary
configuration of switches. You need to show the following claim:

Claim

For any initial configuration of the lights, there exists a setting of
the switches for which the number of lights that are on is
asymptotically

n2

2
+

√
1

2π
n3/2

As an intermediate step, show that in expectation we achieve
about n2

2 + O(n) lights on.

Lecture 5. Coupon Collector Problems CS 574: Randomized Algorithms


