Lecture 19. Random Walks and Electrical Networks

October 27, 2015
Random walk on G is a process $\{X_t\}$ such that $X_0 = v_0 \in V$ and if $X_t = v$ then $X_{t+1} = w$ with probability $1/\deg_v$ for every neighbor w of v.
Random walk on G is a process $\{X_t\}$ such that $X_0 = v_0 \in V$ and if $X_t = v$ then $X_{t+1} = w$ with probability $1/\deg_v$ for every neighbor w of v.

For two vertices u, v let $T = \min\{t \geq 0 : X_t = v\}$. Hitting time $H_{u,v} = E(T|X_0 = u)$.
Random walk on G is a process $\{X_t\}$ such that $X_0 = v_0 \in V$ and if $X_t = v$ then $X_{t+1} = w$ with probability $1/\deg_v$ for every neighbor w of v.

For two vertices u, v let $T = \min\{t \geq 0 : X_t = v\}$. Hitting time $H_{u,v} = E(T|X_0 = u)$.

Let $T = \min\{t \geq 0 : \{X_0, \ldots X_t\} = V\}$. Cover time $\text{cov}_u(G) = E(T|X_0 = u)$.
Random walk on G is a process $\{X_t\}$ such that $X_0 = v_0 \in V$ and if $X_t = v$ then $X_{t+1} = w$ with probability $1/\deg_v$ for every neighbor w of v.

For two vertices u, v let $T = \min\{t \geq 0 : X_t = v\}$. Hitting time $H_{u,v} = E(T | X_0 = u)$.

Let $T = \min\{t \geq 0 : \{X_0, \ldots, X_t\} = V\}$. Cover time $\text{cov}_u(G) = E(T | X_0 = u)$.

Cover time of the graph is $\text{cov}(G) = \max_{u \in V} \text{cov}_u(G)$.
\(G(V, E) \) connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes \(u, v \), there is a potential \(\phi_{u,v} \).
Electrical Networks

- $G(V, E)$ connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes u, v, there is a potential $\phi_{u,v}$.

- (K1) Flow into every node equals flow out.

Can generalize from unit resistors to arbitrary conductances c_{uv} so that $r_{uv} = \frac{1}{c_{uv}}$.

There is a map $\phi: V \rightarrow \mathbb{R}$ such that $\phi_{u,v} = \phi(u) - \phi(v)$.

Effective resistance $R_{\text{eff}}(u,v)$ is the potential difference required to induce a current of unit flow between u, v.

Lecture 19. Random Walks and Electrical Networks
CS 574: Randomized Algorithms
Electrical Networks

- $G(V,E)$ connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes u,v, there is a potential $\phi_{u,v}$.

- (K1) Flow into every node equals flow out.

- (K2) Sum of potential differences around any cycle is zero.
Electrical Networks

- $G(V, E)$ connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes u, v, there is a potential $\phi_{u,v}$.

- (K1) Flow into every node equals flow out.
- (K2) Sum of potential differences around any cycle is zero.
- (Ohm) Current flowing from u to v on edge (u, v) is precisely $\frac{\phi_{u,v}}{r_{uv}}$, where r_{uv} is the resistance of u, v. ($V = iR$).
Electrical Networks

- $G(V, E)$ connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes u, v, there is a potential $\phi_{u,v}$.

- (K1) Flow into every node equals flow out.

- (K2) Sum of potential differences around any cycle is zero.

- (Ohm) Current flowing from u to v on edge (u, v) is precisely $\frac{\phi_{u,v}}{r_{uv}}$, where r_{uv} is the resistance of u, v. ($V = iR$).

- Can generalize from unit resistors to arbitrary conductances c_{uv} so that $r_{uv} = 1/c_{uv}$.
Electrical Networks

- \(G(V, E) \) connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes \(u, v \), there is a potential \(\phi_{u,v} \).

- (K1) Flow into every node equals flow out.

- (K2) Sum of potential differences around any cycle is zero.

- (Ohm) Current flowing from \(u \) to \(v \) on edge \((u, v)\) is precisely \(\frac{\phi_{u,v}}{r_{uv}} \), where \(r_{uv} \) is the resistance of \(u, v \). \((V = iR) \).

- Can generalize from unit resistors to arbitrary conductances \(c_{uv} \) so that \(r_{uv} = 1/c_{uv} \).

- There is a map \(\phi : V \to \mathbb{R} \) such that \(\phi_{u,v} = \phi(u) - \phi(v) \).
Electrical Networks

- \(G(V, E)\) connected, undirected graph. Each edge is a unit resistor. Create a potential difference at two vertices and induce an electrical flow on the graph. Between every two nodes \(u, v\), there is a potential \(\phi_{u,v}\).
- \((K1)\) Flow into every node equals flow out.
- \((K2)\) Sum of potential differences around any cycle is zero.
- \((\text{Ohm})\) Current flowing from \(u\) to \(v\) on edge \((u, v)\) is precisely \(\frac{\phi_{u,v}}{r_{uv}}\), where \(r_{uv}\) is the resistance of \(u, v\). \((V = iR)\).
- Can generalize from unit resistors to arbitrary conductances \(c_{uv}\) so that \(r_{uv} = 1/c_{uv}\).
- There is a map \(\phi : V \rightarrow \mathbb{R}\) such that \(\phi_{u,v} = \phi(u) - \phi(v)\).
- Effective resistance \(R_{\text{eff}}(u, v)\) is the potential difference required to induce a current of unit flow between \(u, v\).
Theorem

If $G(V, E)$ has m edges, then for every two nodes u, v we have $H_{uv} + H_{vu} = 2mR_{\text{eff}}(u, v)$.
Theorem

If $G(V, E)$ has m edges, then for every two nodes u, v we have $H_{uv} + H_{vu} = 2mR_{eff}(u, v)$

Theorem

For any connected graph $G(V, E)$ we have $\text{cov}(G) \leq |E|(|V| - 1)$.