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Martingales Introduction

For independent r.v.s Xi we showed tight concentration of
their sum around the mean.

We can also show similar results for dependent r.v’s.

Definition

A sequence of r.v.’s X1,X2 · · · is called a discrete time martingale,
if E [Xi+1|X0,X1, · · · ,Xi ] = Xi , for every i = 0, 1, 2, · · · .

More generally, Xi sequence is a martingale with respect to a
sequence Yi if E [Xi+1|Y0,Y1, · · · ,Yi ] = Xi , for every
i = 0, 1, 2, · · · .
Equivalently, E [Xi+1 − Xi |Y0, · · · ,Yi ] = 0 if the set of
Y0, · · · ,Yi is all the information up to time i . Namely, the
difference Xi+1 − Xi is unbiased on the past up to time i .
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Doob Martingales

Classic example of a Gambler whose bank roll is X0. At each
time, she chooses to play some game in the casino at some
stakes. If we assume that every game is fair (expected utility
of playing is 0), but games need not be independent and
stakes need not be independent, then the sequence X0,X1, ...
is a martingale, where Xi is the amount of money she has at
time i .

Tower rule of conditional expectations
E [V |W ] = E [E [V |U,W ]|W ].

Define Doob Martingale: Let X0,X1, · · · be a sequence or
r.v.s. Let Y be also an r.v. with E [Y ] <∞. Then
Zi = E [Y |X0,X1, · · · ,Xi ] is a Doob Martingale.

Doob martingales try to estimate function Y with finer and
finer estimates.

Frequently, in application we have Y = f (Z1, ...,Zn). In this
case, Z0 = E (Y ) and Zn = E (Y |Z1, ...,Zn) = Y .
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Martingales Examples

Fair,independent coin tosses: Martingale with independent
differences.

Balls in Bins example: How may empty bins are there if I
throw m balls in n bins randomly?

The vertex/edge exposure martingale for random graphs and
chromatic number.
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Azuma Inequality

We say that the martingale {Xi} has L-bounded increments if
|Xi+1 − Xi | ≤ L for every i .

Theorem

For every L > 0, if {Xi} is a martingale with L-bounded
increments, then for every λ > 0 and every n ≥ 0 we have

P[Xn ≥ X0 + λ] ≤ e−
λ2

2L2n

and

P[Xn ≥ X0 − λ] ≤ e−
λ2

2L2n
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Class Assignment: Show the special case for independent r.v.s:

Corollary

If Zi are independent r.v.s taking values in [−L, L], Z =
∑

Zi and
µ = E (Z ), then for every λ > 0 we have

P[Z ≥ µ+ λ] ≤ e−
λ2

2L2n

and

P[Z ≥ µ− λ] ≤ e−
λ2

2L2n
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Lipschitz condition and Application to Balls in Bins

Function f (z1, z2, ..., zn) is L-Lipschitz is changing any one
coordinate changes the value of f by at most c in absolute
value.

If f (Z1, ...Zn) is L-Lipschitz and Zi independent, then the
Doob martingale of f with respect to Zi has increments
bounded by L.

Apply Azuma to balls in bins for concentration of the number
of empty bins.
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