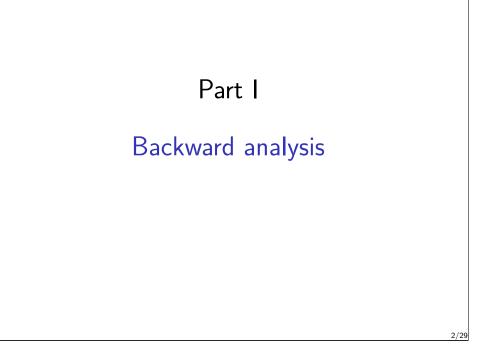
CS 573: Algorithms, Fall 2014

Backward analysis

Lecture 27 December 4, 2014



Backward analysis

- 1. $\mathbf{P} = \langle \mathbf{p}_1, \dots, \mathbf{p}_n \rangle$ be a random ordering of n distinct numbers.
- 2. $X_i = 1 \iff p_i$ is smaller than p_1, \ldots, p_{i-1} .
- 3. Lemma $\Pr[X_i = 1] = 1/i.$

Proof...

Lemma $\Pr[X_i = 1] = 1/i.$ Proof.

1. Fix elements appearing in set $(\mathsf{P}_i) = \{s_1, \dots, s_i\}$. 2. $\mathsf{Pr}[\mathsf{p}_i = \min(\mathsf{P}_i) | \operatorname{set}(\mathsf{P}_i)] = 1/i$.

$$\Pr\left[\mathsf{p}_{i} = \min(\mathsf{P}_{i})\right]$$

= $\sum_{S \subseteq \mathsf{P}, |S|=i} \Pr\left[\mathsf{p}_{i} = \min(\mathsf{P}_{i}) \mid \operatorname{set}(\mathsf{P}_{i}) = S\right] \Pr[S]$
= $\sum_{S \subseteq \mathsf{P}, |S|=i} \frac{1}{i} \Pr[S] = \frac{1}{i}.$

4/29

3/29

1/29

of times...

...the minimum changes in a random permutation...

Theorem

In a random permutation of **n** distinct numbers, the minimum of the prefix changes in expectation $\ln n + 1$ times.

Proof.

1.
$$\mathbf{Y} = \sum_{i=1}^{n} \mathbf{X}_{i}$$
.
2. $\mathbf{E}[\mathbf{Y}] = \mathbf{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[\mathbf{X}_{i}] = \sum_{i=1}^{n} 1/i$
 $\leq \ln n + 1$.

5/20

Proof continued...

- 1. For any indices $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, and observe that $\Pr[\mathcal{E}_{i_k} \mid \mathcal{E}_{i_1} \cap \ldots \cap \mathcal{E}_{i_{k-1}}] = \Pr[\mathcal{E}_{i_k}]$,
- 2. ...because \mathcal{E}_{i_1} determined after all $\mathcal{E}_{i_2}, \ldots, \mathcal{E}_k$.
- 3. By induction: $\Pr[\mathcal{E}_{i_1} \cap \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] =$ $\Pr[\mathcal{E}_{i_1} | \mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] \Pr[\mathcal{E}_{i_2} \cap \ldots \cap \mathcal{E}_{i_k}] =$ $\Pr[\mathcal{E}_{i_1}] \Pr[\mathcal{E}_{i_2} \cap \mathcal{E}_{i_3} \cap \ldots \cap \mathcal{E}_{i_k}] = \prod_{j=1}^{k} \Pr[\mathcal{E}_{i_j}] = \prod_{j=1}^{k} \frac{1}{i_j}.$
- 4. \implies variables X_1, \ldots, X_n are independent.
- 5. Result readily follows from Chernoff's inequality.

High probability

Lemma

 $\Pi = \pi_1 \dots \pi_n: \text{ random permutation of } \{1, \dots, n\}. X_i: \text{ indicator variable if } \pi_i \text{ is the smallest number in } \{\pi_1, \dots, \pi_i\}, \text{ for } \forall i. \text{ Then } Z = \sum_{i=1}^n X_i = O(\log n)., \text{ w.h.p. (i.e., } \geq 1 - 1/n^{O(1)}).$

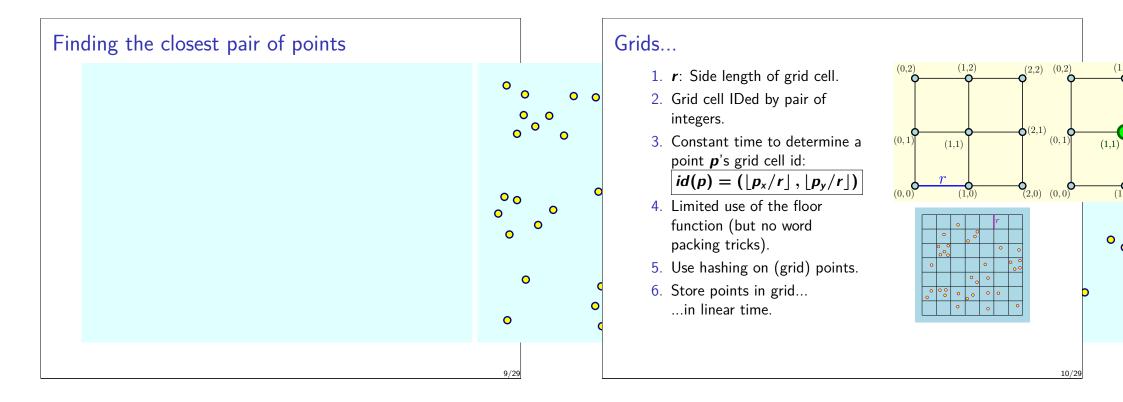
proof

- 1. \mathcal{E}_i : the event that $X_i = 1$, for $i = 1, \ldots, n$.
- 2. Claim: $\mathcal{E}_1, \ldots, \mathcal{E}_n$ are independent.
- 3. Generate permutation: Randomly pick a permutation of the given numbers, set first number to be π_n .
- 4. Next, pick a random permutation of the remaining numbers and set the first number as π_{n-1} in output permutation.
- 5. Repeat this process till we generate the whole permutation.

Part II

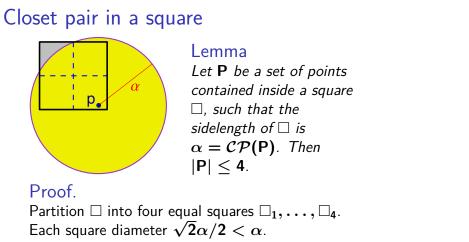
Closet pair in linear time

6/29



Storing point set in grid/hash-table... Hashing:

- 1. Non-empty grid cells
- 2. For non-empty grid cell: List of points in it.
- 3. For a grid cell: Its neighboring cells.



... contain at most one point of \mathbf{P} ; that is, the disk of radius α centered at a point $\mathbf{p} \in \mathbf{P}$ completely covers the subsquare containing it; see the figure on the right.

P can have four points if it is the four corners of \Box .

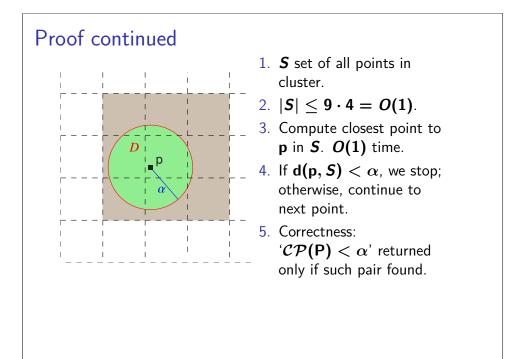
Verify closet pair

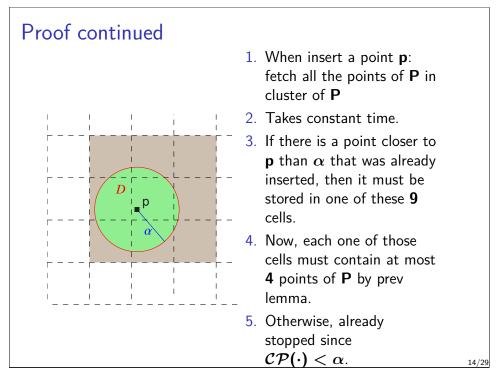
Lemma

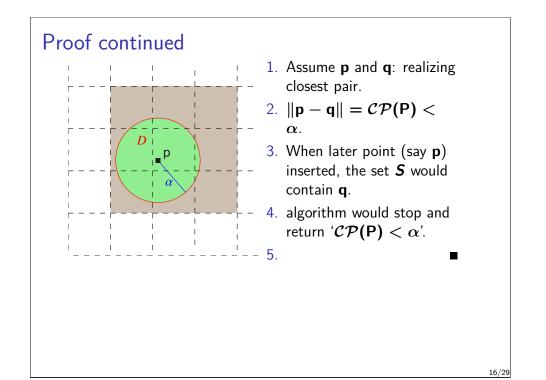
P: set of **n** points in the plane. α : distance. Verify in linear time whether $CP(P) < \alpha$, $CP(P) = \alpha$, or $CP(P) > \alpha$.

proof

Indeed, store the points of **P** in the grid G_{α} . For every non-empty grid cell, we maintain a linked list of the points inside it. Thus, adding a new point **p** takes constant time. Specifically, compute id(p), check if id(p) already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store **p** in it. If a linked list already exists for id(p), just add **p** to it. This takes O(n) time overall. Now, if any grid cell in $G_{\alpha}(P)$ contains more than, say, 4 points of **P**, then it must be that the $C\mathcal{P}(P) < \alpha$, by previous lemma.







13/29

New algorithm

- 1. Pick a random permutation of the points of $\ensuremath{\textbf{P}}.$
- 2. $\langle \mathbf{p}_1, \ldots, \mathbf{p}_n \rangle$ be this permutation.
- 3. $\alpha_2 = \|\mathbf{p}_1 \mathbf{p}_2\|.$
- 4. Insert points into the closet-pair distance verifying data-structure.
- 5. α_i : the closest pair distance in the set $\mathbf{P}_i = \{\mathbf{p}_1, \dots, \mathbf{p}_i\}$, for $i = 2, \dots, n$.

6. *i*th iteration:

- 6.1 if $\alpha_i = \alpha_{i-1}$. insertion takes constant time.
- 6.2 If $\alpha_i < \alpha_{i-1}$ then: know new closest pair distance α_i .
- 6.3 rebuild the grid, and reinsert the *i* points of P_i from scratch into the grid G_{α_i} . Takes O(i) time.
- 7. Returns the number α_n and points realizing it.

17/29

19/29

Proof continued...

- 1. If one critical point, then $\Pr[X_i = 1] = 1/i$.
- 2. Assume two critical points and let \mathbf{p}, \mathbf{q} be this unique pair of points of \mathbf{P}_i realizing $\mathcal{CP}(\mathbf{P}_i)$.
- 3. $\alpha_i < \alpha_{i-1} \iff \mathbf{p} \text{ or } \mathbf{q} \text{ is } \mathbf{p}_i$.
- 4. $\Pr[X_i = 1] = 2/i$.
- 5. Cannot be more than two critical points.
- 6. Linearity of expectations: $\mathbf{E}[t] = \mathbf{E}\left[\sum_{i=3}^{n} X_{i}\right] = \sum_{i=3}^{n} \mathbf{E}[X_{i}] \le \sum_{i=3}^{n} 2/i = O(\log n).$
- 7.

Weak analysis...

Lemma

Let **t** be the number of different values in the sequence $\alpha_2, \alpha_3, \ldots, \alpha_n$. Then $\mathbf{E}[t] = O(\log n)$. As such, in expectation, the above algorithm rebuilds the grid $O(\log n)$ times.

proof

1. $X_i = 1 \iff \alpha_i < \alpha_{i-1}$. 2. $E[X_i] = Pr[X_i = 1]$ and $t = \sum_{i=3}^n X_i$. 3. $Pr[X_i = 1] = Pr[\alpha_i < \alpha_{i-1}]$. 4. Backward analysis. Fix P_i . 5. $q \in P_i$ is *critical* if $C\mathcal{P}(P_i \setminus \{q\}) > C\mathcal{P}(P_i)$. 6. No critical points, then $\alpha_{i-1} = \alpha_i$ and then $Pr[X_i = 1] = 0$.

18/29

20/29

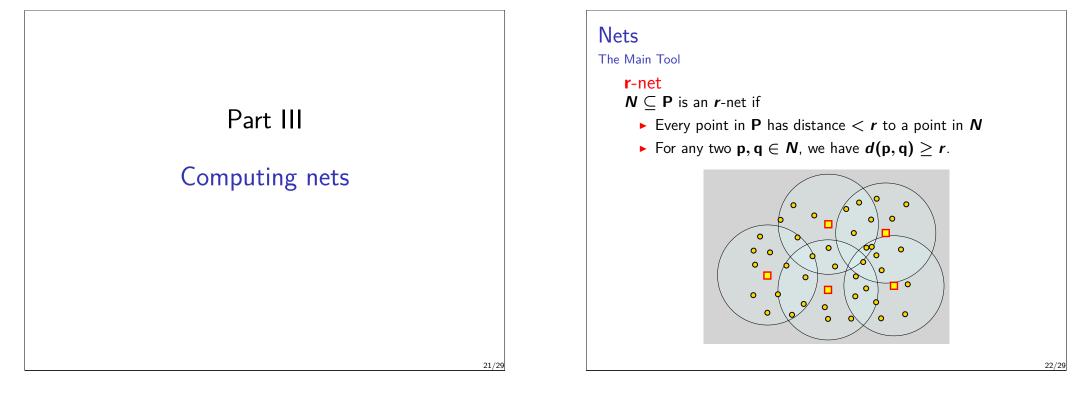
Expected linear time analysis...

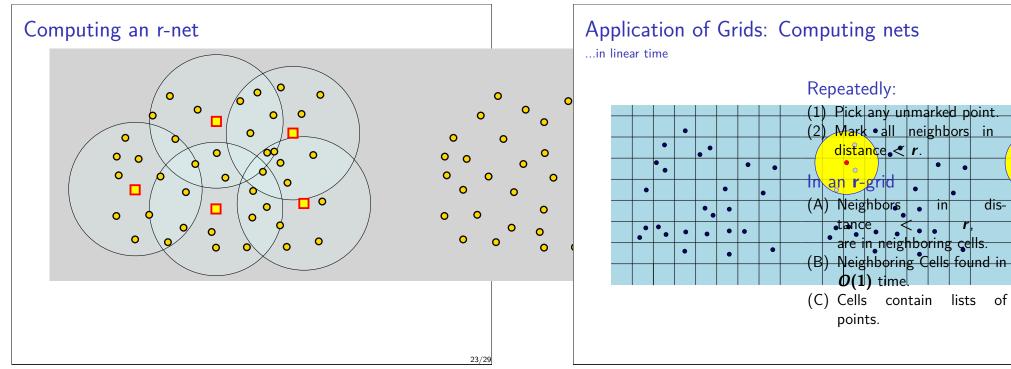
Theorem

P: set of **n** points in the plane. Compute the closest pair of **P** in expected linear time.

Proof.

- 1. $X_i = 1 \iff \alpha_i \neq \alpha_{i-1}$.
- 2. Running time is proportional to
- $R = 1 + \sum_{i=3}^{n} (1 + X_i \cdot i).$ 3. $E[R] = E[1 + \sum_{i=3}^{n} (1 + X_i \cdot i)] \le n + \sum_{i=3}^{n} E[X_i] \cdot i \le n$
- $n + \sum_{i=3}^{n} i \cdot \Pr[X_i = 1] \le n + \sum_{i=3}^{n} i \cdot \frac{2}{i} \le 3n, \text{ by}$ linearity of expectation and since
- $\mathsf{E}[X_i] = \mathsf{Pr}[X_i = 1] \le 2/i.$
- 4. Expected running time of the algorithm is O(E[R]) = O(n).





24/29

• •

•

•

•

• in

•

•

dis-

lists of