
CS 573: Algorithms, Fall 2014

Backward analysis
Lecture 27
December 4, 2014

1/29

Part I

Backward analysis

2/29

Backward analysis
1. P = 〈p1, . . . , pn〉 be a random ordering of n distinct

numbers.
2. Xi = 1 ⇐⇒ pi is smaller than p1, . . . , pi−1.

3. Lemma
Pr[Xi = 1] = 1/i .

3/29

Proof...
Lemma
Pr[Xi = 1] = 1/i .
Proof.

1. Fix elements appearing in set(Pi) = {s1, . . . , si}.
2. Pr

[
pi = min(Pi)

∣∣∣ set(Pi)
]

= 1/i .

Pr
[
pi = min(Pi)

]
=

∑
S⊆P,|S|=i

Pr
[
pi = min(Pi)

∣∣∣ set(Pi) = S
]

Pr[S]

=
∑

S⊆P,|S|=i

1
i

Pr[S] =
1
i
.

4/29

of times...
...the minimum changes in a random permutation...

Theorem
In a random permutation of n distinct numbers, the minimum
of the prefix changes in expectation ln n + 1 times.

Proof.
1. Y = ∑n

i=1 Xi .
2. E[Y] = E

[∑n
i=1 Xi

]
= ∑n

i=1 E[Xi] = ∑n
i=1 1/i

≤ ln n + 1.

5/29

High probability
Lemma
Π = π1 . . . πn: random permutation of {1, . . . , n}. Xi :
indicator variable if πi is the smallest number in
{π1, . . . , πi}, for ∀i .
Then Z = ∑n

i=1 Xi = O(log n)., w.h.p. (i.e.,
≥ 1− 1/nO(1)).
proof

1. Ei : the event that Xi = 1, for i = 1, . . . , n.
2. Claim: E1, . . . ,En are independent.
3. Generate permutation: Randomly pick a permutation of

the given numbers, set first number to be πn.
4. Next, pick a random permutation of the remaining

numbers and set the first number as πn−1 in output
permutation.

5. Repeat this process till we generate the whole
permutation.

6/29

Proof continued...
1. For any indices 1 ≤ i1 < i2 < . . . < ik ≤ n, and

observe that Pr
[
Eik

∣∣∣Ei1 ∩ . . . ∩ Eik−1

]
= Pr

[
Eik

]
,

2. ..because Ei1 determined after all Ei2, . . . ,Ek .
3. By induction: Pr

[
Ei1 ∩ Ei2 ∩ . . . ∩ Eik

]
=

Pr
[
Ei1

∣∣∣Ei2 ∩ . . . ∩ Eik

]
Pr[Ei2 ∩ . . . ∩ Eik]=

Pr
[
Ei1

]
Pr
[
Ei2∩Ei3∩. . .∩Eik

]
= ∏k

j=1 Pr
[
Eij

]
= ∏k

j=1
1
ij
.

4. =⇒ variables X1, . . . ,Xn are independent.
5. Result readily follows from Chernoff’s inequality.

7/29

Part II

Closet pair in linear time

8/29

Finding the closest pair of points

9/29

Grids...
1. r : Side length of grid cell.
2. Grid cell IDed by pair of

integers.
3. Constant time to determine a

point p’s grid cell id:
id(p) = (bpx/rc , bpy/rc)

4. Limited use of the floor
function (but no word
packing tricks).

5. Use hashing on (grid) points.
6. Store points in grid...

...in linear time.

(0, 1)
(2,1)

(0,2) (1,2) (2,2)

(1,0) (2,0)(0, 0)

r

(1,1) (0, 1)
(2,1)

(0,2) (1,2) (2,2)

(1,0) (2,0)(0, 0)

(1,1)

(1,1)

(1,1)

r

(px, py)

(⌊
px
r

⌋
,
⌊
py
r

⌋)

r

10/29

Storing point set in grid/hash-table...
Hashing:

1. Non-empty grid cells
2. For non-empty grid cell:

List of points in it.
3. For a grid cell:

Its neighboring cells.

r

11/29

Closet pair in a square

α
p

Lemma
Let P be a set of points
contained inside a square
�, such that the
sidelength of � is
α = CP(P). Then
|P| ≤ 4.

Proof.
Partition � into four equal squares �1, . . . ,�4.
Each square diameter

√
2α/2 < α.

... contain at most one point of P; that is, the disk of radius
α centered at a point p ∈ P completely covers the subsquare
containing it; see the figure on the right.
P can have four points if it is the four corners of �.

12/29

Verify closet pair
Lemma
P: set of n points in the plane. α: distance. Verify in linear
time whether CP(P) < α, CP(P) = α, or CP(P) > α.

proof
Indeed, store the points of P in the grid Gα. For every
non-empty grid cell, we maintain a linked list of the points
inside it. Thus, adding a new point p takes constant time.
Specifically, compute id(p), check if id(p) already appears in
the hash table, if not, create a new linked list for the cell with
this ID number, and store p in it. If a linked list already exists
for id(p), just add p to it. This takes O(n) time overall.
Now, if any grid cell in Gα(P) contains more than, say, 4
points of P, then it must be that the CP(P) < α, by
previous lemma.

13/29

Proof continued

D
p

α

1. When insert a point p:
fetch all the points of P in
cluster of P

2. Takes constant time.
3. If there is a point closer to

p than α that was already
inserted, then it must be
stored in one of these 9
cells.

4. Now, each one of those
cells must contain at most
4 points of P by prev
lemma.

5. Otherwise, already
stopped since
CP(·) < α. 14/29

Proof continued

D
p

α

1. S set of all points in
cluster.

2. |S| ≤ 9 · 4 = O(1).
3. Compute closest point to

p in S. O(1) time.
4. If d(p, S) < α, we stop;

otherwise, continue to
next point.

5. Correctness:
‘CP(P) < α’ returned
only if such pair found.

15/29

Proof continued

D
p

α

1. Assume p and q: realizing
closest pair.

2. ‖p− q‖ = CP(P) <
α.

3. When later point (say p)
inserted, the set S would
contain q.

4. algorithm would stop and
return ‘CP(P) < α’.

5.

16/29

New algorithm
1. Pick a random permutation of the points of P.
2. 〈p1, . . . , pn〉 be this permutation.
3. α2 = ‖p1 − p2‖.
4. Insert points into the closet-pair distance verifying

data-structure.
5. αi : the closest pair distance in the set

Pi = {p1, . . . , pi}, for i = 2, . . . , n.
6. i th iteration:

6.1 if αi = αi−1. insertion takes constant time.
6.2 If αi < αi−1 then: know new closest pair distance αi .
6.3 rebuild the grid, and reinsert the i points of Pi from

scratch into the grid Gαi . Takes O(i) time.
7. Returns the number αn and points realizing it.

17/29

Weak analysis...
Lemma
Let t be the number of different values in the sequence
α2, α3, . . . , αn. Then E[t] = O(log n). As such, in
expectation, the above algorithm rebuilds the grid O(log n)
times.
proof

1. Xi = 1 ⇐⇒ αi < αi−1.
2. E[Xi] = Pr[Xi = 1] and t = ∑n

i=3 Xi .
3. Pr[Xi = 1] = Pr[αi < αi−1].
4. Backward analysis. Fix Pi .
5. q ∈ Pi is critical if CP(Pi \ {q}) > CP(Pi).
6. No critical points, then αi−1 = αi and then

Pr[Xi = 1] = 0.
18/29

Proof continued...
1. If one critical point, then Pr[Xi = 1] = 1/i .
2. Assume two critical points and let p, q be this unique pair

of points of Pi realizing CP(Pi).
3. αi < αi−1 ⇐⇒ p or q is pi .
4. Pr[Xi = 1] = 2/i .
5. Cannot be more than two critical points.
6. Linearity of expectations: E[t] = E

[∑n
i=3 Xi

]
=∑n

i=3 E[Xi] ≤
∑n

i=3 2/i = O(log n).
7.

19/29

Expected linear time analysis...
Theorem
P: set of n points in the plane. Compute the closest pair of P
in expected linear time.
Proof.

1. Xi = 1 ⇐⇒ αi 6= αi−1.
2. Running time is proportional to

R = 1 + ∑n
i=3(1 + Xi · i).

3. E[R] = E
[
1 + ∑n

i=3(1 + Xi · i)
]
≤ n +∑n

i=3 E[Xi] · i ≤
n + ∑n

i=3 i · Pr[Xi = 1]≤ n + ∑n
i=3 i · 2

i≤ 3n, by
linearity of expectation and since
E[Xi] = Pr[Xi = 1] ≤ 2/i .

4. Expected running time of the algorithm is
O(E[R]) = O(n).

20/29

Part III

Computing nets

21/29

Nets
The Main Tool

r-net
N ⊆ P is an r -net if
I Every point in P has distance < r to a point in N
I For any two p, q ∈ N, we have d(p, q) ≥ r .

22/29

Computing an r-net

r

23/29

Application of Grids: Computing nets
...in linear time

Repeatedly:
(1) Pick any unmarked point.
(2) Mark all neighbors in

distance < r .

In an r-grid
(A) Neighbors in dis-

tance < r ,
are in neighboring cells.

(B) Neighboring Cells found in
O(1) time.

(C) Cells contain lists of
points.

24/29

	Backward analysis
	Backward analysis
	# of times...

	Closet pair in linear time
	Computing nets
	Nets
	Application of Grids: Computing nets

