CS 573: Algorithms, Fall 2014

Approximate Max Cut

Lecture 24
November 19, 2014

Fall 2014 1/31

Part |

Normal distribution

Fall 2014 2/31

Normal distribution — proof
T = (/::_oo exp(—f) dm)

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
T2 = (/ﬂ:_oo exp(—f) dm)

2 2
:/ exp Tty dzdy
(m,y) ER? 2

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
- :(

2 2
:/ exp _rty dzdy Change of vars:
(z,y)€ER? 2

T = T COSC
Y = 7 Sin ¢

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

T = T COSC
Y = 7 Sin ¢

(z,y)ER? p(

= [e(-7)

- 2
) dzdy Change of vars:

8rcosa Or cos a
det(O)‘drda

dr sin Or sin «
da

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

==
= T COS C

m2 2
= / exp (_—I—y) dzdy Change of vars: v .
2,y) ER2 2 Yy = rsinc

Orcosa Orcosa
det(or O)‘drda

dr sin Or sin «
or da

cosa —rsino
det| . drda
sina 7rcoso

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

22 2 _
:/ exp —ﬂ dzdy Change of vars: T = Teost
z,y) ER? 2

Y = 7 Sin ¢

Orcosa Orcosa
det(or O)‘drda

dr sin Or sin «
or da

cosa —rsino
det

sina 7rcosa

>‘drda

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

T = T COSC
Y = 7 Sin ¢

m2 2
/ exp<—+y> dxzdy Change of vars:
way)€R2 2

2 0o ,,,2 87‘ cosa Orcos a
= / exp() det(O)‘drda
a=0 Jr=0 2

dr sin Or sin «

or O
cosa —rsino
det () ‘ drda

siha 7rcosa

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

T = T COSC
Y = 7 Sin ¢

m2 2
/ exp<—+y> dxzdy Change of vars:
way)€R2 2

2 0o ,,,2 87‘ cosa Orcos a
= / exp() det(O)‘drda
a=0 Jr=0 2

dr sin Or sin «

or O
cosa —rsino
det () ‘ drda

siha 7rcosa

Sariel (UIUC) CS573 3 Fall 2014 3 /31

Normal distribution — proof
2

T = T COSC
Y = 7 Sin ¢

m2 2
/ exp<—+y> dxzdy Change of vars:
way)€R2 2

2 0o ,,,2 87‘ cosa Orcos a
= / exp() det(O)‘drda
a=0 Jr=0 2

dr sin Or sin «

or O
cosa —rsino
det () ‘ drda

siha 7rcosa

Sariel (UIUC) CS573 3 Fall 2014 3 /31

One dimensional normal distribution

@ A random variable X has normal distribution if
Pr[X = z| = exp(—m2/2)

0.4 ,‘ ‘ ‘ ‘ ‘ ‘ exp(‘—z”?) ‘ L
=5

-4 -3 -2 -1 0 1 2 3 4

Sariel (UIUC) CS573 4 Fall 2014 4 /31

One dimensional normal distribution

@ A random variable X has normal distribution if
Pr[X = z| = ﬁexp(—mz/Z).
Q@ X ~ N(0,1).

0.4 ,‘ ‘ ‘ ‘ ‘ ‘ exp(‘—z”?) ‘ L
=5

-4 -3 -2 -1 0 1 2 3 4

Sariel (UIUC) CS573 4 Fall 2014 4 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if

Pr[X =z| = ﬁexp(—mz/Z).

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X = z] = L exp(—z2/2).

Var
@ X ~ N(0,1).

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X =z| = ﬁexp(—mz/Z).

@ X ~ N(0,1).

Q@ x=(x,...,x,) has d-dimensional normal distributed (i.e.,
v~ N"(0,1)

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X =z| = ﬁexp(—mz/Z).

@ X ~ N(0,1).

Q@ x=(x,...,x,) has d-dimensional normal distributed (i.e.,
v~ N"(0,1)
< UVigeoe.yUp v N(O,l)

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X =z| = ﬁexp(—mz/Z).

@ X ~ N(0,1).

Q@ x=(x,...,x,) has d-dimensional normal distributed (i.e.,
v~ N"(0,1)
<= v1,...,0, ~ N(0,1)

@ v € R”, such that ||v]| = 1.

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X =z| = ﬁexp(—mz/Z).

@ X ~ N(0,1).

Q@ x=(x,...,x,) has d-dimensional normal distributed (i.e.,
v~ N"(0,1)
<= v1,...,0, ~ N(0,1)

@ v € R”, such that ||v]| = 1.

Q@ Letx ~ N™(0,1). Then z = (v, x) has...

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Multidimensional normal distribution

@ A random variable X has normal distribution if
Pr[X =z| = ﬁexp(—mz/Z).

@ X ~ N(0,1).

Q@ x=(x,...,x,) has d-dimensional normal distributed (i.e.,
v~ N"(0,1)
<= v1,...,0, ~ N(0,1)

@ v € R”, such that ||v]| = 1.

Q@ Letx ~ N™(0,1). Then z = (v, x) has...

@ ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 /31

Part 1l

Approximate Max Cut

Fall 2014 6 /31

The movie so far...

Summary: It sucks.

© Seen: Examples of using rounding techniques for approximation.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

© Seen: Examples of using rounding techniques for approximation.

@ So far: Relaxed optimization problem is LP.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

© Seen: Examples of using rounding techniques for approximation.
@ So far: Relaxed optimization problem is LP.
© But... We know how to solve convex programming.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

© Seen: Examples of using rounding techniques for approximation.
@ So far: Relaxed optimization problem is LP.

© But... We know how to solve convex programming.

© Convex programming > LP.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

© Seen: Examples of using rounding techniques for approximation.
@ So far: Relaxed optimization problem is LP.

© But... We know how to solve convex programming.

© Convex programming > LP.

© Convex programming can be solved in polynomial time.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.

@ Today's lecture:

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.

@ Today's lecture:
0@ Revisit MAX CUT.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.

@ Today's lecture:

@ Revisit MAX CUT.
@ Show how to relax it into semi-definite programming problem.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.
@ Today's lecture:

@ Revisit MAX CUT.
@ Show how to relax it into semi-definite programming problem.
© Solve relaxation.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

The movie so far...

Summary: It sucks.

Seen: Examples of using rounding techniques for approximation.
So far: Relaxed optimization problem is LP.

But... We know how to solve convex programming.

Convex programming > LP.

Convex programming can be solved in polynomial time.

Solving convex programming is outside scope: assume doable in
polynomial time.

@ Today's lecture:

® Revisit MAX CUT.

@ Show how to relax it into semi-definite programming problem.
@ Solve relaxation.

@ Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.
@ Vij € E: nonnegative weights w;;.

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.

@ Vij € E: nonnegative weights w;;.

@ MAX CUT (maximum cut problem): Compute set S C V
maximizing weight of edges in cut (S, ?).

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.

@ Vij € E: nonnegative weights w;;.

@ MAX CUT (maximum cut problem): Compute set S C V
maximizing weight of edges in cut (S, ?).

Q0 j¢E — w;=0.

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.

@ Vij € E: nonnegative weights w;;.

@ MAX CUT (maximum cut problem): Compute set S C V
maximizing weight of edges in cut (S, ?).

Q J¢E — w;=0.

© weight of cut: w(S,?) =) wy

i€S, jes

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

Q@ G = (V,E): undirected graph.
@ Vij € E: nonnegative weights w;;.
@ MAX CUT (maximum cut problem): Compute set S C V
maximizing weight of edges in cut (S, ?).
Q J¢E — w;=0.
© weight of cut: w(S,?) =) wy
i€$, jes
@ Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 /31

Max cut as integer program

because what can go wrong?

© Vertices: V. ={1,...,n}.

Sariel (UIUC) CS573 9 Fall 2014 9 /31

Max cut as integer program

because what can go wrong?

© Vertices: V. ={1,...,n}.
@ w;;: non-negative weights on edges.

Sariel (UIUC) CS573) Fall 2014 9 /31

Max cut as integer program

because what can go wrong?

© Vertices: V. ={1,...,n}.
@ w;;: non-negative weights on edges.
@ max cut w(S, S) is computed by the integer quadratic

program:
1
(Q) max > wi(1— yiy)
2 i<j
subject to: y; € {—1,1} Vi e V.

Sariel (UIUC) CS573) Fall 2014 9 /31

Max cut as integer program

because what can go wrong?

© Vertices: V. ={1,...,n}.
@ w;;: non-negative weights on edges.
@ max cut w(S, S) is computed by the integer quadratic

program:
1
(Q) max > wi(1— yiy)
2 i<j
subject to: y; € {—1,1} Vi e V.

Q Set: Sz{i‘yizl}.

Sariel (UIUC) CS573) Fall 2014 9 /31

Max cut as integer program

because what can go wrong?

© Vertices: V. ={1,...,n}.
@ w;;: non-negative weights on edges.
@ max cut w(S, S) is computed by the integer quadratic

program:
1
(Q) max > wi(1— yiy)
2 i<j
subject to: y; € {—1,1} Vi e V.

@ Set: §={i|y=1}
0 w(5,5) = 1wyl — viyy).

Sariel (UIUC) CS573) Fall 2014

9/31

Relaxing —1,1...

Because 1 and —1 are just vectors.

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ Solving quadratic integer programming is of course NP-Hard.
@ Want a relaxation...

© 1 and —1 are just roots of unity.

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ Solving quadratic integer programming is of course NP-Hard.
© Want a relaxation...

© 1 and —1 are just roots of unity.

© FFT: All roots of unity are a circle.

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ Solving quadratic integer programming is of course NP-Hard.
© Want a relaxation...

© 1 and —1 are just roots of unity.

© FFT: All roots of unity are a circle.

© In higher dimensions: All unit vectors are points on unit sphere.

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ Solving quadratic integer programming is of course NP-Hard.
© Want a relaxation...

© 1 and —1 are just roots of unity.

© FFT: All roots of unity are a circle.

© In higher dimensions: All unit vectors are points on unit sphere.
@ y; are just unit vectors.

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ Solving quadratic integer programming is of course NP-Hard.
© Want a relaxation...

© 1 and —1 are just roots of unity.

© FFT: All roots of unity are a circle.

© In higher dimensions: All unit vectors are points on unit sphere.
@ y; are just unit vectors.

@ y; *x y; is replaced by dot product (y;, y;).

Sariel (UIUC) CS573 10 Fall 2014 10 /31

Quick reminder about dot products

Everybody knows, thats how it goes

QO x=(x1y..,24), Yy = (Y15+++5Ya).

Sariel (UIUC) CS573 11 Fall 2014 11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

QO x=(x1y..,24), Yy = (Y15+++5Ya).
Q (x,y) =X1, ziy:.

Sariel (UIUC) CS573 11 Fall 2014 11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

QO x=(x1y..,24), Yy = (Y15+++5Ya).
Q (x,y) =X1, ziy:.
@ For a vector v € R%: ||v]|* = (v, v).

Sariel (UIUC) CS573 11

Fall 2014

11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

Q@ x=(T1,---,%a), Yy = (Y15 --5Ya)
g <X7 Y> = Zgzl T;Y;.
@ For a vector v € R%: ||v|]* = (v, v).

Q (x,y) = ||Ix]|| ||y]| cos c.

a: Angle between x and y.
y

Sariel (UIUC) CS573 11

Fall 2014

11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

Q@ x=(T1,---,%a), Yy = (Y15 --5Ya)
g <X7 Y> = Zgzl T;Y;.
@ For a vector v € R%: ||v|]* = (v, v).

Q (x,y) = ||Ix]|| ||y]| cos c.

a: Angle between x and y.
y

Q xly: (x,y) =0.

Sariel (UIUC) CS573 11 Fall 2014 11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

Q@ x=(T1,---,%a), Yy = (Y15 --5Ya)
g <X7 Y> = Zgzl T;Y;.
@ For a vector v € R%: ||v|]* = (v, v).

Q (x,y) = ||Ix]|| ||y]| cos c.

a: Angle between x and y.
y

Q xly: (x,y) =0.
@ x=yand |x]| = |lyll =1 (x,y) = 1.

Sariel (UIUC) CS573 11

Fall 2014

11 /31

Quick reminder about dot products

Everybody knows, thats how it goes

Q@ x=(T1,---,%a), Yy = (Y15 --5Ya)
e <X7 Y> = Zgzl T;Y;.
@ For a vector v € R%: ||v|]* = (v, v).

Q (x,y) = ||Ix]|| ||y]| cos c.
a: Angle between x and y.

y
o X
Q xly: (x,y) =0.
QO x=yand x| =[lyll =1: (x,y) = 1.
@ x=—-yand ||x]| = |lyl| =1: x,y) =—1.

Sariel (UIUC) CS573 11 Fall 2014 11 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

Sariel (UIUC) CS573 12 Fall 2014 12 /31

Relaxing —1,1...

Because 1 and —1 are just vectors.

@ max cut w(S,?) as integer quadratic program:

1
(Q) max o> wi(l - yiy)
1<j
subject to: y; € {—1,1} Vi € V.

© Relaxed semi-definite programming version:

1
(P) max vy =_ > wy (1— (vi,v5))
205
subject to: v; € S(™ VieV,

S n dimensional unit sphere in R*+1.

Sariel (UIUC) CS573 12 Fall 2014 12 /31

Discussion...

© semi-definite programming: special case of convex programming.

Sariel (UIUC) CS573 13 Fall 2014 13 /31

Discussion...

© semi-definite programming: special case of convex programming.

@ Can be solved in polynomial time.

Sariel (UIUC) CS573 13 Fall 2014 13 /31

Discussion...

© semi-definite programming: special case of convex programming.
@ Can be solved in polynomial time.

@ Solve within a factor of (1 4 €) of optimal, for any € > 0, in
polynomial time.

Sariel (UIUC) CS573 13 Fall 2014 13 /31

Discussion...

© semi-definite programming: special case of convex programming.
@ Can be solved in polynomial time.

@ Solve within a factor of (1 4 €) of optimal, for any € > 0, in
polynomial time.

@ Intuition: vectors of one side of the cut, and vertices on the
other sides, would have faraway vectors.

Sariel (UIUC) CS573 13 Fall 2014 13 /31

The approximation algorithm

For max cut

© Given instance, compute Semi-definite program (P).

Sariel (UIUC) CS573 14 Fall 2014 14 /31

The approximation algorithm

For max cut

© Given instance, compute Semi-definite program (P).

@ Compute optimal solution for (P).

Sariel (UIUC) CS573 14 Fall 2014 14 /31

The approximation algorithm

For max cut

© Given instance, compute Semi-definite program (P).
@ Compute optimal solution for (P).
@ 7 Pick random vector on the unit sphere S(™.

Sariel (UIUC) CS573 14 Fall 2014 14 /31

The approximation algorithm

For max cut

© Given instance, compute Semi-definite program (P).
@ Compute optimal solution for (P).

@ 7 Pick random vector on the unit sphere S(™.

@ induces hyperplane h = (F,x) =0

Sariel (UIUC) CS573 14 Fall 2014 14 /31

The approximation algorithm

For max cut

© Given instance, compute Semi-definite program (P).
@ Compute optimal solution for (P).
@ 7 Pick random vector on the unit sphere S(™.

@ induces hyperplane h = (F,x) =0
© assign all vectors on one side of h to S, and rest to S.

S:{’Ui

(viy ¥) > 0}.

Sariel (UIUC) CS573 14 Fall 2014 14 /31

Intuition: with good probability, vectors in the solution of (P) that
have large angle between them would be separated by cut.

Pr[sign((’vi, 7)) # sign({(v;, 7))} — arccos((’uz, vj))

=l_\~l

V; Uj

Sariel (UIUC) CS573 15 Fall 2014 15 /31

Proof...

@ Think v;, v; and 7 as being in the plane.

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

Proof...

@ Think v;, v; and 7 as being in the plane.
© ... reasonable assumption!

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

@ Think v;, v; and 7 as being in the plane.
© ... reasonable assumption!
@ g: plane spanned by v; and v;.

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

@ Think v;, v; and 7 as being in the plane.
© ... reasonable assumption!
@ g: plane spanned by v; and v;.
@ Only care about signs of (v;, 7) and (v;, ¥)

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

@ Think v;, v; and 7 as being in the plane.
© ... reasonable assumption!
@ g: plane spanned by v; and v;.
@ Only care about signs of (v;, 7) and (v;, ¥)
© can be decided by projecting 7 on g... and normalizing it to
have length 1.

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

@ Think v;, v; and 7 as being in the plane.
© ... reasonable assumption!
@ g: plane spanned by v; and v;.
@ Only care about signs of (v;, 7) and (v;, ¥)
© can be decided by projecting 7 on g... and normalizing it to
have length 1.
© Sphere is symmetric == sampling 7 from S(™ projecting it
down to g, and then normalizing it
= choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31

Proof via figure...

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U;

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U;

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U;

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U; T 11

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U; T 11

Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U; T 11

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U;

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U; T
I Uj

Sariel (UIUC) CS573 17 Fall 2014 17 /31

Proof via figure...

U; T
I Uj

T = arccos(('vl—, 'vj))

Sariel (UIUC) CS573 17 Fall 2014 17 /31

@ Think v;, v; and 7 as being in the plane.

@ sign({(v;, 7)) # sign({vj, 7)) happens only if 7 falls in the
double wedge formed by the lines perpendicular to v; and v;.

© angle of double wedge = angle T between v; and v;.

Q wv; and v; are unit vectors: (v;, v;) = cos(T).

T = Zvivj.
@ Thus,
. B . . 2T
Pr[sign((v:, 7)) # sign((v;, 7))] =
27
= — - arccos({(v;, v;)) ,
T

as claimed. m

Sariel (UIUC) CS573 18 Fall 2014 18 /31

Theorem

Let W be the random variable which is the weight of the cut
generated by the algorithm. We have

E[W] = ;Zw,—j arccos((vl-, 'vj)> .

i<j

Sariel (UIUC) CS573 19 Fall 2014 19 /31

©Q X;: indicator variable =1 <= edge 4j is in the cut.
Q@ E[Xj]

Sariel (UIUC) CS573 20 Fall 2014 20 /31

©Q X;: indicator variable =1 <= edge 4j is in the cut.
@ E[Xy] = Prlsign((vi, 7)) # sign((v;, 7))]

Sariel (UIUC) CS573 20 Fall 2014 20 /31

©Q X;: indicator variable =1 <= edge 4j is in the cut.
@ E[Xy] = Prlsign((vi, 7)) # sign((v;, 7))]
= %arccos((vi, vj)>, by lemma.

Sariel (UIUC) CS573 20 Fall 2014 20 /31

©Q X;: indicator variable =1 <= edge 4j is in the cut.
@ E[Xy] = Prlsign((vi, 7)) # sign((v;, 7))]
= %arccos((vi, vj)>, by lemma.

Q@ W =3, ;w; Xy, and by linearity of expectation...

Sariel (UIUC) CS573 20 Fall 2014 20 /31

©Q X;: indicator variable =1 <= edge 4j is in the cut.
@ E[Xy] = Prlsign((vi, 7)) # sign((v;, 7))]
= %arccos((vi, vj)>, by lemma.
Q@ W =3, ;w; Xy, and by linearity of expectation...
1
E[W] =Y w;E[Xy] = - > wy arccos((vi, vj>> .

i<j i<j

Sariel (UIUC) CS573 20 Fall 2014 20 /31

For —1 < y < 1, we have
2 P

min ——.
0<y<m 1 — cos(?))

7

o =

arccos(y)

1
> - 5(1 — y), where

Sariel (UIUC) CS573

21

2.5

Fall 2014

21 /31

Lemma restated + proof

Lemma

arccos(y) 1
For—1<y<1, wehave ——= > « - 5(1 — y), where
™
.2)
a= mn ————,
0<¢<m 7 1 — cos(v))
Proof.

Q@ y = cos(¢).

Sariel (UIUC) [GSLYA] 22 Fall 2014 22 /31

Lemma restated + proof

Lemma

arccos(y) 1
For—1<y<1, wehave ——= > « - 5(1 — y), where
™
.2)

a= mn ————,

0<¢<m 7 1 — cos(v))
Proof.

Q y = cos(v).

@ Inequality becomes: £ > i (1 — cos).

Sariel (UIUC) CS573 22 Fall 2014 22 /31

Lemma restated + proof

Lemma

arccos(y) 1
For—1<y<1, wehave ——= > « - 5(1 — y), where
™
.2)

a= mn ————,

0<¢<m 7 1 — cos(v))
Proof.

Q y = cos(v).

@ Inequality becomes: % > a%(l — cos v). Reorganizing,

Sariel (UIUC) CS573 22 Fall 2014 22 /31

Lemma restated + proof

Lemma

arccos(y) 1
For—1<y<1, wehave ——= > « - 5(1 — y), where
™
.2)

a= mn ————,

0<¢<m 7 1 — cos(v))
Proof.

Q y = cos(v).

@ Inequality becomes: % > a%(l — cos v). Reorganizing,
Q — 2_ ¢ >

7 l—cosyp —

Sariel (UIUC) CS573 22 Fall 2014 22 /31

Lemma restated + proof

Lemma

arccos(y) 1
For—1<y<1, wehave ——= > « - 5(1 — y), where
™
.2)

a= mn ————,

0<¢<m 7 1 — cos(v))
Proof.

Q y = cos(v).

Q Inequality becomeS' i > a%(l — cos v). Reorganizing,

s 2
e Tl— csw/:

> «a, holds by definition of a.

Sariel (UIUC) CS573 22 Fall 2014 22 /31

Lemma

a > 0.87856. l

Using simple calculus, one can see that a achieves its value for
v = 2.331122..., the nonzero root of cos ¢ + ¥ siny =1. [

Sariel (UIUC) CS573 23 Fall 2014 23 /31

The above algorithm computes in expectation a cut with total weight
a - Opt > 0.878560pt, where Opt is the weight of the maximal
cut.

Proof.

Consider the optimal solution to (P), and lets its value be
~ 2 Opt. By lemma:

E[W] = 1 > wy; arccos({v;, v;))

i<j

1
> Zwija§(1 —(vi,v5)) =ay > a-Opt. =
i<j

L]

Sariel (UIUC) [GSLYA] 24 Fall 2014 24 /31

SDP: Semi-definite programming

Q z; = (v, vy).

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (v, vy).

Q@ M: n X n matrix with x; as entries.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v5).
Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v5).
Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v)).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.
OM=V"V.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v)).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.
O M=VTvV.

Q Vv e R™: v Mv=vTAT Av = (Av)T(Av) > 0.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (v, v;).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.
O M=VTvV.

Q Vv e R™: v Mv=vTAT Av = (Av)T(Av) > 0.
@ M is positive semidefinite (PSD).

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v)).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.

O M=VTvV.

Q Vv e R™: v Mv=vTAT Av = (Av)T(Av) > 0.
@ M is positive semidefinite (PSD).

@ Fact: Any PSD matrix P can be written as P = BT B.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v)).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.

O M=VTvV.

Q Vv e R™: v Mv=vTAT Av = (Av)T(Av) > 0.
@ M is positive semidefinite (PSD).

@ Fact: Any PSD matrix P can be written as P = BT B.

© Furthermore, given such a matrix P of size n X n, we can
compute B such that P = BT B in O(n?) time.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q z; = (vi, v)).

Q@ M: n X n matrix with x; as entries.
Qz;=1fori=1,...,n.

© V. matrix having vectors vy,. .., v, as its columns.

O M=VTvV.

Q Vv e R™: v Mv=vTAT Av = (Av)T(Av) > 0.
@ M is positive semidefinite (PSD).

@ Fact: Any PSD matrix P can be written as P = BT B.

© Furthermore, given such a matrix P of size n X n, we can
compute B such that P = BT B in O(n?) time.

@ Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1
@ —> B has columns which are unit vectors.

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1
©@ — B has columns which are unit vectors.
@ If solve SDP (P), get back semi-definite matrix...

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1
©@ — B has columns which are unit vectors.
@ If solve SDP (P), get back semi-definite matrix...

@ ... recover the vectors realizing the solution (i.e., compute B)

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1

©@ — B has columns which are unit vectors.

@ If solve SDP (P), get back semi-definite matrix...

@ ... recover the vectors realizing the solution (i.e., compute B)
© Now, do the rounding.

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Q@ If PSD P = BT B has a diagonal of 1

@ —> B has columns which are unit vectors.

@ If solve SDP (P), get back semi-definite matrix...

@ ... recover the vectors realizing the solution (i.e., compute B)
© Now, do the rounding.

@ SDP (P) can be restated as

1
(SD) max — Z wzj(l — mz’j)
255
subject to: T; =1 fori=1,...,n
(ccij> is a PSD matrix.
i=1,...,n,j=1,...,n

Sariel (UIUC) CS573 26 Fall 2014 26 /31

SDP: Semi-definite programming

Sariel (UIUC) CS573 27 Fall 2014 27 /31

SDP: Semi-definite programming

Q@ SDPis
1
(SD) max -~ > wy(1 — xy)
235
subject to: T; =1 fori=1,...,n

(a:ij> is a PSD matrix.
i=1,...,n,j=1,...,n

Sariel (UIUC) CS573 27 Fall 2014 27 /31

SDP: Semi-definite programming

Q@ SDPis
1
(SD) max -~ > wy(1 — xy)
235
subject to: T; =1 fori=1,...,n

(a:ij> is a PSD matrix.
i=1,...,n,j=1,...,n

@ find optimal value of a linear function...

Sariel (UIUC) CS573 27 Fall 2014 27 /31

SDP: Semi-definite programming

Q@ SDPis
1
(SD) max -~ > wy(1 — xy)
235
subject to: T; =1 fori=1,...,n

(a:ij> is a PSD matrix.
i=1,...,n,j=1,...,n

@ find optimal value of a linear function...
@ ... over a set which is the intersection of:

Sariel (UIUC) CS573 27 Fall 2014 27 /31

SDP: Semi-definite programming

Q@ SDPis
1
(SD) max -~ > wy(1 — xy)
235
subject to: T; =1 fori=1,...,n

(a:ij> is a PSD matrix.
i=1,...,n,j=1,...,n

@ find optimal value of a linear function...
@ ... over a set which is the intersection of:
@ linear constraints, and

Sariel (UIUC) CS573 27 Fall 2014 27 /31

SDP: Semi-definite programming

Q@ SDPis
1
(SD) max -~ > wy(1 — xy)
235
subject to: T; =1 fori=1,...,n

(a:ij> is a PSD matrix.
i=1,...,n,j=1,...,n

@ find optimal value of a linear function...
@ ... over a set which is the intersection of:

@ linear constraints, and
@ set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 /31

Lemma

Let U be the set of n X n positive semidefinite matrices. The set U
is convex.

Proof.

Consider A, B € U, and observe that for any ¢t € [0, 1], and vector
v € R", we have:

vT<tA + (1 - t)B) v = 'vT(tA'v + @1 - t)Bv)
= tvTAv+ (1 — t)v"'Bv > 040> 0,

since A and B are positive semidefinite. O]

4

Sariel (UIUC) [GSLYA] 28 Fall 2014 28 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.

@ zT Az = 1: the set of vectors solve this equation is an ellipsoid.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.
@ zT Az = 1: the set of vectors solve this equation is an ellipsoid.
© Eigenvalues of a PSD are all non-negative real numbers.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.
@ zT Az = 1: the set of vectors solve this equation is an ellipsoid.
© Eigenvalues of a PSD are all non-negative real numbers.

@ Given matrix: can in polynomial time decide if it is PSD.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.

@ zT Az = 1: the set of vectors solve this equation is an ellipsoid.
© Eigenvalues of a PSD are all non-negative real numbers.

@ Given matrix: can in polynomial time decide if it is PSD.

© ... by computing the eigenvalues of the matrix.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

©@ PSD matrices corresponds to ellipsoids.

@ zT Az = 1: the set of vectors solve this equation is an ellipsoid.
© Eigenvalues of a PSD are all non-negative real numbers.

@ Given matrix: can in polynomial time decide if it is PSD.

© ... by computing the eigenvalues of the matrix.

©@ — SDP: optimize a linear function over a convex domain.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

PSD matrices corresponds to ellipsoids.

xT Az = 1: the set of vectors solve this equation is an ellipsoid.
Eigenvalues of a PSD are all non-negative real numbers.

Given matrix: can in polynomial time decide if it is PSD.

... by computing the eigenvalues of the matrix.

—> SDP: optimize a linear function over a convex domain.

000000

SDP can be solved using interior point method, or the ellipsoid
method.

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

PSD matrices corresponds to ellipsoids.

xT Az = 1: the set of vectors solve this equation is an ellipsoid.
Eigenvalues of a PSD are all non-negative real numbers.

Given matrix: can in polynomial time decide if it is PSD.

... by computing the eigenvalues of the matrix.

—> SDP: optimize a linear function over a convex domain.

SDP can be solved using interior point method, or the ellipsoid
method.

See Boyd and Vandenberghe [2004], Grotschel et al.
[1993] for more details.

© 00000O0CO0C

Sariel (UIUC) CS573 29 Fall 2014 29 /31

More on positive semidefinite matrices

PSD matrices corresponds to ellipsoids.

xT Az = 1: the set of vectors solve this equation is an ellipsoid.
Eigenvalues of a PSD are all non-negative real numbers.

Given matrix: can in polynomial time decide if it is PSD.

... by computing the eigenvalues of the matrix.

—> SDP: optimize a linear function over a convex domain.

SDP can be solved using interior point method, or the ellipsoid
method.

See Boyd and Vandenberghe [2004], Grotschel et al.
[1993] for more details.

Membership oracle: ability to decide in polynomial time, given a
solution, whether its feasible or not.

© ©06 ©00000O0COC

Sariel (UIUC) CS573 29 Fall 2014 29 /31

Bibliographical Notes

© Approx. algorithm presented by Goemans and Williamson
Goemans and Williamson [1995].

@ Hastad [2001] showed that MAX CUT can not be
approximated within a factor of 16 /17 =~ 0.941176.

@ Khot et al. [2004] showed a hardness result that matches the
constant of Goemans and Williamson (i.e., one can not
approximate it better than «, unless P = NP).

Sariel (UIUC) CS573 30 Fall 2014 30 /31

Bibliographical Notes

@ Relies on two conjectures: “Unique Games Conjecture” and
“Majority is Stablest”.

@ “Majority is Stablest” conjecture was proved by Mossel et al.
[2005].

© Not clear if the “Unique Games Conjecture” is true, see the
discussion in Khot et al. [2004].

@ Goemans and Williamson work spurred wide research on using
SDP for approximation algorithms.

Sariel (UIUC) CS573 31 Fall 2014 31 /31

Sariel (UIUC) CS573 32 Fall 2014 32 /31

Sariel (UIUC) CS573 EE Fall 2014 33 /31

Sariel (UIUC) CS573 34 Fall 2014 34 /31

Sariel (UIUC) CS573 35 Fall 2014 35 /31

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge,
2004. URL http://www.stanford.edu/~boyd/cvxbook/.

M. X. Goemans and D. P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. Assoc. Comput. Mach., 42(6):
1115-1145, November 1995.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and
Combinatorics. Springer-Verlag, Berlin Heidelberg, 2nd edition,
1993.

J. Hastad. Some optimal inapproximability results. J. Assoc.
Comput. Mach., 48(4):798-859, 2001. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/502090.502098.

S. Khot, G. Kindler, E. Mossel, and R. O’'Donnell. Optimal
inapproximability results for max cut and other 2-variable csps. In
Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 146—-154, 2004. To appear in SICOMP.

Sariel (UIUC) CS573 35 Fall 2014 35 /31

http://www.stanford.edu/~boyd/cvxbook/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/

E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of
functions with low influences invariance and optimality. In Proc.
46th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
21-30, 2005.

Sariel (UIUC) [GSLYA] 35 Fall 2014 35 /31

	A randomized max-cut
	Normal distribution
	A quick review of Normal Distribution

	Approximate Max Cut
	Analysis
	Semi-definite programming
	Semi-definite programming, and why it can be solved efficiently
	Bibliographical Notes

