
CS 573: Algorithms, Fall 2014

Approximate Max Cut
Lecture 24
November 19, 2014

Sariel (UIUC) CS573 1 Fall 2014 1 / 31



Part I

Normal distribution

Sariel (UIUC) CS573 2 Fall 2014 2 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

)
r dr dα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

)
r dr dα

=
∫ 2π

α=0

[
− exp

(
−

r2

2

)]∞

r=0
dα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

)
r dr dα

=
∫ 2π

α=0

[
− exp

(
−

r2

2

)]∞

r=0
dα =

∫ 2π

α=0
1 dα

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



Normal distribution – proof

τ 2 =
(∫ ∞

x=−∞
exp

(
−

x2

2

)
dx
)2

=
∫

(x,y)∈R2
exp

(
−

x2 + y2

2

)
dxdy Change of vars: x = r cosα,

y = r sinα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(∂r cos α

∂r
∂r cos α
∂α

∂r sin α
∂r

∂r sin α
∂α

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

) ∣∣∣∣∣det
(

cosα −r sinα
sinα r cosα

)∣∣∣∣∣ dr dα

=
∫ 2π

α=0

∫ ∞

r=0
exp

(
−

r2

2

)
r dr dα

=
∫ 2π

α=0

[
− exp

(
−

r2

2

)]∞

r=0
dα =

∫ 2π

α=0
1 dα = 2π

Sariel (UIUC) CS573 3 Fall 2014 3 / 31



One dimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

exp(−x2/2)√
2π

Sariel (UIUC) CS573 4 Fall 2014 4 / 31



One dimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

exp(−x2/2)√
2π

Sariel (UIUC) CS573 4 Fall 2014 4 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!

Sariel (UIUC) CS573 5 Fall 2014 5 / 31



Part II

Approximate Max Cut

Sariel (UIUC) CS573 6 Fall 2014 6 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.

Sariel (UIUC) CS573 7 Fall 2014 7 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.

Sariel (UIUC) CS573 8 Fall 2014 8 / 31



Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).

Sariel (UIUC) CS573 9 Fall 2014 9 / 31



Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).

Sariel (UIUC) CS573 9 Fall 2014 9 / 31



Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).

Sariel (UIUC) CS573 9 Fall 2014 9 / 31



Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).

Sariel (UIUC) CS573 9 Fall 2014 9 / 31



Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).

Sariel (UIUC) CS573 9 Fall 2014 9 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.

Sariel (UIUC) CS573 10 Fall 2014 10 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

x

y

α

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

x

y

α

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

x

y

α

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

x

y

α

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.

Sariel (UIUC) CS573 11 Fall 2014 11 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 max cut w(S,S) as integer quadratic program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

2 Relaxed semi-definite programming version:

(P) max γ =
1
2
∑
i<j
ωij (1 − 〈vi, vj〉)

subject to: vi ∈ S(n) ∀i ∈ V ,

S(n): n dimensional unit sphere in Rn+1.
Sariel (UIUC) CS573 12 Fall 2014 12 / 31



Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 max cut w(S,S) as integer quadratic program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

2 Relaxed semi-definite programming version:

(P) max γ =
1
2
∑
i<j
ωij (1 − 〈vi, vj〉)

subject to: vi ∈ S(n) ∀i ∈ V ,

S(n): n dimensional unit sphere in Rn+1.
Sariel (UIUC) CS573 12 Fall 2014 12 / 31



Discussion...

1 semi-definite programming: special case of convex programming.
2 Can be solved in polynomial time.
3 Solve within a factor of (1 + ε) of optimal, for any ε > 0, in

polynomial time.
4 Intuition: vectors of one side of the cut, and vertices on the

other sides, would have faraway vectors.

Sariel (UIUC) CS573 13 Fall 2014 13 / 31



Discussion...

1 semi-definite programming: special case of convex programming.
2 Can be solved in polynomial time.
3 Solve within a factor of (1 + ε) of optimal, for any ε > 0, in

polynomial time.
4 Intuition: vectors of one side of the cut, and vertices on the

other sides, would have faraway vectors.

Sariel (UIUC) CS573 13 Fall 2014 13 / 31



Discussion...

1 semi-definite programming: special case of convex programming.
2 Can be solved in polynomial time.
3 Solve within a factor of (1 + ε) of optimal, for any ε > 0, in

polynomial time.
4 Intuition: vectors of one side of the cut, and vertices on the

other sides, would have faraway vectors.

Sariel (UIUC) CS573 13 Fall 2014 13 / 31



Discussion...

1 semi-definite programming: special case of convex programming.
2 Can be solved in polynomial time.
3 Solve within a factor of (1 + ε) of optimal, for any ε > 0, in

polynomial time.
4 Intuition: vectors of one side of the cut, and vertices on the

other sides, would have faraway vectors.

Sariel (UIUC) CS573 13 Fall 2014 13 / 31



The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.

Sariel (UIUC) CS573 14 Fall 2014 14 / 31



The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.

Sariel (UIUC) CS573 14 Fall 2014 14 / 31



The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.

Sariel (UIUC) CS573 14 Fall 2014 14 / 31



The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.

Sariel (UIUC) CS573 14 Fall 2014 14 / 31



The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.

Sariel (UIUC) CS573 14 Fall 2014 14 / 31



Analysis...

Intuition: with good probability, vectors in the solution of (P) that
have large angle between them would be separated by cut.

Lemma
Pr
[
sign

(
〈vi,~r 〉

)
6= sign(〈vj,~r 〉)

]
=

1
π

arccos
(
〈vi, vj〉

)
=
τ

π
.

Sariel (UIUC) CS573 15 Fall 2014 15 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g

Sariel (UIUC) CS573 16 Fall 2014 16 / 31



Proof via figure...

vj

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj+

−

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...
vi

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...
vi

+

−

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi ++

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi ++

−−

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi ++

−−

+−
−+

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi

+−
−+
~r

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi

+−
−+

τ

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof via figure...

vj

vi

+−
−+

τ

τ = arccos
(
〈vi, vj〉

)

Sariel (UIUC) CS573 17 Fall 2014 17 / 31



Proof...

1 Think vi, vj and ~r as being in the plane.
2 sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉) happens only if ~r falls in the

double wedge formed by the lines perpendicular to vi and vj .
3 angle of double wedge = angle τ between vi and vj .
4 vi and vj are unit vectors: 〈vi, vj〉 = cos(τ ).
τ = ∠vivj .

5 Thus,

Pr
[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
=

2τ
2π

=
1
π

· arccos(〈vi, vj〉) ,

as claimed.
Sariel (UIUC) CS573 18 Fall 2014 18 / 31



Theorem

Theorem
Let W be the random variable which is the weight of the cut
generated by the algorithm. We have

E
[
W
]

=
1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 19 Fall 2014 19 / 31



Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 20 Fall 2014 20 / 31



Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 20 Fall 2014 20 / 31



Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 20 Fall 2014 20 / 31



Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 20 Fall 2014 20 / 31



Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.

Sariel (UIUC) CS573 20 Fall 2014 20 / 31



Lemma

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
ψ

2
ψ · ψ

1−cos(ψ)

Sariel (UIUC) CS573 21 Fall 2014 21 / 31



Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.

Sariel (UIUC) CS573 22 Fall 2014 22 / 31



Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.

Sariel (UIUC) CS573 22 Fall 2014 22 / 31



Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.

Sariel (UIUC) CS573 22 Fall 2014 22 / 31



Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.

Sariel (UIUC) CS573 22 Fall 2014 22 / 31



Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.

Sariel (UIUC) CS573 22 Fall 2014 22 / 31



Lemma

Lemma
α > 0.87856.

Proof.
Using simple calculus, one can see that α achieves its value for
ψ = 2.331122..., the nonzero root of cosψ + ψ sinψ = 1.

Sariel (UIUC) CS573 23 Fall 2014 23 / 31



Result

Theorem
The above algorithm computes in expectation a cut with total weight
α · Opt ≥ 0.87856Opt, where Opt is the weight of the maximal
cut.

Proof.
Consider the optimal solution to (P), and lets its value be
γ ≥ Opt. By lemma:

E[W ] =
1
π

∑
i<j
ωij arccos(〈vi, vj〉)

≥
∑
i<j
ωijα

1
2

(1 − 〈vi, vj〉) = αγ ≥ α · Opt.

Sariel (UIUC) CS573 24 Fall 2014 24 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.

Sariel (UIUC) CS573 25 Fall 2014 25 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.

Sariel (UIUC) CS573 27 Fall 2014 27 / 31



Lemma

Lemma
Let U be the set of n × n positive semidefinite matrices. The set U
is convex.

Proof.
Consider A,B ∈ U , and observe that for any t ∈ [0, 1], and vector
v ∈ Rn , we have:

vT
(

tA + (1 − t)B
)

v = vT
(

tAv + (1 − t)Bv
)

= tvTAv + (1 − t)vTBv ≥ 0 + 0 ≥ 0,

since A and B are positive semidefinite.

Sariel (UIUC) CS573 28 Fall 2014 28 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.

Sariel (UIUC) CS573 29 Fall 2014 29 / 31



Bibliographical Notes

1 Approx. algorithm presented by Goemans and Williamson
Goemans and Williamson [1995].

2 Håstad [2001] showed that MAX CUT can not be
approximated within a factor of 16/17 ≈ 0.941176.

3 Khot et al. [2004] showed a hardness result that matches the
constant of Goemans and Williamson (i.e., one can not
approximate it better than α, unless P = NP).

Sariel (UIUC) CS573 30 Fall 2014 30 / 31



Bibliographical Notes

1 Relies on two conjectures: “Unique Games Conjecture” and
“Majority is Stablest”.

2 “Majority is Stablest” conjecture was proved by Mossel et al.
[2005].

3 Not clear if the “Unique Games Conjecture” is true, see the
discussion in Khot et al. [2004].

4 Goemans and Williamson work spurred wide research on using
SDP for approximation algorithms.

Sariel (UIUC) CS573 31 Fall 2014 31 / 31



Notes

Sariel (UIUC) CS573 32 Fall 2014 32 / 31



Notes

Sariel (UIUC) CS573 33 Fall 2014 33 / 31



Notes

Sariel (UIUC) CS573 34 Fall 2014 34 / 31



Notes

Sariel (UIUC) CS573 35 Fall 2014 35 / 31



S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge,
2004. URL http://www.stanford.edu/˜boyd/cvxbook/.

M. X. Goemans and D. P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. Assoc. Comput. Mach., 42(6):
1115–1145, November 1995.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and
Combinatorics. Springer-Verlag, Berlin Heidelberg, 2nd edition,
1993.

J. Håstad. Some optimal inapproximability results. J. Assoc.
Comput. Mach., 48(4):798–859, 2001. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/502090.502098.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal
inapproximability results for max cut and other 2-variable csps. In
Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 146–154, 2004. To appear in SICOMP.

Sariel (UIUC) CS573 35 Fall 2014 35 / 31

http://www.stanford.edu/~boyd/cvxbook/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/


E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of
functions with low influences invariance and optimality. In Proc.
46th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages
21–30, 2005.

Sariel (UIUC) CS573 35 Fall 2014 35 / 31


	A randomized max-cut
	Normal distribution
	A quick review of Normal Distribution

	Approximate Max Cut
	Analysis
	Semi-definite programming
	Semi-definite programming, and why it can be solved efficiently
	Bibliographical Notes


