CS 573: Algorithms, Fall 2014

Approximate Max Cut

Lecture 24 November 19, 2014

Part I

Normal distribution

$$au^2 = \left(\int_{x=-\infty}^\infty \exp\!\left(-rac{x^2}{2}
ight)\mathrm{d}x
ight)^2$$

$$egin{split} & au^2 = \left(\int_{x=-\infty}^\infty \exp\left(-rac{x^2}{2}
ight)\mathrm{d}x
ight)^2 \ &= \int_{(x,y)\in\mathbb{R}^2}\exp\left(-rac{x^2+y^2}{2}
ight)\mathrm{d}x\mathrm{d}y \end{split}$$

$$egin{aligned} & au^2 = \left(\int_{x=-\infty}^\infty \exp\left(-rac{x^2}{2}
ight)\mathrm{d}x
ight)^2 \ & = \int_{(x,y)\in\mathbb{R}^2} \exp\left(-rac{x^2+y^2}{2}
ight)\mathrm{d}x\mathrm{d}y \ & ext{ Change of vars: } rac{x=r\cos a}{y=r\sin a} \end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x = r\cos\alpha \\ y = r\sin\alpha \\ y = r\sin\alpha \\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x=r\cos\alpha\\ y=r\sin\alpha\\ y=r\sin\alpha\\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha\\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x = r\cos\alpha \\ y = r\sin\alpha \\ y = r\sin\alpha \\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial \alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) r \,\mathrm{d}r \,\mathrm{d}\alpha \end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x=r\cos\alpha\\ y=r\sin\alpha\\ y=r\sin\alpha\\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha\\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha\\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) r \,\mathrm{d}r \,\mathrm{d}\alpha\\ &= \int_{\alpha=0}^{2\pi} \left[-\exp\left(-\frac{r^{2}}{2}\right) \right]_{r=0}^{\infty} \mathrm{d}\alpha\end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x = r\cos\alpha \\ y = r\sin\alpha \\ y = r\sin\alpha \\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} - \frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) r \,\mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \left[-\exp\left(-\frac{r^{2}}{2}\right) \right]_{r=0}^{\infty} \mathrm{d}\alpha = \int_{\alpha=0}^{2\pi} 1 \,\mathrm{d}\alpha \end{aligned}$$

$$\begin{aligned} \tau^{2} &= \left(\int_{x=-\infty}^{\infty} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{d}x \right)^{2} \\ &= \int_{(x,y)\in\mathbb{R}^{2}} \exp\left(-\frac{x^{2}+y^{2}}{2}\right) \mathrm{d}x \mathrm{d}y \quad \text{Change of vars:} \begin{array}{l} x=r\cos\alpha \\ y=r\sin\alpha \\ y=r\sin\alpha \\ y=r\sin\alpha \\ \end{array} \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\frac{\partial r\cos\alpha}{\partial r}}{\frac{\partial r\sin\alpha}{\partial r}} -\frac{\frac{\partial r\cos\alpha}{\partial \alpha}}{\frac{\partial r\sin\alpha}{\partial \alpha}}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) \left| \det\left(\frac{\cos\alpha - r\sin\alpha}{\sin\alpha - r\cos\alpha}\right) \right| \mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \int_{r=0}^{\infty} \exp\left(-\frac{r^{2}}{2}\right) r \,\mathrm{d}r \,\mathrm{d}\alpha \\ &= \int_{\alpha=0}^{2\pi} \left[-\exp\left(-\frac{r^{2}}{2}\right) \right]_{r=0}^{\infty} \mathrm{d}\alpha = \int_{\alpha=0}^{2\pi} 1 \,\mathrm{d}\alpha = 2\pi \end{aligned}$$

One dimensional normal distribution

A random variable X has normal distribution if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$ **2** $X \sim N(0,1)$.

One dimensional normal distribution

A random variable X has *normal distribution* if Pr[X = x] = ¹/_{√2π} exp(-x²/2).
X ~ N(0, 1).

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1)$.
- (a) $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0,1)$
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- ${f igstyle }$ Let ${f x}\sim N^n(0,1).$ Then $z=\langle {f v},{f x}
 angle$ has...

…normal distribution!

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- (a) $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0,1)$
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- ${f igstyle }$ Let ${f x}\sim N^n(0,1).$ Then $z=\langle {f v},{f x}
 angle$ has...

…normal distribution!

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- Solution $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$)
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- ${f igstyle }$ Let ${f x}\sim N^n(0,1).$ Then $z=\langle {f v},{f x}
 angle$ has...
- Interpretended in the second secon

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- Solution $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$)
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- ${f igside {f b}}$ Let ${f x}\sim N^n(0,1).$ Then $z=\langle {f v},{f x}
 angle$ has...

Interpretended in the second secon

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- Solution $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$)
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- ${f igside {f b}}$ Let ${f x}\sim N^n(0,1).$ Then $z=\langle {f v},{f x}
 angle$ has...

…normal distribution!

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- Solution $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$)
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- **(**) Let $\mathbf{x} \sim N^n(0, 1)$. Then $z = \langle \mathbf{v}, \mathbf{x} \rangle$ has...

…normal distribution!

- A random variable X has *normal distribution* if $\Pr[X = x] = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2).$
- **2** $X \sim N(0,1).$
- Solution $\mathbf{x} = (x_1, \ldots, x_n)$ has d-dimensional normal distributed (i.e., $\mathbf{v} \sim N^n(0, 1)$)
 - $\iff v_1,\ldots,v_n\sim N(0,1)$
- $\mathbf{v} \in \mathbb{R}^n$, such that $\|\mathbf{v}\| = 1$.
- **5** Let $\mathbf{x} \sim N^n(0,1)$. Then $z = \langle \mathbf{v}, \mathbf{x}
 angle$ has...
- …normal distribution!

Part II

Approximate Max Cut

Seen: Examples of using rounding techniques for approximation.

- @ So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming $\gg \mathrm{LP}.$
- Onvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Onvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - O Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT
 - Observe the second s
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - Observation Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

- Seen: Examples of using rounding techniques for approximation.
- So far: Relaxed optimization problem is LP.
- But... We know how to solve convex programming.
- Convex programming \gg LP.
- Sonvex programming can be solved in polynomial time.
- Solving convex programming is outside scope: assume doable in polynomial time.
- Today's lecture:
 - Revisit MAX CUT.
 - **②** Show how to relax it into semi-definite programming problem.
 - Solve relaxation.
 - Show how to round the relaxed problem.

Since this is a theory class, we will define our problem.

• G = (V, E): undirected graph.

- If $\forall ij \in E$: nonnegative weights ω_{ij} .
- **(a)** MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- $ij \notin \mathsf{E} \implies \omega_{ij} = O.$
- (a) weight of cut: $w(S,\overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant.

Since this is a theory class, we will define our problem.

- G = (V, E): undirected graph.
- **2** $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- MAX CUT (*maximum cut problem*): Compute set S ⊆ V maximizing weight of edges in cut (S, S).
- $ij \notin \mathsf{E} \implies \omega_{ij} = O.$
- (a) weight of cut: $w(S,\overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant.

Since this is a theory class, we will define our problem.

- G = (V, E): undirected graph.
- **2** $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- $ij \notin \mathsf{E} \implies \omega_{ij} = O_{\cdot}$
- **(a)** weight of cut: $w(S, \overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant

Since this is a theory class, we will define our problem.

- G = (V, E): undirected graph.
- **2** $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- $ij \notin \mathsf{E} \implies \omega_{ij} = O.$
- **(a)** weight of cut: $w(S, \overline{S}) = \sum_{i \in S, \ i \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant
Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

- G = (V, E): undirected graph.
- **2** $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- $ij \notin \mathsf{E} \implies \omega_{ij} = O$.
- **3** weight of cut: $w(S, \overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant

Problem Statement: MAX CUT

Since this is a theory class, we will define our problem.

- G = (V, E): undirected graph.
- **2** $\forall ij \in \mathsf{E}$: nonnegative weights ω_{ij} .
- MAX CUT (*maximum cut problem*): Compute set $S \subseteq V$ maximizing weight of edges in cut (S, \overline{S}) .
- $ij \notin \mathsf{E} \implies \omega_{ij} = O$.
- **3** weight of cut: $w(S, \overline{S}) = \sum_{i \in S, \ j \in \overline{S}} \omega_{ij}$.
- Known: problem is NP-Complete.
 Hard to approximate within a certain constant.

Max cut as integer program

because what can go wrong?

• Vertices:
$$V = \{1, ..., n\}$$
.

(a) ω_{ij} : non-negative weights on edges.

(a) max cut $w(S, \overline{S})$ is computed by the integer quadratic program:

$$egin{array}{lll} {({ extsf{Q}})} & \max & rac{1}{2}\sum\limits_{i < j} {{\omega _{ij}}(1 - {y_i}{y_j})} \ & extsf{subject to:} & y_i \in \{ - 1, 1 \} & orall i \in { extsf{V}}. \end{array}$$

Set: S = {i | y_i = 1}.
$$\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j).$$

• Vertices:
$$\mathbf{V} = \{1, \ldots, n\}$$
.

- 2 ω_{ij} : non-negative weights on edges.
- 3 max cut $w(S, \overline{S})$ is computed by the integer quadratic program:

• Set:
$$S = \{i \mid y_i = 1\}.$$

• $\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j).$

• Vertices:
$$V = \{1, \ldots, n\}$$
.

- 2 ω_{ij} : non-negative weights on edges.
- In the integer quadratic program:
 In the integer quadratic program:

$$egin{array}{lll} \mathbb{Q} & \max & rac{1}{2}\sum\limits_{i < j} \omega_{ij}(1-y_iy_j) \ & ext{subject to:} & y_i \in \{-1,1\} & orall i \in \mathsf{V}. \end{array}$$

• Set:
$$S = \{i \mid y_i = 1\}.$$

• $\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j).$

• Vertices:
$$V = \{1, \ldots, n\}$$
.

- 2 ω_{ij} : non-negative weights on edges.
- In the integer quadratic program:
 In the integer quadratic program:

• Set:
$$S = \{i \mid y_i = 1\}.$$

• $\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij} (1 - y_i y_j).$

• Vertices:
$$V = \{1, \ldots, n\}$$
.

- 2 ω_{ij} : non-negative weights on edges.
- In the integer quadratic max cut $w(S, \overline{S})$ is computed by the integer quadratic program:

$$egin{array}{lll} ({ extsf{Q}}) & \max & rac{1}{2}\sum\limits_{i < j} \omega_{ij}(1-y_iy_j) \ & extsf{subject to:} & y_i \in \{-1,1\} & orall i \in { extsf{V}}. \end{array}$$

• Set:
$$S = \{i \mid y_i = 1\}.$$

• $\omega(S, \overline{S}) = \frac{1}{2} \sum_{i < j} \omega_{ij}(1 - y_i y_j).$

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- \bigcirc 1 and -1 are just roots of unity.
- FFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.
- $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- ${f 0}$ 1 and ${f -1}$ are just roots of unity.
- IFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- 0 1 and -1 are just roots of unity.
- FFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.
- $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- \bigcirc 1 and -1 are just roots of unity.
- FFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.
- $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- **(a)** 1 and -1 are just roots of unity.
- FFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.
- $\bigcirc y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

- Solving quadratic integer programming is of course NP-Hard.
- Want a relaxation...
- **(a)** 1 and -1 are just roots of unity.
- FFT: All roots of unity are a circle.
- In higher dimensions: All unit vectors are points on unit sphere.
- y_i are just unit vectors.
- $y_i * y_j$ is replaced by dot product $\langle y_i, y_j \rangle$.

1 $\mathbf{x} = (x_1, \ldots, x_d), \, \mathbf{y} = (y_1, \ldots, y_d).$

- For a vector $\mathbf{v} \in \mathbb{R}^d$: $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$.
- $\begin{array}{l} \textcircled{\begin{subarray}{lll} \langle \mathbf{x},\mathbf{y}\rangle = \|\mathbf{x}\| \, \|\mathbf{y}\| \cos \alpha. \\ \alpha: \mbox{ Angle between } \mathbf{x} \mbox{ and } \mathbf{y}. \end{array}$
- $\textbf{0} \ \mathbf{x} = \mathbf{y} \text{ and } \|\mathbf{x}\| = \|\mathbf{y}\| = 1 \text{: } \langle \mathbf{x}, \mathbf{y} \rangle = 1.$
- **()** $\mathbf{x} = -\mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = -1$.

- $\mathbf{x} = (x_1, \dots, x_d), \mathbf{y} = (y_1, \dots, y_d).$ • $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^d x_i y_i.$
- For a vector $\mathbf{v} \in \mathbb{R}^d$: $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$.
- $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \alpha$. α : Angle between \mathbf{x} and \mathbf{y} .
- $\textbf{0} \ \mathbf{x} = \mathbf{y} \text{ and } \|\mathbf{x}\| = \|\mathbf{y}\| = \mathbf{1}: \ \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{1}.$
- **()** $\mathbf{x} = -\mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = -1$.

- $\mathbf{x} = (x_1, \ldots, x_d), \mathbf{y} = (y_1, \ldots, y_d).$
- $(\mathbf{x},\mathbf{y}) = \sum_{i=1}^d x_i y_i.$
- Solve For a vector $\mathbf{v} \in \mathbb{R}^d$: $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$.
- $\begin{array}{l} \textcircled{\begin{subarray}{lll} \langle \mathbf{x},\mathbf{y}\rangle = \|\mathbf{x}\| \, \|\mathbf{y}\| \cos \alpha. \\ \alpha: \mbox{ Angle between } \mathbf{x} \mbox{ and } \mathbf{y}. \end{array}$
- $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$.
- **()** $\mathbf{x} = -\mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = -1$.

• $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$.

 $\textbf{0} \ \mathbf{x} = -\mathbf{y} \text{ and } \|\mathbf{x}\| = \|\mathbf{y}\| = 1 \text{: } \langle \mathbf{x}, \mathbf{y} \rangle = -1.$

• $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$.

 $\textbf{0} \ \mathbf{x} = -\mathbf{y} \text{ and } \|\mathbf{x}\| = \|\mathbf{y}\| = 1 \text{: } \langle \mathbf{x}, \mathbf{y} \rangle = -1.$

• $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$.

() $\mathbf{x} = -\mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = -1$.

• $\mathbf{x} = \mathbf{y}$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$: $\langle \mathbf{x}, \mathbf{y} \rangle = 1$.

Relaxing -1, 1...Because 1 and -1 are just vectors.

In the max cut $w(S,\overline{S})$ as integer quadratic program:

Q)
$$\max \quad rac{1}{2}\sum\limits_{i < j} \omega_{ij}(1-y_iy_j)$$

subject to: $y_i \in \{-1,1\}$ $orall i \in \mathsf{V}.$

② Relaxed semi-definite programming version:

$$\begin{array}{ll} (\mathsf{P}) & \max & \gamma = & \displaystyle \frac{1}{2} \sum_{i < j} \omega_{ij} \; (1 - \langle v_i, v_j \rangle) \\ \\ & \text{subject to:} & v_i \in \mathbb{S}^{(n)} & \forall i \in V, \end{array}$$

 $\mathbb{S}^{(n)}$: old n dimensional unit sphere in \mathbb{R}^{n+1} .

Sariel (UIUC)

Relaxing -1, 1...Because 1 and -1 are just vectors.

• max cut $w(S, \overline{S})$ as integer quadratic program:

$$egin{array}{lll} ({ extsf{Q}}) & \max & rac{1}{2}\sum\limits_{i < j} \omega_{ij}(1-y_iy_j) \ & extsf{subject to:} & y_i \in \{-1,1\} & orall i \in { extsf{V}}. \end{array}$$

2 Relaxed semi-definite programming version:

$$egin{array}{lll} (\mathsf{P}) & \max & \gamma = & rac{1}{2} \sum\limits_{i < j} \omega_{ij} \; (1 - \langle v_i, v_j
angle) \ & ext{subject to:} & v_i \in \mathbb{S}^{(n)} & orall i \in V, \end{array}$$

 $\mathbb{S}^{(n)}$: *n* dimensional unit sphere in \mathbb{R}^{n+1} .

Sariel (UIUC)

semi-definite programming: special case of convex programming.

- ② Can be solved in polynomial time.
- (a) Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

- **1** semi-definite programming: special case of convex programming.
- ② Can be solved in polynomial time.
- (a) Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

- semi-definite programming: special case of convex programming.
- ② Can be solved in polynomial time.
- Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

- semi-definite programming: special case of convex programming.
- ② Can be solved in polynomial time.
- Solve within a factor of $(1 + \varepsilon)$ of optimal, for any $\varepsilon > 0$, in polynomial time.
- Intuition: vectors of one side of the cut, and vertices on the other sides, would have faraway vectors.

Given instance, compute Semi-definite program (P).

- Output optimal solution for (P).
- ③ $ec{r}$: Pick random vector on the unit sphere $\mathbb{S}^{(n)}.$
- 0 induces hyperplane $m{h} \equiv \langle ec{r}, {
 m x}
 angle = m{0}$
- i) assign all vectors on one side of h to S, and rest to \overline{S} .

$$S = ig\{ v_i \ ig| raket{v_i, ec{r}} \geq 0 ig\}$$
 .

- I Given instance, compute Semi-definite program (P).
- 2 Compute optimal solution for (P).
- (i) \vec{r} : Pick random vector on the unit sphere $\mathbb{S}^{(n)}$.
- ④ induces hyperplane $m{h}$ \equiv $\langle ec{r}, {
 m x}
 angle = {
 m 0}$
- ${igle 0}$ assign all vectors on one side of h to S, and rest to $\overline{S}.$

$$S = ig\{ v_i \ ig| raket{v_i, ec{r}} \geq 0 ig\}$$
 .

- Given instance, compute Semi-definite program (P).
- **2** Compute optimal solution for (P).
- **③** \vec{r} : Pick random vector on the unit sphere $\mathbb{S}^{(n)}$.
- ④ induces hyperplane $m{h}$ \equiv $\langle ec{m{r}}, {
 m x}
 angle = 0$
- 0 assign all vectors on one side of h to S, and rest to $\overline{S}.$

$$S = ig\{ v_i \ ig| raket{v_i, ec{r}} \geq 0 ig\}$$
 .

- Given instance, compute Semi-definite program (P).
- **2** Compute optimal solution for (P).
- **③** \vec{r} : Pick random vector on the unit sphere $\mathbb{S}^{(n)}$.
- ${f 0}$ induces hyperplane h \equiv $\langle ec r,{
 m x}
 angle = {f 0}$
- ${f 0}$ assign all vectors on one side of h to S, and rest to $\overline{S}.$

$$S = ig\{ v_i \ ig| raket{v_i, ec{r}} \geq 0 ig\}$$
 .

- O Given instance, compute Semi-definite program (P).
- **2** Compute optimal solution for (P).
- **③** \vec{r} : Pick random vector on the unit sphere $\mathbb{S}^{(n)}$.
- ${f 0}$ induces hyperplane h \equiv $\langle ec r,{
 m x}
 angle =0$
- **(**) assign all vectors on one side of h to S, and rest to \overline{S} .

$$S = ig\{ v_i \ ig| ig\langle v_i, ec r ig
angle \ge 0 ig\}$$
 .

Analysis...

Intuition: with good probability, vectors in the solution of (P) that have large angle between them would be separated by cut.

Lemma

$$\Pr\Bigl[ext{sign}\Bigl(ig\langle v_i,ec{r}\,ig
angle\Bigr)
eq ext{sign}(ig\langle v_j,ec{r}\,ig
angle)\Bigr] = rac{1}{\pi} rccosig(ig\langle v_i,v_j
angle\Bigr) = rac{ au}{\pi}.$$

Sariel (UIUC)

• Think v_i, v_j and \vec{r} as being in the plane.

- 2 ... reasonable assumption!
 - **1** g: plane spanned by v_i and v_j .
 - ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
 - Solution of the second sec
 - Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it
 - \equiv choosing uniformly a vector from the unit circle in ${\it g}$

• Think v_i, v_j and \vec{r} as being in the plane.

Interpretation in the second secon

- g: plane spanned by v_i and v_j .
- ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
- (a) can be decided by projecting \vec{r} on g_{\cdots} and normalizing it to have length 1.
- Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it
 - \equiv choosing uniformly a vector from the unit circle in ${\it g}$

- Think v_i, v_j and \vec{r} as being in the plane.
- Interpretation in the second secon
 - g: plane spanned by v_i and v_j .
 - ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
 - Solution of the second sec
 - Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it
 - \equiv choosing uniformly a vector from the unit circle in ${\it g}$

- Think v_i, v_j and \vec{r} as being in the plane.
- Interpretation in the second secon
 - **1** g: plane spanned by v_i and v_j .
 - ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
 - Solution of the second sec
 - Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it
 - \equiv choosing uniformly a vector from the unit circle in ${\it g}$
Proof...

- Think v_i, v_j and \vec{r} as being in the plane.
- Interpretation in the second secon
 - **1** g: plane spanned by v_i and v_j .
 - ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
 - **③** can be decided by projecting \vec{r} on g... and normalizing it to have length 1.
 - Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it \equiv choosing uniformly a vector from the unit circle in g.

Proof...

- Think v_i, v_j and \vec{r} as being in the plane.
- Interpretation in the second secon
 - **1** g: plane spanned by v_i and v_j .
 - ② Only care about signs of $\langle v_i, ec{r}
 angle$ and $\langle v_j, ec{r}
 angle$
 - **③** can be decided by projecting \vec{r} on g... and normalizing it to have length 1.
 - Sphere is symmetric \implies sampling \vec{r} from $\mathbb{S}^{(n)}$ projecting it down to g, and then normalizing it
 - \equiv choosing uniformly a vector from the unit circle in g

$$au = rccosig(\langle v_i, v_j
angleig)$$

Proof...

- Think v_i, v_j and \vec{r} as being in the plane.
- ② $\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)$ happens only if \vec{r} falls in the double wedge formed by the lines perpendicular to v_i and v_j .
- **③** angle of double wedge = angle au between v_i and v_j .
- v_i and v_j are unit vectors: $\langle v_i, v_j
 angle = \cos(au)$. $au = \angle v_i v_j$.

Thus,

$$egin{aligned} &\Prigg[ext{sign}(\langle v_i, ec{r} \
angle)
eq ext{sign}(\langle v_j, ec{r} \
angle)igg] = rac{2 au}{2\pi} \ &= rac{1}{\pi} \cdot rccos(\langle v_i, v_j
angle)\,, \end{aligned}$$

as claimed.

Theorem

Theorem

Let W be the random variable which is the weight of the cut generated by the algorithm. We have

$$\mathrm{E}ig[W ig] = rac{1}{\pi} \sum_{i < j} \omega_{ij} rccosig(\langle v_i, v_j
angle ig) \,.$$

- X_{ij} : indicator variable = 1 \iff edge ij is in the cut.
- $\textcircled{O} \hspace{0.1in} \mathbf{E}[\boldsymbol{X_{ij}}] \hspace{0.1in} = \hspace{0.1in} \mathbf{Pr} \Big[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle) \Big]$
 - $=rac{1}{\pi} rccosig(ig\langle v_i,v_j
 angleig)$, by lemma.
- ${f 0}$ $W=\sum_{i< j}\omega_{ij}X_{ij}$, and by linearity of expectation...

$$\mathrm{E}[\,W] = \sum_{i < j} \omega_{ij} \, \mathrm{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} rccosig(\langle v_i, v_j
angleig) \, .$$

• X_{ij} : indicator variable = 1 \iff edge ij is in the cut.

 $\textcircled{O} \hspace{0.1cm} \mathrm{E}[X_{ij}] \hspace{0.1cm} = \hspace{0.1cm} \mathrm{Pr} \Big[\mathrm{sign}(\langle v_i, \vec{r} \rangle) \neq \hspace{0.1cm} \mathrm{sign}(\langle v_j, \vec{r} \rangle) \Big]$

 $=rac{1}{\pi} rccosig(ig\langle v_i,v_j
angleig)$, by lemma.

 ${f 0}$ $W=\sum_{i< j}\omega_{ij}X_{ij}$, and by linearity of expectation...

$$\mathrm{E}[\,W] = \sum_{i < j} \omega_{ij} \, \mathrm{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} rccosig(\langle v_i, v_j
angleig) \, .$$

- X_{ij} : indicator variable $= 1 \iff$ edge ij is in the cut.
- $\textcircled{O} \hspace{0.1cm} \mathrm{E}[X_{ij}] \hspace{0.1cm} = \hspace{0.1cm} \mathrm{Pr} \big[\mathrm{sign}(\langle v_i, \vec{r} \hspace{0.1cm} \rangle) \neq \hspace{0.1cm} \mathrm{sign}(\langle v_j, \vec{r} \hspace{0.1cm} \rangle) \big]$
 - $=rac{1}{\pi} \arccosig(\langle v_i, v_j
 angleig)$, by lemma.
-) $W = \sum_{i < j} \omega_{ij} X_{ij}$, and by linearity of expectation...

$$\mathrm{E}[\,W] = \sum_{i < j} \omega_{ij} \, \mathrm{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} rccosig(\langle v_i, v_j
angleig) \, .$$

- X_{ij} : indicator variable $= 1 \iff$ edge ij is in the cut.
- $\textcircled{O} \hspace{0.1 cm} \mathrm{E}[X_{ij}] \hspace{0.1 cm} = \hspace{0.1 cm} \mathrm{Pr} \bigl[\mathrm{sign}(\langle v_i, \vec{r} \hspace{0.1 cm} \rangle) \neq \hspace{0.1 cm} \mathrm{sign}(\langle v_j, \vec{r} \hspace{0.1 cm} \rangle) \bigr]$
 - $=rac{1}{\pi} \arccosig(\langle v_i, v_j
 angle ig)$, by lemma.
- **③** $W = \sum_{i < j} \omega_{ij} X_{ij}$, and by linearity of expectation...

$$\operatorname{E}[W] = \sum_{i < j} \omega_{ij} \operatorname{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} \operatorname{arccos}ig(\langle v_i, v_j
angleig).$$

- X_{ij} : indicator variable $= 1 \iff$ edge ij is in the cut.
- **2** $\mathbf{E}[X_{ij}] = \Pr\left[\operatorname{sign}(\langle v_i, \vec{r} \rangle) \neq \operatorname{sign}(\langle v_j, \vec{r} \rangle)\right]$ = $\frac{1}{\pi} \operatorname{arccos}(\langle v_i, v_j \rangle)$, by lemma.

③ $W = \sum_{i < j} \omega_{ij} X_{ij}$, and by linearity of expectation...

$$\mathrm{E}[\,W] = \sum_{i < j} \omega_{ij} \, \mathrm{E}[X_{ij}] = rac{1}{\pi} \sum_{i < j} \omega_{ij} rccosig(\langle v_i, v_j
angleig) \, .$$

Lemma

Lemma

For
$$-1 \leq y \leq 1$$
, we have $\frac{\arccos(y)}{\pi} \geq \alpha \cdot \frac{1}{2}(1-y)$, where $\alpha = \min_{0 \leq \psi \leq \pi} \frac{2}{\pi} \frac{\psi}{1-\cos(\psi)}$.

Fall 2014 21 / 31

Sariel (UIUC)

Lemma

For
$$-1 \leq y \leq 1$$
, we have $\frac{\arccos(y)}{\pi} \geq \alpha \cdot \frac{1}{2}(1-y)$, where $lpha = \min_{0 \leq \psi \leq \pi} \frac{2}{\pi} \frac{\psi}{1 - \cos(\psi)}$.

Proof.

Inequality becomes: ^ψ/_π ≥ α¹/₂(1 − cos ψ). Reorganizing,
 ⇒ ²/_π ^ψ/_{1-cos ψ} ≥ α, holds by definition of α.

${\sf Lemma\ restated\ +\ proof}$

Lemma

For
$$-1 \leq y \leq 1$$
, we have $rac{rccos(y)}{\pi} \geq lpha \cdot rac{1}{2}(1-y)$, where $lpha = \min_{0 \leq \psi \leq \pi} rac{2}{\pi} rac{\psi}{1-\cos(\psi)}.$

Proof.

2 Inequality becomes:
$$\frac{\psi}{\pi} \geq lpha rac{1}{2}(1-\cos\psi)$$
. Reorganizing

$$\Rightarrow \; rac{2}{\pi} rac{\psi}{1-\cos\psi} \geq oldsymbollpha$$
 , holds by definition of $oldsymbollpha$.

Lemma

For
$$-1 \leq y \leq 1$$
, we have $rac{rccos(y)}{\pi} \geq lpha \cdot rac{1}{2}(1-y)$, where $lpha = \min_{0 \leq \psi \leq \pi} rac{2}{\pi} rac{\psi}{1-\cos(\psi)}.$

Proof.

2 Inequality becomes: $\frac{\psi}{\pi} \ge lpha \frac{1}{2}(1 - \cos \psi)$. Reorganizing,

$$\Rightarrow rac{2}{\pi} rac{\psi}{1-\cos\psi} \geq lpha$$
, holds by definition of $lpha$.

Lemma

For
$$-1 \leq y \leq 1$$
, we have $rac{rccos(y)}{\pi} \geq lpha \cdot rac{1}{2}(1-y)$, where $lpha = \min_{0 \leq \psi \leq \pi} rac{2}{\pi} rac{\psi}{1-\cos(\psi)}.$

Proof.

Lemma

For
$$-1 \leq y \leq 1$$
, we have $rac{rccos(y)}{\pi} \geq lpha \cdot rac{1}{2}(1-y)$, where $lpha = \min_{0 \leq \psi \leq \pi} rac{2}{\pi} rac{\psi}{1-\cos(\psi)}.$

Proof.

Lemma

 $\alpha > 0.87856.$

Proof.

Using simple calculus, one can see that α achieves its value for $\psi = 2.331122...$, the nonzero root of $\cos \psi + \psi \sin \psi = 1$.

Result

Theorem

The above algorithm computes in expectation a cut with total weight $\alpha \cdot \text{Opt} \geq 0.87856 \text{Opt}$, where Opt is the weight of the maximal cut.

Proof.

Consider the optimal solution to (P), and lets its value be $\gamma \geq \text{Opt.}$ By lemma:

$$egin{aligned} \mathrm{E}[\,W] &= rac{1}{\pi} \sum_{i < j} \omega_{ij} \arccos(\langle v_i, v_j
angle) \ &\geq \sum_{i < j} \omega_{ij} lpha rac{1}{2} (1 - \langle v_i, v_j
angle) = lpha \gamma \geq lpha \cdot \mathrm{Opt.} \quad oldsymbol{eta} \end{aligned}$$

 $\bigcirc M$: n imes n matrix with x_{ij} as entries.

- ${f 0} \hspace{0.1in} x_{ii} = 1$, for ${m i} = 1, \ldots, n$.
- V: matrix having vectors v₁,..., v_n as its columns.
 M = V^T V.
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- In Furthermore, given such a matrix **P** of size $n \times n$, we can compute **B** such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

- **2** $M: n \times n$ matrix with x_{ij} as entries.
- ${f 0} \hspace{0.1 in} x_{ii} = 1$, for $i=1,\ldots,n$.
- V: matrix having vectors v₁,..., v_n as its columns.
 M = V^T V.
- *M* is *positive semidefinite* (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

2 $M: n \times n$ matrix with x_{ij} as entries.

3 $x_{ii} = 1$, for i = 1, ..., n.

- V: matrix having vectors v₁,..., v_n as its columns.
 M = V^T V.
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

- **2** $M: n \times n$ matrix with x_{ij} as entries.
- **3** $x_{ii} = 1$, for i = 1, ..., n.
- V: matrix having vectors v₁,..., v_n as its columns.
 M = V^T V.
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

- **2** $M: n \times n$ matrix with x_{ij} as entries.
- ${f 0} \hspace{0.1in} x_{ii} = 1$, for $i=1,\ldots,n$.
- V: matrix having vectors v₁,..., v_n as its columns.
 M = V^T V.
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

- **2** $M: n \times n$ matrix with x_{ij} as entries.
- $oldsymbol{0}$ $x_{ii}=1$, for $i=1,\ldots,n$.
- V: matrix having vectors v_1, \ldots, v_n as its columns.
- $\bullet M = V^T V.$
- *M* is *positive semidefinite* (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- In Known as Cholesky decomposition.

$$\ \, {\boldsymbol v}_{ij} = \langle v_i, v_j \rangle.$$

2 $M: n \times n$ matrix with x_{ij} as entries.

- $oldsymbol{0}$ $x_{ii}=1$, for $i=1,\ldots,n$.
- V: matrix having vectors v_1, \ldots, v_n as its columns.
- $\bullet M = V^T V.$
- *M* is *positive semidefinite* (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- Whown as Cholesky decomposition.
2 $M: n \times n$ matrix with x_{ij} as entries.

- ${f 0} \hspace{0.1in} x_{ii} = 1$, for $i=1,\ldots,n$.
- V: matrix having vectors v_1, \ldots, v_n as its columns.
- $\bullet M = V^T V.$
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- In Furthermore, given such a matrix **P** of size $n \times n$, we can compute **B** such that $P = B^T B$ in $O(n^3)$ time.
- Whown as Cholesky decomposition.

2 $M: n \times n$ matrix with x_{ij} as entries.

- ${f 0} \hspace{0.1in} x_{ii} = 1$, for $i=1,\ldots,n$.
- V: matrix having vectors v_1, \ldots, v_n as its columns.
- $\bullet M = V^T V.$
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- When the second seco

2 $M: n \times n$ matrix with x_{ij} as entries.

- ${f 0} \hspace{0.1in} x_{ii} = 1$, for $i=1,\ldots,n$.
- V: matrix having vectors v_1, \ldots, v_n as its columns.
- $\bullet M = V^T V.$
- M is positive semidefinite (PSD).
- Fact: Any PSD matrix P can be written as $P = B^T B$.
- Furthermore, given such a matrix P of size $n \times n$, we can compute B such that $P = B^T B$ in $O(n^3)$ time.
- When the second seco

• If PSD $P = B^T B$ has a diagonal of 1

- $@\implies B$ has columns which are unit vectors.
- 3 If solve SDP (P), get back semi-definite matrix...
- 0 ... recover the vectors realizing the solution (i.e., compute B)
- Now, do the rounding.
- SDP (P) can be restated as

 $(SD) \qquad \max \quad rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$ subject to: $x_{ii} = 1 \quad ext{for } i = 1, \dots, n$ $\left(x_{ij}
ight)_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

• If PSD $P = B^T B$ has a diagonal of 1

- $\bigcirc \implies B \text{ has columns which are unit vectors.}$
- If solve SDP (P), get back semi-definite matrix...
- 0 ... recover the vectors realizing the solution (i.e., compute B)
- Now, do the rounding.
- SDP (P) can be restated as

(SD) max $rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$ subject to: $x_{ii} = 1$ for $i = 1, \dots, n$ $\left(x_{ij}
ight)_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

- If PSD $P = B^T B$ has a diagonal of 1
- $\bigcirc \implies B \text{ has columns which are unit vectors.}$
- If solve SDP(P), get back semi-definite matrix...
- 0 ... recover the vectors realizing the solution (i.e., compute B)
- Sow, do the rounding.
- SDP (P) can be restated as

(SD) max $rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$ subject to: $x_{ii} = 1$ for $i = 1, \dots, n$ $\left(x_{ij}
ight)_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

- If PSD $P = B^T B$ has a diagonal of 1
- $\bigcirc \implies B$ has columns which are unit vectors.
- If solve SDP(P), get back semi-definite matrix...
- ${f 0}$... recover the vectors realizing the solution (i.e., compute ${m B})$
- Sow, do the rounding.
- SDP (P) can be restated as

 $SD) \qquad \max \quad rac{1}{2}\sum\limits_{i < j} \omega_{ij}(1-x_{ij})$ subject to: $x_{ii} = 1 \quad ext{for } i = 1, \dots, n$ $ig(x_{ij}ig)_{i=1,\dots,n,j=1,\dots,n}$ is a PSD matrix.

- If PSD $P = B^T B$ has a diagonal of 1
- $\bigcirc \implies B$ has columns which are unit vectors.
- If solve SDP(P), get back semi-definite matrix...
- ${f 0}$... recover the vectors realizing the solution (i.e., compute ${m B})$
- Now, do the rounding.
- SDP (P) can be restated as

 $SD) \qquad \max \quad rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$ subject to: $x_{ii} = 1 \quad ext{for } i = 1, \dots, n$ $ig(x_{ij}ig)_{i=1,\dots,n,j=1,\dots,n}$ is a PSD matrix.

- If PSD $P = B^T B$ has a diagonal of 1
- $\bigcirc \implies B \text{ has columns which are unit vectors.}$
- If solve SDP(P), get back semi-definite matrix...
- ${f 0}$... recover the vectors realizing the solution (i.e., compute ${m B})$
- Now, do the rounding.
- SDP (P) can be restated as

$$(SD) \qquad \max \quad rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$$

subject to: $x_{ii} = 1$ for $i = 1, \ldots, n$
 $\left(x_{ij}
ight)_{i=1, \ldots, n, j=1, \ldots, n}$ is a PSD matrix.

- In over a set which is the intersection of:
 - linear constraints, and
 - a set of positive semi-definite matrices.

- In over a set which is the intersection of:
 - linear constraints, and
 - a set of positive semi-definite matrices.

• SDP is (SD) max $\frac{1}{2} \sum_{i < j} \omega_{ij} (1 - x_{ij})$ subject to: $x_{ii} = 1$ for $i = 1, \dots, n$ $\begin{pmatrix} x_{ij} \end{pmatrix}_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

- I... over a set which is the intersection of:
 - linear constraints, and
 - 2 set of positive semi-definite matrices.

SDP is

$$(SD)$$
 max $rac{1}{2}\sum_{i < j} \omega_{ij}(1 - x_{ij})$
subject to: $x_{ii} = 1$ for $i = 1, \dots, n$
 $\left(x_{ij}
ight)_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

- In over a set which is the intersection of:
 - linear constraints, and
 - 2 set of positive semi-definite matrices.

SDP is

$$(SD)$$
 max $rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$
subject to: $x_{ii} = 1$ for $i = 1, \dots, n$
 $\left(x_{ij}
ight)_{i=1,\dots,n, j=1,\dots,n}$ is a PSD matrix.

- In over a set which is the intersection of:
 - linear constraints, and
 - 2 set of positive semi-definite matrices.

SDP is

$$(SD)$$
 max $rac{1}{2}\sum_{i < j} \omega_{ij}(1-x_{ij})$
subject to: $x_{ii} = 1$ for $i = 1, \dots, n$
 $\left(x_{ij}
ight)_{i=1,\dots,n,j=1,\dots,n}$ is a PSD matrix.

- 3 ... over a set which is the intersection of:
 - linear constraints, and
 - e set of positive semi-definite matrices.

Lemma

Let \mathcal{U} be the set of $n \times n$ positive semidefinite matrices. The set \mathcal{U} is convex.

Proof.

Consider $A, B \in \mathcal{U}$, and observe that for any $t \in [0, 1]$, and vector $v \in \mathbb{R}^n$, we have:

$$egin{aligned} &v^T \Big(tA + (1-t)B \Big) \, v = v^T \Big(tAv + (1-t)Bv \Big) \ &= tv^T Av + (1-t)v^T Bv \geq 0 + 0 \geq 0, \end{aligned}$$

since A and B are positive semidefinite.

PSD matrices corresponds to ellipsoids.

- (a) $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- Igenvalues of a PSD are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- In the second second
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- In the second second
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- In the second second
- $\bigcirc \implies \mathrm{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- In the second second
- $\bigcirc \implies \mathrm{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- Sigenvalues of a PSD are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- Sum by computing the eigenvalues of the matrix.
- $\bigcirc \implies \text{SDP:}$ optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- Sigenvalues of a PSD are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- Sum by computing the eigenvalues of the matrix.
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- Image is a second state of the matrix.
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- Image is a second state of the matrix.
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

- PSD matrices corresponds to ellipsoids.
- 2 $x^T A x = 1$: the set of vectors solve this equation is an ellipsoid.
- ${f 0}$ Eigenvalues of a ${
 m PSD}$ are all non-negative real numbers.
- Given matrix: can in polynomial time decide if it is PSD.
- Image is a second state of the matrix.
- $\bigcirc \implies \text{SDP}$: optimize a linear function over a convex domain.
- SDP can be solved using interior point method, or the ellipsoid method.
- See Boyd and Vandenberghe [2004], Grötschel et al. [1993] for more details.
- Membership oracle: ability to decide in polynomial time, given a solution, whether its feasible or not.

Bibliographical Notes

- Approx. algorithm presented by Goemans and Williamson Goemans and Williamson [1995].
- **Base Ansate Weights** Base of the end of the end of the second s
- Shot et al. [2004] showed a hardness result that matches the constant of Goemans and Williamson (i.e., one can not approximate it better than α, unless P = NP).

Bibliographical Notes

- Relies on two conjectures: "Unique Games Conjecture" and "Majority is Stablest".
- "Majority is Stablest" conjecture was proved by Mossel et al. [2005].
- Not clear if the "Unique Games Conjecture" is true, see the discussion in Khot et al. [2004].
- Goemans and Williamson work spurred wide research on using SDP for approximation algorithms.

- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004. URL http://www.stanford.edu/~boyd/cvxbook/.
- M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *J. Assoc. Comput. Mach.*, 42(6): 1115–1145, November 1995.
- M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg, 2nd edition, 1993.
- J. Håstad. Some optimal inapproximability results. J. Assoc. Comput. Mach., 48(4):798–859, 2001. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/502090.502098.
- S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for max cut and other 2-variable csps. In *Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci.* (FOCS), pages 146–154, 2004. To appear in SICOMP.

Sariel (UIUC)

E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences invariance and optimality. In *Proc.* 46th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 21–30, 2005.