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Part I

Normal distribution
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One dimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
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Multidimensional normal distribution

1 A random variable X has normal distribution if
Pr[X = x] = 1√

2π exp(−x2/2).
2 X ∼ N (0, 1).
3 x = (x1, . . . , xn) has d-dimensional normal distributed (i.e.,

v ∼ N n(0, 1)
⇐⇒ v1, . . . , vn ∼ N (0, 1)

4 v ∈ Rn , such that ‖v‖ = 1.
5 Let x ∼ N n(0, 1). Then z = 〈v, x〉 has...
6 ...normal distribution!
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Part II

Approximate Max Cut
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The movie so far...
Summary: It sucks.

1 Seen: Examples of using rounding techniques for approximation.
2 So far: Relaxed optimization problem is LP.
3 But... We know how to solve convex programming .
4 Convex programming � LP.
5 Convex programming can be solved in polynomial time.
6 Solving convex programming is outside scope: assume doable in

polynomial time.
7 Today’s lecture:

1 Revisit MAX CUT.
2 Show how to relax it into semi-definite programming problem.
3 Solve relaxation.
4 Show how to round the relaxed problem.
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Problem Statement: MAX CUT
Since this is a theory class, we will define our problem.

1 G = (V,E): undirected graph.
2 ∀ij ∈ E: nonnegative weights ωij .
3 MAX CUT (maximum cut problem): Compute set S ⊆ V

maximizing weight of edges in cut
(
S,S

)
.

4 ij /∈ E =⇒ ωij = O.
5 weight of cut: w

(
S,S

)
=

∑
i∈S, j∈S

ωij .

6 Known: problem is NP-Complete.
Hard to approximate within a certain constant.
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Max cut as integer program
because what can go wrong?

1 Vertices: V = {1, . . . ,n}.
2 ωij : non-negative weights on edges.
3 max cut w(S,S) is computed by the integer quadratic

program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

4 Set: S =
{
i
∣∣∣ yi = 1

}
.

5 ω
(
S,S

)
= 1

2
∑

i<j ωij(1 − yiyj).
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Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 Solving quadratic integer programming is of course NP-Hard.
2 Want a relaxation...
3 1 and −1 are just roots of unity.
4 FFT: All roots of unity are a circle.
5 In higher dimensions: All unit vectors are points on unit sphere.
6 yi are just unit vectors.
7 yi ∗ yj is replaced by dot product 〈yi, yj〉.
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Quick reminder about dot products
Everybody knows, thats how it goes

1 x = (x1, . . . , xd), y = (y1, . . . , yd).
2 〈x, y〉 = ∑d

i=1 xiyi .
3 For a vector v ∈ Rd : ‖v‖2 = 〈v, v〉.
4 〈x, y〉 = ‖x‖ ‖y‖ cosα.
α: Angle between x and y.

5 x⊥y: 〈x, y〉 = 0.
6 x = y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = 1.
7 x = −y and ‖x‖ = ‖y‖ = 1: 〈x, y〉 = −1.
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Relaxing −1, 1...
Because 1 and −1 are just vectors.

1 max cut w(S,S) as integer quadratic program:

(Q) max
1
2
∑
i<j
ωij(1 − yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

2 Relaxed semi-definite programming version:

(P) max γ =
1
2
∑
i<j
ωij (1 − 〈vi, vj〉)

subject to: vi ∈ S(n) ∀i ∈ V ,

S(n): n dimensional unit sphere in Rn+1.
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Discussion...

1 semi-definite programming: special case of convex programming.
2 Can be solved in polynomial time.
3 Solve within a factor of (1 + ε) of optimal, for any ε > 0, in

polynomial time.
4 Intuition: vectors of one side of the cut, and vertices on the

other sides, would have faraway vectors.
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The approximation algorithm
For max cut

1 Given instance, compute Semi-definite program (P).
2 Compute optimal solution for (P).
3 ~r : Pick random vector on the unit sphere S(n).
4 induces hyperplane h ≡ 〈~r, x〉 = 0
5 assign all vectors on one side of h to S, and rest to S.

S =
{
vi

∣∣∣ 〈vi,~r 〉 ≥ 0
}
.
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Analysis...

Intuition: with good probability, vectors in the solution of (P) that
have large angle between them would be separated by cut.

Lemma
Pr
[
sign

(
〈vi,~r 〉

)
6= sign(〈vj,~r 〉)

]
=

1
π

arccos
(
〈vi, vj〉

)
=
τ

π
.
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Proof...

1 Think vi, vj and ~r as being in the plane.
2 ... reasonable assumption!

1 g: plane spanned by vi and vj .
2 Only care about signs of 〈vi ,~r〉 and 〈vj ,~r〉
3 can be decided by projecting ~r on g... and normalizing it to

have length 1.
4 Sphere is symmetric =⇒ sampling ~r from S(n) projecting it

down to g, and then normalizing it
≡ choosing uniformly a vector from the unit circle in g
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Proof via figure...

vj
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Proof via figure...

vj
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Proof via figure...

vj

vi
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Proof via figure...
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Proof via figure...

vj

vi

+−
−+

τ

τ = arccos
(
〈vi, vj〉

)
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Proof...

1 Think vi, vj and ~r as being in the plane.
2 sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉) happens only if ~r falls in the

double wedge formed by the lines perpendicular to vi and vj .
3 angle of double wedge = angle τ between vi and vj .
4 vi and vj are unit vectors: 〈vi, vj〉 = cos(τ ).
τ = ∠vivj .

5 Thus,

Pr
[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
=

2τ
2π

=
1
π

· arccos(〈vi, vj〉) ,

as claimed.
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Theorem

Theorem
Let W be the random variable which is the weight of the cut
generated by the algorithm. We have

E
[
W
]

=
1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.
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Proof

1 Xij : indicator variable = 1 ⇐⇒ edge ij is in the cut.
2 E[Xij] = Pr

[
sign(〈vi,~r 〉) 6= sign(〈vj,~r 〉)

]
= 1

π
arccos

(
〈vi, vj〉

)
, by lemma.

3 W = ∑
i<j ωijXij , and by linearity of expectation...

E[W ] =
∑
i<j
ωij E[Xij] =

1
π

∑
i<j
ωij arccos

(
〈vi, vj〉

)
.
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Lemma

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
ψ

2
ψ · ψ

1−cos(ψ)
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Lemma restated + proof

Lemma

For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α ·

1
2

(1 − y), where

α = min
0≤ψ≤π

2
π

ψ

1 − cos(ψ)
.

Proof.
1 y = cos(ψ).
2 Inequality becomes: ψ

π
≥ α1

2(1 − cosψ). Reorganizing,
3 =⇒ 2

π
ψ

1−cos ψ ≥ α, holds by definition of α.
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Lemma

Lemma
α > 0.87856.

Proof.
Using simple calculus, one can see that α achieves its value for
ψ = 2.331122..., the nonzero root of cosψ + ψ sinψ = 1.
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Result

Theorem
The above algorithm computes in expectation a cut with total weight
α · Opt ≥ 0.87856Opt, where Opt is the weight of the maximal
cut.

Proof.
Consider the optimal solution to (P), and lets its value be
γ ≥ Opt. By lemma:

E[W ] =
1
π

∑
i<j
ωij arccos(〈vi, vj〉)

≥
∑
i<j
ωijα

1
2

(1 − 〈vi, vj〉) = αγ ≥ α · Opt.
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SDP: Semi-definite programming

1 xij = 〈vi, vj〉.
2 M : n × n matrix with xij as entries.
3 xii = 1, for i = 1, . . . ,n.
4 V : matrix having vectors v1, . . . , vn as its columns.
5 M = V TV .
6 ∀v ∈ Rn : vTMv = vTATAv = (Av)T(Av) ≥ 0.
7 M is positive semidefinite (PSD).
8 Fact: Any PSD matrix P can be written as P = BTB.
9 Furthermore, given such a matrix P of size n × n, we can

compute B such that P = BTB in O(n3) time.
10 Known as Cholesky decomposition.
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SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 If PSD P = BTB has a diagonal of 1
2 =⇒ B has columns which are unit vectors.
3 If solve SDP (P), get back semi-definite matrix...
4 ... recover the vectors realizing the solution (i.e., compute B)
5 Now, do the rounding.
6 SDP (P) can be restated as

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

Sariel (UIUC) CS573 26 Fall 2014 26 / 31



SDP: Semi-definite programming

1 SDP is

(SD) max
1
2
∑
i<j
ωij(1 − xij)

subject to: xii = 1 for i = 1, . . . ,n(
xij

)
i=1,...,n,j=1,...,n

is a PSD matrix.

2 find optimal value of a linear function...
3 ... over a set which is the intersection of:

1 linear constraints, and
2 set of positive semi-definite matrices.
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Lemma

Lemma
Let U be the set of n × n positive semidefinite matrices. The set U
is convex.

Proof.
Consider A,B ∈ U , and observe that for any t ∈ [0, 1], and vector
v ∈ Rn , we have:

vT
(

tA + (1 − t)B
)

v = vT
(

tAv + (1 − t)Bv
)

= tvTAv + (1 − t)vTBv ≥ 0 + 0 ≥ 0,

since A and B are positive semidefinite.
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More on positive semidefinite matrices

1 PSD matrices corresponds to ellipsoids.
2 xTAx = 1: the set of vectors solve this equation is an ellipsoid.
3 Eigenvalues of a PSD are all non-negative real numbers.
4 Given matrix: can in polynomial time decide if it is PSD.
5 ... by computing the eigenvalues of the matrix.
6 =⇒ SDP: optimize a linear function over a convex domain.
7 SDP can be solved using interior point method, or the ellipsoid

method.
8 See Boyd and Vandenberghe [2004], Grötschel et al.

[1993] for more details.
9 Membership oracle: ability to decide in polynomial time, given a

solution, whether its feasible or not.
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Bibliographical Notes

1 Approx. algorithm presented by Goemans and Williamson
Goemans and Williamson [1995].

2 Håstad [2001] showed that MAX CUT can not be
approximated within a factor of 16/17 ≈ 0.941176.

3 Khot et al. [2004] showed a hardness result that matches the
constant of Goemans and Williamson (i.e., one can not
approximate it better than α, unless P = NP).
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Bibliographical Notes

1 Relies on two conjectures: “Unique Games Conjecture” and
“Majority is Stablest”.

2 “Majority is Stablest” conjecture was proved by Mossel et al.
[2005].

3 Not clear if the “Unique Games Conjecture” is true, see the
discussion in Khot et al. [2004].

4 Goemans and Williamson work spurred wide research on using
SDP for approximation algorithms.
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