Chapter 23

Entropy, Randomness, and Information

CS 573: Algorithms, Fall 2014
November 13, 2014

23.1 Entropy

23.1.0.1 Quote

"If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us."
-Romain Gary, The talent scout.

23.2 Entropy

23.2.0.2 Entropy: Definition

Definition 23.2.1. The entropy in bits of a discrete random variable X is

$$
\mathbb{H}(X)=-\sum_{x} \operatorname{Pr}[X=x] \lg \operatorname{Pr}[X=x]
$$

Equivalently, $\mathbb{H}(X)=\mathbf{E}\left[\lg \frac{1}{\operatorname{Pr}[X]}\right]$.

23.2.0.3 Entropy intuition...

Intuition... $\mathbb{H}(X)$ is the number of fair coin flips that one gets when getting the value of X.
Interpretation from last lecture... Consider a (huge) string $S=s_{1} s_{2} \ldots s_{n}$ formed by picking characters independently according to X. Then

$$
|S| \mathbb{H}(X)=n \mathbb{H}(X)
$$

is the minimum number of bits one needs to store the string S.

23.2.0.4 Binary entropy

$\xrightarrow{\mathbb{H}(X)=}-\sum_{x} \operatorname{Pr}[X=x] \lg \operatorname{Pr}[X=x]$
Definition 23.2.2. The binary entropy function $\mathbb{H}(p)$ for a random binary variable that is 1 with probability p, is $\mathbb{H}(p)=-p \lg p-(1-p) \lg (1-p)$. We define $\mathbb{H}(0)=\mathbb{H}(1)=0$.

Q: How many truly random bits are there when given the result of flipping a single coin with probability p for heads?
23.2.0.5 Binary entropy: $\mathbb{H}(p)=-p \lg p-(1-p) \lg (1-p)$

(A) $\mathbb{H}(p)$ is a concave symmetric around $1 / 2$ on the interval $[0,1]$.
(B) maximum at $1 / 2$.
(C) $\mathbb{H}(3 / 4) \approx 0.8113$ and $\mathbb{H}(7 / 8) \approx 0.5436$.
(D) \Longrightarrow coin that has $3 / 4$ probably to be heads have higher amount of "randomness" in it than a coin that has probability $7 / 8$ for heads.

23.2.0.6 And now for some unnecessary math

(A) $\mathbb{H}(p)=-p \lg p-(1-p) \lg (1-p)$
(B) $\mathbb{H}^{\prime}(p)=-\lg p+\lg (1-p)=\lg \frac{1-p}{p}$
(C) $\mathbb{H}^{\prime \prime}(p)=\frac{p}{1-p} \cdot\left(-\frac{1}{p^{2}}\right)=-\frac{1}{p(1-p)}$.
(D) $\Longrightarrow \mathbb{H}^{\prime \prime}(p) \leq 0$, for all $p \in(0,1)$, and the $\mathbb{H}(\cdot)$ is concave.
(E) $\mathbb{H}^{\prime}(1 / 2)=0 \Longrightarrow \mathbb{H}(1 / 2)=1$ max of binary entropy.
$(\mathrm{F}) \Longrightarrow$ balanced coin has the largest amount of randomness in it.

23.2.1 Task at hand: Squeezing good random bits...

23.2.1.1 ...out of bad random bits...

(A) b_{1}, \ldots, b_{n} : result of n coin flips...
(B) From a faulty coin!
(C) p : probability for head.
(D) We need fair bit coins!
(E) Convert $b_{1}, \ldots, b_{n} \Longrightarrow b_{1}^{\prime}, \ldots, b_{m}^{\prime}$.
(F) New bits must be truly random: Probability for head is $1 / 2$.
(G) Q: How many truly random bits can we extract?

23.2.2 Intuitively...

23.2.2.1 Squeezing good random bits out of bad random bits...

Question... Given the result of n coin flips: b_{1}, \ldots, b_{n} from a faulty coin, with head with probability p, how many truly random bits can we extract?

If believe intuition about entropy, then this number should be $\approx n \mathbb{H}(p)$.

23.2.2.2 Back to Entropy

(A) entropy of X is $\mathbb{H}(X)=-\sum_{x} \operatorname{Pr}[X=x] \lg \operatorname{Pr}[X=x]$.
(B) Entropy of uniform variable..

Example 23.2.3. A random variable X that has probability $1 / n$ to be i, for $i=1, \ldots, n$, has entropy $\mathbb{H}(X)=-\sum_{i=1}^{n} \frac{1}{n} \lg \frac{1}{n}=\lg n$.
(C) Entropy is oblivious to the exact values random variable can have.
(D) \Longrightarrow random variables over $-1,+1$ with equal probability has the same entropy (i.e., 1) as a fair coin.

23.2.2.3 Lemma: Entropy additive for independent variables

23.2.2.4 Lemma: Entropy additive for independent variables

Lemma 23.2.4. Let X and Y be two independent random variables, and let Z be the random variable (X, Y). Then $\mathbb{H}(Z)=\mathbb{H}(X)+\mathbb{H}(Y)$.

23.2.2.5 Proof

In the following, summation are over all possible values that the variables can have. By the independence of X and Y we have

$$
\begin{aligned}
\mathbb{H}(Z)= & \sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \lg \frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]} \\
= & \sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]} \\
= & \sum_{x} \sum_{y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[X=x]} \\
& \quad+\sum_{y} \sum_{x} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[Y=y]}
\end{aligned}
$$

23.2.2.6 Proof continued

$$
\begin{aligned}
\mathbb{H}(Z)= & \sum_{x} \sum_{y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[X=x]} \\
& +\sum_{y} \sum_{x} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[Y=y]} \\
= & \sum_{x} \operatorname{Pr}[X=x] \lg \frac{1}{\operatorname{Pr}[X=x]} \\
& \quad+\sum_{y} \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[Y=y]} \\
= & \mathbb{H}(X)+\mathbb{H}(Y) .
\end{aligned}
$$

23.2.2.7 Bounding the binomial coefficient using entropy

23.2.2.8 Bounding the binomial coefficient using entropy

Lemma 23.2.5. $q \in[0,1]$
$n q$ is integer in the range $[0, n]$.
Then

$$
\frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{n q} \leq 2^{n \mathbb{H}(q)}
$$

23.2.2.9 Proof

Holds if $q=0$ or $q=1$, so assume $0<q<1$. We have

$$
\binom{n}{n q} q^{n q}(1-q)^{n-n q} \leq(q+(1-q))^{n}=1
$$

We also have: $q^{-n q}(1-q)^{-(1-q) n}=2^{n(-q \lg q-(1-q) \lg (1-q))}=2^{n \mathbb{H}(q)}$, we have

$$
\binom{n}{n q} \leq q^{-n q}(1-q)^{-(1-q) n}=2^{n \mathbb{H}(q)}
$$

23.2.3 Proof continued

23.2.3.1 Other direction...

(A) $\mu(k)=\binom{n}{k} q^{k}(1-q)^{n-k}$
(B) $\sum_{i=0}^{n}\binom{n}{i} q^{i}(1-q)^{n-i}=\sum_{i=0}^{n} \mu(i)$.
(C) Claim: $\mu(n q)=\binom{n}{n q} q^{n q}(1-q)^{n-n q}$ largest term in $\sum_{k=0}^{n} \mu(k)=1$.
(D) $\Delta_{k}=\mu(k)-\mu(k+1)=\binom{n}{k} q^{k}(1-q)^{n-k}\left(1-\frac{n-k}{k+1} \frac{q}{1-q}\right)$,
(E) sign of $\Delta_{k}=$ size of last term...
(F) $\operatorname{sign}\left(\Delta_{k}\right)=\operatorname{sign}\left(1-\frac{(n-k) q}{(k+1)(1-q)}\right)$

$$
=\operatorname{sign}\left(\frac{(k+1)(1-q)-(n-k) q}{(k+1)(1-q)}\right) .
$$

23.2.3.2 Proof continued

(A) $(k+1)(1-q)-(n-k) q=k+1-k q-q-n q+k q=1+k-q-n q$.
(B) $\Longrightarrow \Delta_{k} \geq 0$ when $k \geq n q+q-1$
$\Delta_{k}<0$ otherwise.
(C) $\mu(k)=\binom{n}{k} q^{k}(1-q)^{n-k}$
(D) $\mu(k)<\mu(k+1)$, for $k<n q$, and $\mu(k) \geq \mu(k+1)$ for $k \geq n q$.
(E) $\Longrightarrow \mu(n q)$ is the largest term in $\sum_{k=0}^{n} \mu(k)=1$.
(F) $\mu(n q)$ larger than the average in sum.
$(\mathrm{G}) \Longrightarrow\binom{n}{k} q^{k}(1-q)^{n-k} \geq \frac{1}{n+1}$.
$(\mathrm{H}) \Longrightarrow\binom{n}{n q} \geq \frac{1}{n+1} q^{-n q}(1-q)^{-(n-n q)}=\frac{1}{n+1} 2^{n \mathbb{H}(q)}$.

23.2.3.3 Generalization...

Corollary 23.2.6. We have:
(i) $q \in[0,1 / 2] \Rightarrow\binom{n}{\lfloor n \downarrow\rfloor} \leq 2^{n \mathbb{H}(q)}$. (ii) $q \in[1 / 2,1]\binom{n}{[n q\rceil} \leq 2^{n \mathbb{H}(q)}$.
(iii) $q \in[1 / 2,1] \Rightarrow \frac{2^{n \sharp(q)}}{n+1} \leq\binom{ n}{\lfloor n q\rfloor}$. (iv) $q \in[0,1 / 2] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{\lceil n q\rceil}$.

Proof is straightforward but tedious.

23.2.3.4 What we have...

(A) Proved that $\binom{n}{n q} \approx 2^{n \mathbb{H}(q)}$.
(B) Estimate is loose.
(C) Sanity check...
(I) A sequence of n bits generated by coin with probability q for head.
(II) By Chernoff inequality... roughly $n q$ heads in this sequence.
(III) Generated sequence Y belongs to $\binom{n}{n q} \approx 2^{n \mathbb{H}(q)}$ possible sequences .
(IV) ...of similar probability.

$$
(\mathrm{V}) \Longrightarrow \mathbb{H}(Y)=n \mathbb{H}(q) \approx \lg \binom{n}{n q}
$$

23.2.4 Extracting randomness

23.2.4.1 Just one bit...

question Given a coin C with:
p : Probability for head.
$q=1-p$: Probability for tail.
Q: How to get one true random bit, by flipping C.
Describe an algorithm!

23.2.4.2 Extracting randomness...

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition 23.2.7. An extraction function Ext takes as input the value of a random variable X and outputs a sequence of bits y, such that $\operatorname{Pr}[\operatorname{Ext}(X)=y| | y \mid=k]=\frac{1}{2^{k}}$, whenever $\operatorname{Pr}[|y|=k]>0$, where $|y|$ denotes the length of y.

23.2.4.3 Extracting randomness...

(A) X : uniform random integer variable out of $0, \ldots, 7$.
(B) $\operatorname{Ext}(X)$: binary representation of x.
(C) Def. subtle: all extracted seqs of same len have same probability.
(D) Another example of extraction scheme:
(A) X : uniform random integer variable $0, \ldots, 11$.
(B) $\operatorname{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
(C) If x is between 8 and 11 ?
(D) Idea... Output binary representation of $x-8$ as a two bit number.
(E) A valid extractor...
$\operatorname{Pr}[\operatorname{Ext}(X)=00| | \operatorname{Ext}(X) \mid=2]=\frac{1}{4}$,

23.2.4.4 Technical lemma

The following is obvious, but we provide a proof anyway.
Lemma 23.2.8. Let x / y be a faction, such that $x / y<1$. Then, for any i, we have $x / y<(x+i) /(y+i)$.

Proof: We need to prove that $x(y+i)-(x+i) y<0$. The left size is equal to $i(x-y)$, but since $y>x$ (as $x / y<1$), this quantity is negative, as required.

23.2.4.5 A uniform variable extractor...

Theorem 23.2.9. (A) X : random variable chosen uniformly at random from $\{0, \ldots, m-1\}$.
(B) Then there is an extraction function for X :
(A) outputs on average at least

$$
\lfloor\lg m\rfloor-1=\lfloor\mathbb{H}(X)\rfloor-1
$$

independent and unbiased bits.

23.2.4.6 Proof

(A) m : A sum of unique powers of 2 , namely $m=\sum_{i} a_{i} 2^{i}$, where $a_{i} \in\{0,1\}$.
(B) Example:

(C) decomposed $\{0, \ldots, m-1\}$ into disjoint union of blocks sizes are powers of 2 .
(D) If x is in block 2^{k}, output its relative location in the block in binary representation.
(E) Example: $x=10$:

then falls into block $2^{2} \ldots$
x relative location is 2 . Output 2 written using two bits, Output: "10".

23.2.4.7 Proof continued

(A) Valid extractor...
(B) Theorem holds if m is a power of two. Only one block.
(C) m not a power of $2 \ldots$
(D) X falls in block of size 2^{k} : then output k complete random bits..
... entropy is k.
(E) Let $2^{k}<m<2^{k+1}$ biggest block.
(F) $u=\left\lfloor\lg \left(m-2^{k}\right)\right\rfloor<k$.

There must be a block of size u in the decomposition of m.
(G) two blocks in decomposition of m : sizes 2^{k} and 2^{u}.
(H) Largest two blocks...
(I) $2^{k}+2 * 2^{u}>m \Longrightarrow 2^{u+1}+2^{k}-m>0$.
(J) Y : random variable $=$ number of bits output by extractor.

23.2.4.8 Proof continued

(A) By lemma, since $\frac{m-2^{k}}{m}<1$:

$$
\frac{m-2^{k}}{m} \leq \frac{m-2^{k}+\left(2^{u+1}+2^{k}-m\right)}{m+\left(2^{u+1}+2^{k}-m\right)}=\frac{2^{u+1}}{2^{u+1}+2^{k}}
$$

(B) By induction (assumed holds for all numbers smaller than m):

$$
\begin{aligned}
& \mathbf{E}[Y] \geq \frac{2^{k}}{m} k+\frac{m-2^{k}}{m}(\underbrace{\left\lfloor\lg \left(m-2^{k}\right)\right\rfloor}_{u}-1) \\
& \quad=\frac{2^{k}}{m} k+\frac{m-2^{k}}{m}(\underbrace{k-k}_{=0}+u-1) \\
& \quad=k+\frac{m-2^{k}}{m}(u-k-1)
\end{aligned}
$$

23.2.4.9 Proof continued..

(A) We have:

$$
\begin{aligned}
\mathbf{E}[Y] \geq k+\frac{m-2^{k}}{m} & (u-k-1) \\
\geq & k+\frac{2^{u+1}}{2^{u+1}+2^{k}}(u-k-1) \\
= & k-\frac{2^{u+1}}{2^{u+1}+2^{k}}(1+k-u)
\end{aligned}
$$

since $u-k-1 \leq 0$ as $k>u$.
(B) If $u=k-1$, then $\mathbf{E}[Y] \geq k-\frac{1}{2} \cdot 2=k-1$, as required.
(C) If $u=k-2$ then $\mathbf{E}[Y] \geq k-\frac{1}{3} \cdot 3=k-1$.

23.2.4.10 Proof continued.....

(A) $\mathbf{E}[Y] \geq k-\frac{2^{u+1}}{2^{u+1}+2^{k}}(1+k-u)$. And $u-k-1 \leq 0$ as $k>u$.
(B) If $u<k-2$ then

$$
\begin{aligned}
\mathbf{E}[Y] & \geq k-\frac{2^{u+1}}{2^{k}}(1+k-u) \\
& =k-\frac{k-u+1}{2^{k-u-1}} \\
& =k-\frac{2+(k-u-1)}{2^{k-u-1}} \\
& \geq k-1
\end{aligned}
$$

since $(2+i) / 2^{i} \leq 1$ for $i \geq 2$.

