Chapter 22

Compression, Information and Entropy —
Huffman’s coding

CS 573: Algorithms, Fall 2014
November 11, 2014

22.1 Huffman coding

22.2 start

22.2.0.1 Codes...

(A) X: alphabet.

(B) binary code: assigns a string of 0s and 1s to each character in the alphabet.
(C) each symbol in input = a codeword over some other alphabet.

(D) Useful for transmitting messages over a wire: only 0/1.

(

)

)

)

)

) receiver gets a binary stream of bits...

) ... decode the message sent.

) prefix code: reading a prefix of the input binary string uniquely match it to a code word.
) ... continuing to decipher the rest of the stream.

) binary/prefix code is prefiz-free if no code is a prefix of any other.

) ASCII and Unicode’s UTF-8 are both prefix-free binary codes.

22.2.0.2 Codes...

(A) Morse code is binary+prefix code but not prefix-free.
(B) ... code for S (---) includes the code for E (-) as a prefix.
(C) Prefix codes are binary trees...

(D) ...characters in leafs, code word is path from root.

1

(E) prefix treestreelprefix tree or code trees.
(F) Decoding/encoding is easy.

22.2.0.3 Codes...

(A) Encoding: given frequency table:

(B) fli]: frequency of ith character.

(C) code(7): binary string for ith character.
len(s): length (in bits) of binary string s.
(D) Compute tree T that minimizes

n

cost(T) = Z f1i] * len(code(i))

=1

22.2.1 Frequency table for...
22.2.1.1 “A tale of two cities” by Dickens

\n| 16,492 || ‘I 61 || ‘C’ | 13,896 || ‘Q’ 667
771 130,376 || ‘2 10 || ‘D’ | 28,041 || ‘R’ | 37,187
‘v 955 || ¥ 12 || ‘B’ | 74,809 || S’ | 37,575
7 5,681 || ‘4’ 10 || ‘F7 | 13,559 || “T” | 54,024
‘§’ 21 5’ 14 1] ‘G’ | 12,530 || ‘U’ | 16,726
‘% 1| 6 11| ‘H | 38,961 || V' | 5,199
v 1,174 || ‘7 13 || ‘" | 41,005 || ‘W’ | 14,113
‘(151 || ¥ 13 1] “J 710 || X7 724
Dk 151 || 9 14 1] ‘K| 4,782 || Y™ | 12,177
o 70 || Y 267 || ‘L7 | 22,030 || ‘% 215
¢ 13,276 || 1,108 || ‘M’ | 15,298 © 182
- 2,430 || <7 913 || ‘N’ | 42,380 T 93
5 6,769 || ‘A’ | 48,165 || ‘O’ | 46,499 || ‘@’ 2
‘0’ 20 || ‘B’ | 8414 || ‘P’ | 9,957 ||)/’ 26
22.2.1.2 Computed prefix codes...

’ char ‘ frequency ‘ code H char ‘ freq ‘ code ‘
‘A’ 48165 1110 || N7 | 42380 1100
‘B’ 8414 101000 || ‘O’ | 46499 1101
‘C’ 13896 00100 || ‘P’ 9957 101001
‘D’ 28041 0011 || ‘Q’ 667 | 1111011001
‘B’ 74809 011 || ‘R> | 37187 0101
‘B 13559 111111 ‘ST | 37575 1000
‘G’ 12530 111110 || “T7 | 54024 000
‘H’ 38961 1001 || ‘U | 16726 01001
‘T 41005 1011 || VvV’ 5199 1111010
J’ 710 | 1111011010 || ‘W’ | 14113 00101
‘K’ 4782 11110111 || X7 724 | 1111011011
‘L’ 22030 10101 || YY" | 12177 111100
‘M’ 15298 01000 VA 215 | 1111011000

2

(22.1)

22.2.2 The Huffman tree generating the code

22.2.2.1 Build only on A-Z for clarity.

22.2.2.2 Mergeablity of code trees

(A) two trees for some disjoint parts of the alphabet...
(B) Merge into larger tree by creating a new node and hanging the trees from this common node.

© MU =

(D) ...put together two subtrees.

VN
AAAA

22.2.3 The algorithm to build Hoffman’s code
22.2.3.1 Building optimal prefix code trees

)
) ... merge them into a tree, and put the root of merged tree back into table.

) ...instead of the two old trees.

) Algorithm stops when there is a single tree.

) Intuition: infrequent characters participate in a large number of merges. Long code words.
) Algorithm is due to David Huffman (1952).

) Resulting code is best one can do.

) Hujffman coding: building block used by numerous other compression algorithms.

22.2.4 Analysis

22.2.4.1 Lemma: lowest leafs are siblings...

Lemma 22.2.1. (A) T: optimal code tree (prefix free!).

3

(B) Then T is a full binary tree.
(C) ... every node of T has either 0 or 2 children.
(D) If height of T is d, then there are leafs nodes of height d that are sibling.

22.2.4.2 Proof...

(A) If 3 internal node v € V(T) with single child...
...remove it.
(B) New code tree is better compressor: cost(T) = > f[i] * len(code(i)).
(C) wu: leaf u with maximum depth d in T. Consider parent v = p(u).
(D) == wv: has two children, both leafs

22.2.4.3 Infrequent characters are stuck together...

Lemma 22.2.2. z, y: two least frequent characters (breaking ties arbitrarily).
3 optimal code tree in which x and y are siblings.

22.2.4.4 Proof...

) Claim: 3 optimal code s.t. « and y are siblings + deepest.
) T: optimal code tree with depth d.

) By lemma... T has two leafs at depth d that are siblings,
) If not x and y, but some other characters o and .

) J": swap x and a.

) « depth inc by A, and depth of a decreases by A.

)
)

x: one of the two least frequent characters.

...but « is not.

) = fla > fla].

(J) Swapping x and « does not increase cost.

K) T: optimal code tree, swapping x and a does not decrease cost.
)

(M) Must be that fla] = f[z].

22.2.4.5 Proof continued...

A) y: second least frequent character.
) [: lowest leaf in tree. Sibling to x.
) Swapping y and must give yet another optimal code tree.
)

(
(B
(C) S

(D) Final opt code tree, x,y are max-depth siblings.
22.2.4.6 Huffman’s codes are optimal

Theorem 22.2.3. Huffman codes are optimal prefiz-free binary codes.

22.2.4.7 Proof...

If message has 1 or 2 diff characters, then theorem easy.
f[1...n] be original input frequencies.
Assume f[1] and f[2] are the two smallest.

(A)
(B)
(C)
(D) Let fln+1] = f1] + f[2].
(E)
)
)
) 7.

lemma == 3 opt. code tree Top for f[1..n]
(F) Topt has 1 and 2 as siblings.

(G Remove 1 and 2 from Top.
(H opt: Remaining tree has 3,...,n as leafs and “special” character n + 1 (i.e., parent 1,2 in Top)

22.2.4.8 La proof continued...

(A) character n + 1: has frequency f[n + 1].
Now, f[n+ 1] = f[1] + f[2], we have

n

cost(Topt) = Z f [i]clepth:ropt (1)
i=1
n+1

= " flildepthy (i) + f[1]depthy (1)

i=3
+ f[Q]depthgopt(Z) — fln+ l]depth%pt(n +1)

= cost(Tly) + < 1]+ f[z]) depth(Toe)
_ (1]+ f[2]>(depth(i]'opt) _1)

= cost(‘]';pt> + f1] + f[2].

22.2.4.9 La proof continued...

(A) implies min cost of T,y = min cost T’

opt-
(B) T7,:: must be optimal coding tree for f[3...n + 1].
(C) ‘T’ Huffman tree for f[3,...,n+ 1]
Ty: overall Huffman tree constructed for f[1,...,n].

(D) By construction:

T, formed by removing leafs 1 and 2 from Tp.
(E) By induction:

Huffman tree generated for f[3,...,n + 1] is optimal.
(F) cost(‘J") = cost(TY).

opt

(G) = cost(Ty) = cost(Ty) + f1] + f[2] = Cost(‘J'(’)pt) + f1] + f[2] = cost(Topt)
(H) = Huffman tree has the same cost as the optimal tree.

22.2.5 What do we get
22.2.5.1 What we get...

(A) A tale of two cities: 779,940 bytes.

(B) using above Huffman compression results in a compression to a file of size 439,688 bytes.
(C) Ignoring space to store tree.
(D) gzip: 301,295 bytes
bzip2: 220,156 bytes!
(E) Huffman encoder can be easily written in a few hours of work!
(F) All later compressors use it as a black box...

22.2.6 A formula for the average size of a code word
22.2.6.1 Average size of code word

(A) input is made out of n characters.

(B) p;: fraction of input that is ¢th char (probability).

(C) use probabilities to build Huffman tree.

(D) Q: What is the length of the codewords assigned to characters as function of probabilities?
(E) special case...

B
C
D
B

22.2.7 Average length of codewords...
22.2.7.1 Special case

Lemma 22.2.4. 1,... n: symbols.
Assume, fori=1,...,n:
(A) p; = 1/2%: probability for the ith symbol
(B) l; > 0: integer.
Then, in Huffman coding for this input, the code for i is of length I;.

22.2.7.2 Proof

A) induction of the Huffman algorithm.
) n = 2: claim holds since there are only two characters with probability 1/2.
) Let ¢ and j be the two characters with lowest probability.
) Must be p; = p; (otherwise, > ;. pr, # 1).
) Huffman’s tree merges this two letters, into a single “character” that have probability 2p;.
(F) New “character” has encoding of length [; — 1, by induction
(on remaining n — 1 symbols).
(G) resulting tree encodes i and j by code words of length (I; — 1) +1 =I;.

(
(B
(C
(D
(E

22.2.7.3 Translating lemma...

(A) pi=1/2"
(B) L =1g1/p:.
(C) Average length of a code word is

1
sz' lg —.
i Di
(D) X is a random variable that takes a value i with probability p;, then this formula is
1
H(X) =) PrlX =i|lg ————
(X) = S PriX =l e

which is the entropy of X.

	Huffman coding
	start
	The algorithm to build Hoffman's code
	Analysis
	What do we get
	A formula for the average size of a code word

