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Part I

Weighted vertex cover
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18.1 Weighted vertex cover
18.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V,E).
Each vertex v ∈ V: cost cv.
Compute a vertex cover of minimum cost.

(A) vertex cover: subset of vertices V so each edge is covered.
(B) NP-Hard
(C) ...unweighted Vertex Cover problem.
(D) ... write as an integer program (IP):
(E) ∀v ∈ V: xv = 1 ⇐⇒ v in the vertex cover.
(F) ∀vu ∈ E: covered. =⇒ xv ∨ xu true. =⇒ xv + xu ≥ 1.
(G) minimize total cost: min∑v∈V xvcv.

18.1.1 Weighted vertex cover
18.1.1.1 State as IP =⇒ Relax =⇒ LP

min
∑
v∈V

cvxv,

such that xv ∈ {0, 1} ∀v ∈ V (18.1)
xv + xu ≥ 1 ∀vu ∈ E.

(A) ... NP-Hard.
(B) relax the integer program.
(C) allow xv get values ∈ [0, 1].
(D) xv ∈ {0, 1} replaced by 0 ≤ xv ≤ 1. The

resulting LP is

min
∑
v∈V

cvxv,

s.t. 0 ≤ xv ∀v ∈ V,
xv ≤ 1 ∀v ∈ V,
xv + xu ≥ 1 ∀vu ∈ E.

18.1.1.2 Weighted vertex cover – rounding the LP

(A) Optimal solution to this LP: x̂v value of var Xv, ∀v ∈ V.
(B) optimal value of LP solution is α̂ = ∑

v∈V cvx̂v.
(C) optimal integer solution: xIv, ∀v ∈ V and αI .
(D) Any valid solution to IP is valid solution for LP!
(E) α̂ ≤ αI .

Integral solution not better than LP.
(F) Got fractional solution (i.e., values of x̂v).
(G) Fractional solution is better than the optimal cost.
(H) Q: How to turn fractional solution into a (valid!) integer solution?
(I) Using rounding.

18.1.1.3 How to round?

(A) consider vertex v and fractional value x̂v.
(B) If x̂v = 1 then include in solution!
(C) If x̂v = 0 then do notnot include in solution.
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(D) if x̂v = 0.9 =⇒ LP considers v as being 0.9 useful.
(E) The LP puts its money where its belief is...
(F) ...α̂ value is a function of this “belief” generated by the LP.
(G) Big idea: Trust LP values as guidance to usefulness of vertices.
(H) Pick all vertices ≥ threshold of usefulness according to LP.
(I) S =

{
v
∣∣∣ x̂v ≥ 1/2

}
.

(J) Claim: S a valid vertex cover, and cost is low.
(K) Indeed, edge cover as: ∀vu ∈ E have x̂v + x̂u ≥ 1.
(L) x̂v, x̂u ∈ (0, 1)

=⇒ x̂v ≥ 1/2 or x̂u ≥ 1/2.
=⇒ v ∈ S or u ∈ S (or both).
=⇒ S covers all the edges of G.

18.1.1.4 Cost of solution

Cost of S:

cS =
∑
v∈S

cv =
∑
v∈S

1 · cv ≤
∑
v∈S

2x̂v · cv ≤ 2
∑
v∈V

x̂vcv = 2α̂ ≤ 2αI ,

since x̂v ≥ 1/2 as v ∈ S.
αI is cost of the optimal solution =⇒

Theorem 18.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single
LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes
polynomial time.

18.1.2 The lessons we can take away
18.1.2.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(C) Solving a relaxation of an optimization problem into a LP provides us with insight.
(D) But... have to be creative in the rounding.

18.2 Revisiting Set Cover
18.2.0.2 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen O(log n) approximation.

Set Cover
Instance: (S,F)

S - a set of n elements
F - a family of subsets of S, s.t. ⋃X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers S.
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18.2.0.3 Set Cover – IP & LP

min α =
∑
U∈F

xU ,

s.t. xU ∈ {0, 1} ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

Next, we relax this IP into the following LP.

min α =
∑
U∈F

xU ,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

18.2.0.4 Set Cover – IP & LP

(A) LP solution: ∀U ∈ F, x̂U , and α̂.
(B) Opt IP solution: ∀U ∈ F, xIU , and αI .
(C) Use LP solution to guide in rounding process.
(D) If x̂U is close to 1 then pick U to cover.
(E) If x̂U close to 0 do not.
(F) Idea: Pick U ∈ F: randomly choose U with probability x̂U .
(G) Resulting family of sets G.
(H) ZS: indicator variable. 1 if S ∈ G.
(I) Cost of G is ∑S∈F ZS, and the expected cost is E

[
cost of G

]
= E[∑S∈F ZS] = ∑

S∈F E
[
ZS

]
=∑

S∈F Pr
[
S ∈ G

]
= ∑

S∈F x̂S = α̂ ≤ αI .

(J) In expectation, G is not too expensive.
(K) Bigus problumos: G might fail to cover some element s ∈ S.

18.2.0.5 Set Cover – Rounding continued

(A) Solution: Repeat rounding stage m = 10 dlg ne = O(log n) times.
(B) n = |S|.
(C) Gi: random cover computed in ith iteration.
(D) H = ∪iGi. Return H as the required cover.

18.2.0.6 The set H covers S

(A) For an element s ∈ S, we have that ∑
U∈F,s∈U

x̂U ≥ 1, (18.2)

(B) probability s not covered by Gi (ith iteration set).
Pr
[
s not covered by Gi

]
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= Pr
[

no U ∈ F, s.t. s ∈ U picked into Gi

]
= ∏

U∈F,s∈U Pr
[
U was not picked into Gi

]
=

∏
U∈F,s∈U

(1− x̂U) ≤
∏

U∈F,s∈U
exp(−x̂U)

= exp
(
−∑U∈F,s∈U x̂U

)
≤ exp(−1) ≤ 1

2 , ≤
1
2

(C) probability s is not covered in all m iterations ≤
(

1
2

)m
< 1

n10 ,

(D) ...since m = O(log n).
(E) probability one of n elements of S is not covered by H is ≤ n(1/n10) = 1/n9.

18.2.0.7 Cost of solution

(A) Have: E
[
cost of Gi

]
≤ αI .

(B) =⇒ Each iteration expected cost of cover ≤ cost of optimal solution (i.e., αI).
(C) Expected cost of the solution is

cH ≤
∑
i

cBi
≤ mαI = O

(
αI log n

)
.

18.2.0.8 The result

Theorem 18.2.1. By solving an LP one can get an O(log n)-approximation to set cover by a random-
ized algorithm. The algorithm succeeds with high probability.

18.3 Minimizing congestion
18.3.0.9 Minimizing congestion by example

π1 π1

σ1

π1

σ1
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σ2
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σ3
π3
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π2

σ3

π1

σ2

σ3

18.3.0.10 Minimizing congestion

(A) G: graph. n vertices.
(B) πi, σi paths with the same endpoints vi, ui ∈ V(G), for i = 1, . . . , t.
(C) Rule I: Send one unit of flow from vi to ui.
(D) Rule II: Choose whether to use πi or σi.
(E) Target: No edge in G is being used too much.

Definition 18.3.1. Given a set X of paths in a graph G, the congestion of X is the maximum
number of paths in X that use the same edge.
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18.3.0.11 Minimizing congestion

(A) IP =⇒ LP:

min w

s.t. xi ≥ 0 i = 1, . . . , t,
xi ≤ 1 i = 1, . . . , t,∑
e∈πi

xi +
∑
e∈σi

(1− xi) ≤ w ∀e ∈ E.

(B) x̂i: value of xi in the optimal LP solution.
(C) ŵ: value of w in LP solution.
(D) Optimal congestion must be bigger than ŵ.
(E) Xi: random variable one with probability x̂i, and zero otherwise.
(F) If Xi = 1 then use π to route from vi to ui.
(G) Otherwise use σi.

18.3.0.12 Minimizing congestion

(A) Congestion of e is Ye = ∑
e∈πi

Xi +∑
e∈σi

(1−Xi).
(B) And in expectation

αe = E
[
Ye
]

= E
[∑

e∈πi

Xi +
∑
e∈σi

(1−Xi)
]

=
∑
e∈πi

E
[
Xi

]
+
∑
e∈σi

E
[
(1−Xi)

]
=
∑
e∈πi

x̂i +
∑
e∈σi

(1− x̂i) ≤ ŵ.

(C) ŵ: Fractional congestion (from LP solution).

18.3.0.13 Minimizing congestion - continued

(A) Ye = ∑
e∈πi

Xi +∑
e∈σi

(1−Xi).
(B) Ye is just a sum of independent 0/1 random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!

18.3.0.14 Minimizing congestion - continued

(A) By Chernoff inequality:

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−αeδ

2

4

)
≤ exp

(
−ŵδ

2

4

)
.

(B) Let δ =
√

400
ŵ

ln t. We have that

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−δ

2ŵ

4

)
≤ 1
t100 ,

(C) If t ≥ n1/50 =⇒ ∀ edges in graph congestion ≤ (1 + δ)ŵ.
(D) t: Number of pairs, n: Number of vertices in G.
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18.3.0.15 Minimizing congestion - continued

(A) Got: For δ =
√

400
ŵ

ln t. We have

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−δ

2ŵ

4

)
≤ 1
t100 ,

(B) Play with the numbers. If t = n, and ŵ ≥
√
n. Then, the solution has congestion larger than the

optimal solution by a factor of

1 + δ = 1 +
√

20
ŵ

ln t ≤ 1 +
√

20 lnn
n1/4 ,

which is of course extremely close to 1, if n is sufficiently large.

18.3.0.16 Minimizing congestion: result

Theorem 18.3.2. (A) G: Graph n vertices.
(B) (s1, t1), . . . , (st, tt): pairs o vertices
(C) πi, σi: two different paths connecting si to ti
(D) ŵ: Fractional congestion at least n1/2.
(E) opt: Congestion of optimal solution.
(F) =⇒ In polynomial time (LP solving time) choose paths

(A) congestion ∀ edges: ≤ (1 + δ)opt

(B) δ =

√√√√20

ŵ
ln t.

18.3.0.17 When the congestion is low

(A) Assume ŵ is a constant.
(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set δ = c ln t/ ln ln t, where c is a constant. For µ = αe, we have that

Pr
[
Ye ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ

= exp
(
µ
(
δ − (1 + δ) ln(1 + δ)

))

= exp
(
− µc′ ln t

)
≤ 1
tO(1) ,

where c′ is a constant that depends on c and grows if c grows.

18.3.0.18 When the congestion is low

(A) Just proved that...
(B) if the optimal congestion is O(1), then...
(C) algorithm outputs a solution with congestion O(log t/ log log t), and this holds with high probability.
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18.4 Reminder about Chernoff inequality
18.4.0.19 The Chernoff Bound — General Case
18.4.0.20 Chernoff inequality

Problem 18.4.1. Let X1, . . . Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi, Pr

[
Xi = 0

]
= 1− pi,

Y =
∑
i

Xi, and µ = E
[
Y
]
.

We are interested in bounding the probability that Y ≥ (1 + δ)µ.

18.4.0.21 Chernoff inequality

Theorem 18.4.2 (Chernoff inequality). For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e− 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

and

Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e− 1.

18.4.0.22 More Chernoff...

Theorem 18.4.3. Under the same assumptions as the theorem above, we have

Pr
[
Y < (1− δ)µ

]
≤ exp

(
−µδ

2

2

)
.
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