# Chapter 18

# Approximation Algorithms using Linear Programming

CS 573: Algorithms, Fall 2014

October 28, 2014

# $\begin{array}{c} {\bf Part~I} \\ {\bf Weighted~vertex~cover} \end{array}$

# 18.1 Weighted vertex cover

#### 18.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V, E).

Each vertex  $v \in V$ : cost  $c_v$ .

Compute a vertex cover of minimum cost.

- (A) vertex cover: subset of vertices V so each edge is covered.
- (B) NP-Hard
- (C) ...unweighted **Vertex Cover** problem.
- (D) ... write as an integer program (IP):
- (E)  $\forall v \in V: x_v = 1 \iff v \text{ in the vertex cover.}$
- (F)  $\forall \mathsf{vu} \in \mathsf{E}$ : covered.  $\Longrightarrow x_\mathsf{v} \vee x_\mathsf{u}$  true.  $\Longrightarrow x_\mathsf{v} + x_\mathsf{u} \ge 1$ .
- (G) minimize total cost:  $\min \sum_{v \in V} x_v c_v$ .

#### 18.1.1 Weighted vertex cover

#### 18.1.1.1 State as $IP \implies Relax \implies LP$

$$\min \sum_{\mathbf{v} \in V} c_{\mathbf{v}} x_{\mathbf{v}},$$
such that 
$$x_{\mathbf{v}} \in \{0, 1\} \qquad \forall \mathbf{v} \in V \qquad (18.1)$$

$$x_{\mathbf{v}} + x_{\mathbf{u}} > 1 \qquad \forall \mathbf{v} \mathbf{u} \in E.$$

- (A) ... NP-Hard.
- (B) relax the integer program.
- (C) allow  $x_{\mathsf{v}}$  get values  $\in [0, 1]$ .
- (D)  $x_{\mathsf{v}} \in \{0,1\}$  replaced by  $0 \le x_{\mathsf{v}} \le 1$ . The resulting LP is

$$\begin{aligned} & \min & & \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ & \text{s.t.} & & 0 \leq x_{\mathbf{v}} & & \forall \mathbf{v} \in \mathbf{V}, \\ & & & x_{\mathbf{v}} \leq 1 & & \forall \mathbf{v} \in \mathbf{V}, \\ & & & x_{\mathbf{v}} + x_{\mathbf{u}} \geq 1 & \forall \mathbf{v} \mathbf{u} \in \mathbf{E}. \end{aligned}$$

#### 18.1.1.2 Weighted vertex cover – rounding the LP

- (A) Optimal solution to this LP:  $\widehat{x_{v}}$  value of var  $X_{v}$ ,  $\forall v \in V$ .
- (B) optimal value of LP solution is  $\widehat{\alpha} = \sum_{v \in V} c_v \widehat{x_v}$ .
- (C) optimal integer solution:  $x_{\mathbf{v}}^{I}, \forall \mathbf{v} \in \mathsf{V} \text{ and } \alpha^{I}$ .
- (D) Any valid solution to IP is valid solution for LP!
- (E)  $\hat{\alpha} \leq \alpha^I$ .

Integral solution not better than LP.

- (F) Got fractional solution (i.e., values of  $\widehat{x_{\mathbf{v}}}$ ).
- (G) Fractional solution is better than the optimal cost.
- (H) Q: How to turn fractional solution into a (valid!) integer solution?
- (I) Using **rounding**.

#### 18.1.1.3 How to round?

- (A) consider vertex  $\mathbf{v}$  and fractional value  $\widehat{x}_{\mathbf{v}}$ .
- (B) If  $\widehat{x_{\mathsf{v}}} = 1$  then include in solution!
- (C) If  $\widehat{x_{\mathbf{v}}} = 0$  then do **<u>not</u>**not include in solution.

- (D) if  $\widehat{x_{\mathbf{v}}} = 0.9 \implies \mathbf{LP}$  considers  $\mathbf{v}$  as being 0.9 useful.
- (E) The LP puts its money where its belief is...
- (F) ... $\hat{\alpha}$  value is a function of this "belief" generated by the LP.
- (G) Big idea: Trust LP values as guidance to usefulness of vertices.
- (H) Pick all vertices  $\geq$  threshold of usefulness according to LP.
- (I)  $S = \left\{ \mathbf{v} \mid \widehat{x_{\mathbf{v}}} \ge 1/2 \right\}$ .
- (J) Claim: S a valid vertex cover, and cost is low.
- (K) Indeed, edge cover as:  $\forall vu \in E$  have  $\widehat{x_v} + \widehat{x_u} \ge 1$ .
- (L)  $\widehat{x_{\mathsf{v}}}, \widehat{x_{\mathsf{u}}} \in (0,1)$ 
  - $\implies \widehat{x_{\mathsf{v}}} \ge 1/2 \text{ or } \widehat{x_{\mathsf{u}}} \ge 1/2.$
  - $\implies$   $v \in S$  or  $u \in S$  (or both).
  - $\implies$  S covers all the edges of G.

#### 18.1.1.4 Cost of solution

Cost of S:

$$\mathsf{c}_S = \sum_{\mathsf{v} \in S} \mathsf{c}_\mathsf{v} = \sum_{\mathsf{v} \in S} 1 \cdot \mathsf{c}_\mathsf{v} \le \sum_{\mathsf{v} \in S} 2\widehat{x_\mathsf{v}} \cdot \mathsf{c}_\mathsf{v} \le 2 \sum_{\mathsf{v} \in \mathsf{V}} \widehat{x_\mathsf{v}} \mathsf{c}_\mathsf{v} = 2\widehat{\alpha} \le 2\alpha^I,$$

since  $\widehat{x_{\mathsf{v}}} \geq 1/2$  as  $\mathsf{v} \in S$ .

 $\alpha^I$  is cost of the optimal solution  $\Longrightarrow$ 

**Theorem 18.1.1.** The **Weighted Vertex Cover** problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

# 18.1.2 The lessons we can take away

# 18.1.2.1 Or not - boring, boring, boring.

- (A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- (B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- (C) Solving a *relaxation* of an optimization problem into a LP provides us with insight.
- (D) But... have to be creative in the rounding.

# 18.2 Revisiting Set Cover

# 18.2.0.2 Revisiting Set Cover

- (A) Purpose: See new technique for an approximation algorithm.
- (B) Not better than greedy algorithm already seen  $O(\log n)$  approximation.

# **Set Cover**

Instance:  $(S, \mathcal{F})$ 

S - a set of n elements

 $\mathcal{F}$  - a family of subsets of S, s.t.  $\bigcup_{X \in \mathcal{F}} X = S$ .

Question: The set  $\mathcal{X} \subseteq F$  such that  $\mathcal{X}$  contains as few sets as possible, and  $\mathcal{X}$  covers S.

#### 18.2.0.3 Set Cover – IP & LP

$$\begin{aligned} & \min & & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \text{s.t.} & & x_U \in \{0, 1\} & & \forall U \in \mathcal{F}, \\ & & \sum_{U \in \mathcal{F}, s \in U} x_U \geq 1 & & \forall s \in S. \end{aligned}$$

Next, we relax this IP into the following LP.

$$\min \qquad \alpha = \sum_{U \in \mathcal{F}} x_U,$$

$$0 \le x_U \le 1 \qquad \forall U \in \mathcal{F},$$

$$\sum_{U \in \mathcal{F}, s \in U} x_U \ge 1 \qquad \forall s \in S.$$

#### 18.2.0.4 Set Cover – IP & LP

- (A) LP solution:  $\forall U \in \mathcal{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}.$
- (B) Opt IP solution:  $\forall U \in \mathcal{F}, x_U^I$ , and  $\alpha^I$ .
- (C) Use LP solution to guide in rounding process.
- (D) If  $\widehat{x_U}$  is close to 1 then pick U to cover.
- (E) If  $\widehat{x_U}$  close to 0 do not.
- (F) Idea: Pick  $U \in \mathcal{F}$ : randomly choose U with **probability**  $\widehat{x_U}$ .
- (G) Resulting family of sets 9.
- (H)  $Z_S$ : indicator variable. 1 if  $S \in \mathcal{G}$ .
- (I) Cost of  $\mathfrak{G}$  is  $\sum_{S\in\mathfrak{F}}Z_S$ , and the expected cost is  $\mathbf{E}\Big[\text{cost of }\mathfrak{G}\Big] = \mathbf{E}[\sum_{S\in\mathfrak{F}}Z_S] = \sum_{S\in\mathfrak{F}}\mathbf{E}\Big[Z_S\Big] = \sum_{S\in\mathfrak{F}}\mathbf{Pr}\Big[S\in\mathfrak{G}\Big] = \sum_{S\in\mathfrak{F}}\widehat{x_S} = \widehat{\alpha} \leq \alpha^I$ .
- (J) In expectation,  $\mathcal{G}$  is not too expensive.
- (K) Bigus problumos:  $\mathcal{G}$  might fail to cover some element  $s \in S$ .

#### 18.2.0.5 **Set Cover** – Rounding continued

- (A) **Solution**: Repeat rounding stage  $m = 10 \lceil \lg n \rceil = O(\log n)$  times.
- (B) n = |S|.
- (C)  $\mathfrak{G}_i$ : random cover computed in *i*th iteration.
- (D)  $\mathcal{H} = \bigcup_i \mathcal{G}_i$ . Return  $\mathcal{H}$  as the required cover.

#### 18.2.0.6 The set $\mathcal{H}$ covers S

(A) For an element  $s \in S$ , we have that

$$\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U} \ge 1,\tag{18.2}$$

(B) probability s not covered by  $\mathcal{G}_i$  (ith iteration set).  $\mathbf{Pr}[s \text{ not covered by } \mathcal{G}_i]$ 

$$\begin{split} &= \mathbf{Pr} \Big[ \text{ no } U \in \mathfrak{F}, \text{ s.t. } s \in U \text{ picked into } \mathfrak{G}_i \Big] \\ &= \prod_{U \in \mathcal{F}, s \in U} \mathbf{Pr} \Big[ U \text{ was not picked into } \mathfrak{G}_i \Big] \\ &= \prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U}) \\ &= \exp \Big( - \sum_{U \in \mathcal{F}, s \in U} \widehat{x_U} \Big) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2} \end{split}$$

- (C) probability s is not covered in all m iterations  $\leq \left(\frac{1}{2}\right)^m < \frac{1}{n^{10}}$ ,
- (D) ...since  $m = O(\log n)$ .
- (E) probability one of n elements of S is not covered by  $\mathcal{H}$  is  $\leq n(1/n^{10}) = 1/n^9$ .

#### 18.2.0.7 Cost of solution

- (A) Have:  $\mathbf{E} \Big[ \text{cost of } \mathfrak{G}_i \Big] \leq \alpha^I$ .
- (B)  $\implies$  Each iteration expected cost of cover  $\leq$  cost of optimal solution (i.e.,  $\alpha^I$ ).
- (C) Expected cost of the solution is

$$c_{\mathcal{H}} \leq \sum_{i} c_{B_i} \leq m\alpha^I = O(\alpha^I \log n)$$
.

#### 18.2.0.8 The result

**Theorem 18.2.1.** By solving an LP one can get an  $O(\log n)$ -approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.

# 18.3 Minimizing congestion

### 18.3.0.9 Minimizing congestion by example



- (A)  $\mathsf{G}$ : graph. n vertices.
- (B)  $\pi_i$ ,  $\sigma_i$  paths with the same endpoints  $v_i$ ,  $u_i \in V(G)$ , for i = 1, ..., t.
- (C) Rule I: Send one unit of flow from  $v_i$  to  $u_i$ .
- (D) Rule II: Choose whether to use  $\pi_i$  or  $\sigma_i$ .
- (E) Target: No edge in G is being used too much.

Definition 18.3.1. Given a set X of paths in a graph G, the **congestion** of X is the maximum number of paths in X that use the same edge.

#### 18.3.0.11 Minimizing congestion

(A)  $IP \implies LP$ :

$$\begin{array}{ll} \min & w \\ \text{s.t.} & x_i \geq 0 \\ & x_i \leq 1 \\ & \sum\limits_{\mathbf{e} \in \pi_i} x_i + \sum\limits_{\mathbf{e} \in \sigma_i} (1-x_i) \leq w \end{array} \qquad \qquad \begin{aligned} i &= 1, \dots, t, \\ i &= 1, \dots, t, \end{aligned}$$

- (B)  $\widehat{x_i}$ : value of  $x_i$  in the optimal LP solution.
- (C)  $\widehat{w}$ : value of w in LP solution.
- (D) Optimal congestion must be bigger than  $\widehat{w}$ .
- (E)  $X_i$ : random variable one with probability  $\widehat{x_i}$ , and zero otherwise.
- (F) If  $X_i = 1$  then use  $\pi$  to route from  $\mathbf{v}_i$  to  $\mathbf{u}_i$ .
- (G) Otherwise use  $\sigma_i$ .

#### 18.3.0.12 Minimizing congestion

- (A) Congestion of e is  $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$ .
- (B) And in expectation

$$\begin{split} \alpha_{\mathsf{e}} &= \mathbf{E} \big[ Y_{\mathsf{e}} \big] = \mathbf{E} \bigg[ \sum_{\mathsf{e} \in \pi_i} X_i + \sum_{\mathsf{e} \in \sigma_i} (1 - X_i) \bigg] \\ &= \sum_{\mathsf{e} \in \pi_i} \mathbf{E} \big[ X_i \big] + \sum_{\mathsf{e} \in \sigma_i} \mathbf{E} \big[ (1 - X_i) \big] \\ &= \sum_{\mathsf{e} \in \pi_i} \widehat{x_i} + \sum_{\mathsf{e} \in \sigma_i} (1 - \widehat{x_i}) \leq \widehat{w}. \end{split}$$

(C)  $\widehat{w}$ : Fractional congestion (from LP solution).

## 18.3.0.13 Minimizing congestion - continued

- (A)  $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$ .
- (B)  $Y_e$  is just a sum of independent 0/1 random variables!
- (C) Chernoff inequality tells us sum can not be too far from expectation!

# 18.3.0.14 Minimizing congestion - continued

(A) By Chernoff inequality:

$$\mathbf{Pr}\Big[Y_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\Big] \leq \exp\left(-\frac{\alpha_{\mathsf{e}}\delta^2}{4}\right) \leq \exp\left(-\frac{\widehat{w}\delta^2}{4}\right).$$

(B) Let  $\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$ . We have that

$$\mathbf{Pr}\big[Y_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\bigg(-\frac{\delta^2 \widehat{w}}{4}\bigg) \leq \frac{1}{t^{100}},$$

- (C) If  $t \ge n^{1/50} \implies \forall$  edges in graph congestion  $\le (1 + \delta)\widehat{w}$ .
- (D) t: Number of pairs, n: Number of vertices in G.

#### 18.3.0.15 Minimizing congestion - continued

(A) Got: For  $\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$ . We have

$$\mathbf{Pr}\big[Y_{\mathsf{e}} \ge (1+\delta)\alpha_{\mathsf{e}}\big] \le \exp\left(-\frac{\delta^2 \widehat{w}}{4}\right) \le \frac{1}{t^{100}},$$

(B) Play with the numbers. If t = n, and  $\widehat{w} \ge \sqrt{n}$ . Then, the solution has congestion larger than the optimal solution by a factor of

$$1 + \delta = 1 + \sqrt{\frac{20}{\widehat{w}} \ln t} \le 1 + \frac{\sqrt{20 \ln n}}{n^{1/4}},$$

which is of course extremely close to 1, if n is sufficiently large.

#### 18.3.0.16 Minimizing congestion: result

**Theorem 18.3.2.** (A) G: Graph n vertices.

- (B)  $(s_1, t_1), \ldots, (s_t, t_t)$ : pairs o vertices
- (C)  $\pi_i, \sigma_i$ : two different paths connecting  $s_i$  to  $t_i$
- (D)  $\widehat{w}$ : Fractional congestion at least  $n^{1/2}$ .
- (E) opt: Congestion of optimal solution.
- $(F) \implies In polynomial time (LP solving time) choose paths$ 
  - (A) congestion  $\forall$  edges:  $\leq (1 + \delta)$ opt

(B) 
$$\delta = \sqrt{\frac{20}{\widehat{w}}} \ln t$$
.

# 18.3.0.17 When the congestion is low

- (A) Assume  $\widehat{w}$  is a constant.
- (B) Can get a better bound by using the Chernoff inequality in its more general form.
- (C) set  $\delta = c \ln t / \ln \ln t$ , where c is a constant. For  $\mu = \alpha_{\mathsf{e}}$ , we have that

$$\mathbf{Pr} \Big[ Y_{\mathsf{e}} \ge (1+\delta)\mu \Big] \le \left( \frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^{\mu}$$

$$= \exp \left( \mu \Big( \delta - (1+\delta) \ln(1+\delta) \Big) \Big)$$

$$= \exp \left( -\mu c' \ln t \right) \le \frac{1}{t^{O(1)}},$$

where c' is a constant that depends on c and grows if c grows.

#### 18.3.0.18 When the congestion is low

- (A) Just proved that...
- (B) if the optimal congestion is O(1), then...
- (C) algorithm outputs a solution with congestion  $O(\log t/\log\log t)$ , and this holds with high probability.

# 18.4 Reminder about Chernoff inequality

18.4.0.19 The Chernoff Bound — General Case 18.4.0.20 Chernoff inequality

Problem 18.4.1. Let  $X_1, \ldots X_n$  be n independent Bernoulli trials, where

$$\mathbf{Pr}[X_i = 1] = p_i, \qquad \mathbf{Pr}[X_i = 0] = 1 - p_i,$$

$$Y = \sum_i X_i, \quad \text{and} \quad \mu = \mathbf{E}[Y].$$

We are interested in bounding the probability that  $Y \geq (1 + \delta)\mu$ .

#### 18.4.0.21 Chernoff inequality

Theorem 18.4.2 (Chernoff inequality). For any  $\delta > 0$ ,

$$\mathbf{Pr}\big[Y > (1+\delta)\mu\big] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Or in a more simplified form, for any  $\delta \leq 2e - 1$ ,

$$\mathbf{Pr}[Y > (1+\delta)\mu] < \exp(-\mu\delta^2/4),$$

and

$$\mathbf{Pr}\big[Y > (1+\delta)\mu\big] < 2^{-\mu(1+\delta)},$$

for  $\delta \geq 2e - 1$ .

#### 18.4.0.22 More Chernoff...

**Theorem 18.4.3.** Under the same assumptions as the theorem above, we have

$$\mathbf{Pr}[Y < (1 - \delta)\mu] \le \exp\left(-\mu \frac{\delta^2}{2}\right).$$