
Chapter 18

Approximation Algorithms using Linear
Programming

CS 573: Algorithms, Fall 2014
October 28, 2014

1

2

Part I

Weighted vertex cover

3

18.1 Weighted vertex cover
18.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V,E).
Each vertex v ∈ V: cost cv.
Compute a vertex cover of minimum cost.

(A) vertex cover: subset of vertices V so each edge is covered.
(B) NP-Hard
(C) ...unweighted Vertex Cover problem.
(D) ... write as an integer program (IP):
(E) ∀v ∈ V: xv = 1 ⇐⇒ v in the vertex cover.
(F) ∀vu ∈ E: covered. =⇒ xv ∨ xu true. =⇒ xv + xu ≥ 1.
(G) minimize total cost: min∑v∈V xvcv.

18.1.1 Weighted vertex cover
18.1.1.1 State as IP =⇒ Relax =⇒ LP

min
∑
v∈V

cvxv,

such that xv ∈ {0, 1} ∀v ∈ V (18.1)
xv + xu ≥ 1 ∀vu ∈ E.

(A) ... NP-Hard.
(B) relax the integer program.
(C) allow xv get values ∈ [0, 1].
(D) xv ∈ {0, 1} replaced by 0 ≤ xv ≤ 1. The

resulting LP is

min
∑
v∈V

cvxv,

s.t. 0 ≤ xv ∀v ∈ V,
xv ≤ 1 ∀v ∈ V,
xv + xu ≥ 1 ∀vu ∈ E.

18.1.1.2 Weighted vertex cover – rounding the LP

(A) Optimal solution to this LP: x̂v value of var Xv, ∀v ∈ V.
(B) optimal value of LP solution is α̂ = ∑

v∈V cvx̂v.
(C) optimal integer solution: xIv, ∀v ∈ V and αI .
(D) Any valid solution to IP is valid solution for LP!
(E) α̂ ≤ αI .

Integral solution not better than LP.
(F) Got fractional solution (i.e., values of x̂v).
(G) Fractional solution is better than the optimal cost.
(H) Q: How to turn fractional solution into a (valid!) integer solution?
(I) Using rounding.

18.1.1.3 How to round?

(A) consider vertex v and fractional value x̂v.
(B) If x̂v = 1 then include in solution!
(C) If x̂v = 0 then do notnot include in solution.

5

(D) if x̂v = 0.9 =⇒ LP considers v as being 0.9 useful.
(E) The LP puts its money where its belief is...
(F) ...α̂ value is a function of this “belief” generated by the LP.
(G) Big idea: Trust LP values as guidance to usefulness of vertices.
(H) Pick all vertices ≥ threshold of usefulness according to LP.
(I) S =

{
v
∣∣∣ x̂v ≥ 1/2

}
.

(J) Claim: S a valid vertex cover, and cost is low.
(K) Indeed, edge cover as: ∀vu ∈ E have x̂v + x̂u ≥ 1.
(L) x̂v, x̂u ∈ (0, 1)

=⇒ x̂v ≥ 1/2 or x̂u ≥ 1/2.
=⇒ v ∈ S or u ∈ S (or both).
=⇒ S covers all the edges of G.

18.1.1.4 Cost of solution

Cost of S:

cS =
∑
v∈S

cv =
∑
v∈S

1 · cv ≤
∑
v∈S

2x̂v · cv ≤ 2
∑
v∈V

x̂vcv = 2α̂ ≤ 2αI ,

since x̂v ≥ 1/2 as v ∈ S.
αI is cost of the optimal solution =⇒

Theorem 18.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single
LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes
polynomial time.

18.1.2 The lessons we can take away
18.1.2.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(C) Solving a relaxation of an optimization problem into a LP provides us with insight.
(D) But... have to be creative in the rounding.

18.2 Revisiting Set Cover
18.2.0.2 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen O(log n) approximation.

Set Cover
Instance: (S,F)

S - a set of n elements
F - a family of subsets of S, s.t. ⋃X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers S.

6

18.2.0.3 Set Cover – IP & LP

min α =
∑
U∈F

xU ,

s.t. xU ∈ {0, 1} ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

Next, we relax this IP into the following LP.

min α =
∑
U∈F

xU ,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

18.2.0.4 Set Cover – IP & LP

(A) LP solution: ∀U ∈ F, x̂U , and α̂.
(B) Opt IP solution: ∀U ∈ F, xIU , and αI .
(C) Use LP solution to guide in rounding process.
(D) If x̂U is close to 1 then pick U to cover.
(E) If x̂U close to 0 do not.
(F) Idea: Pick U ∈ F: randomly choose U with probability x̂U .
(G) Resulting family of sets G.
(H) ZS: indicator variable. 1 if S ∈ G.
(I) Cost of G is ∑S∈F ZS, and the expected cost is E

[
cost of G

]
= E[∑S∈F ZS] = ∑

S∈F E
[
ZS

]
=∑

S∈F Pr
[
S ∈ G

]
= ∑

S∈F x̂S = α̂ ≤ αI .

(J) In expectation, G is not too expensive.
(K) Bigus problumos: G might fail to cover some element s ∈ S.

18.2.0.5 Set Cover – Rounding continued

(A) Solution: Repeat rounding stage m = 10 dlg ne = O(log n) times.
(B) n = |S|.
(C) Gi: random cover computed in ith iteration.
(D) H = ∪iGi. Return H as the required cover.

18.2.0.6 The set H covers S

(A) For an element s ∈ S, we have that ∑
U∈F,s∈U

x̂U ≥ 1, (18.2)

(B) probability s not covered by Gi (ith iteration set).
Pr
[
s not covered by Gi

]
7

= Pr
[

no U ∈ F, s.t. s ∈ U picked into Gi

]
= ∏

U∈F,s∈U Pr
[
U was not picked into Gi

]
=

∏
U∈F,s∈U

(1− x̂U) ≤
∏

U∈F,s∈U
exp(−x̂U)

= exp
(
−∑U∈F,s∈U x̂U

)
≤ exp(−1) ≤ 1

2 , ≤
1
2

(C) probability s is not covered in all m iterations ≤
(

1
2

)m
< 1

n10 ,

(D) ...since m = O(log n).
(E) probability one of n elements of S is not covered by H is ≤ n(1/n10) = 1/n9.

18.2.0.7 Cost of solution

(A) Have: E
[
cost of Gi

]
≤ αI .

(B) =⇒ Each iteration expected cost of cover ≤ cost of optimal solution (i.e., αI).
(C) Expected cost of the solution is

cH ≤
∑
i

cBi
≤ mαI = O

(
αI log n

)
.

18.2.0.8 The result

Theorem 18.2.1. By solving an LP one can get an O(log n)-approximation to set cover by a random-
ized algorithm. The algorithm succeeds with high probability.

18.3 Minimizing congestion
18.3.0.9 Minimizing congestion by example

π1 π1

σ1

π1

σ1

π2

σ2

π1

σ1

π2

σ2

σ3
π3

σ1

π2

σ3

π1

σ2

σ3

18.3.0.10 Minimizing congestion

(A) G: graph. n vertices.
(B) πi, σi paths with the same endpoints vi, ui ∈ V(G), for i = 1, . . . , t.
(C) Rule I: Send one unit of flow from vi to ui.
(D) Rule II: Choose whether to use πi or σi.
(E) Target: No edge in G is being used too much.

Definition 18.3.1. Given a set X of paths in a graph G, the congestion of X is the maximum
number of paths in X that use the same edge.

8

18.3.0.11 Minimizing congestion

(A) IP =⇒ LP:

min w

s.t. xi ≥ 0 i = 1, . . . , t,
xi ≤ 1 i = 1, . . . , t,∑
e∈πi

xi +
∑
e∈σi

(1− xi) ≤ w ∀e ∈ E.

(B) x̂i: value of xi in the optimal LP solution.
(C) ŵ: value of w in LP solution.
(D) Optimal congestion must be bigger than ŵ.
(E) Xi: random variable one with probability x̂i, and zero otherwise.
(F) If Xi = 1 then use π to route from vi to ui.
(G) Otherwise use σi.

18.3.0.12 Minimizing congestion

(A) Congestion of e is Ye = ∑
e∈πi

Xi +∑
e∈σi

(1−Xi).
(B) And in expectation

αe = E
[
Ye
]

= E
[∑

e∈πi

Xi +
∑
e∈σi

(1−Xi)
]

=
∑
e∈πi

E
[
Xi

]
+
∑
e∈σi

E
[
(1−Xi)

]
=
∑
e∈πi

x̂i +
∑
e∈σi

(1− x̂i) ≤ ŵ.

(C) ŵ: Fractional congestion (from LP solution).

18.3.0.13 Minimizing congestion - continued

(A) Ye = ∑
e∈πi

Xi +∑
e∈σi

(1−Xi).
(B) Ye is just a sum of independent 0/1 random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!

18.3.0.14 Minimizing congestion - continued

(A) By Chernoff inequality:

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−αeδ

2

4

)
≤ exp

(
−ŵδ

2

4

)
.

(B) Let δ =
√

400
ŵ

ln t. We have that

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−δ

2ŵ

4

)
≤ 1
t100 ,

(C) If t ≥ n1/50 =⇒ ∀ edges in graph congestion ≤ (1 + δ)ŵ.
(D) t: Number of pairs, n: Number of vertices in G.

9

18.3.0.15 Minimizing congestion - continued

(A) Got: For δ =
√

400
ŵ

ln t. We have

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−δ

2ŵ

4

)
≤ 1
t100 ,

(B) Play with the numbers. If t = n, and ŵ ≥
√
n. Then, the solution has congestion larger than the

optimal solution by a factor of

1 + δ = 1 +
√

20
ŵ

ln t ≤ 1 +
√

20 lnn
n1/4 ,

which is of course extremely close to 1, if n is sufficiently large.

18.3.0.16 Minimizing congestion: result

Theorem 18.3.2. (A) G: Graph n vertices.
(B) (s1, t1), . . . , (st, tt): pairs o vertices
(C) πi, σi: two different paths connecting si to ti
(D) ŵ: Fractional congestion at least n1/2.
(E) opt: Congestion of optimal solution.
(F) =⇒ In polynomial time (LP solving time) choose paths

(A) congestion ∀ edges: ≤ (1 + δ)opt

(B) δ =

√√√√20

ŵ
ln t.

18.3.0.17 When the congestion is low

(A) Assume ŵ is a constant.
(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set δ = c ln t/ ln ln t, where c is a constant. For µ = αe, we have that

Pr
[
Ye ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ

= exp
(
µ
(
δ − (1 + δ) ln(1 + δ)

))

= exp
(
− µc′ ln t

)
≤ 1
tO(1) ,

where c′ is a constant that depends on c and grows if c grows.

18.3.0.18 When the congestion is low

(A) Just proved that...
(B) if the optimal congestion is O(1), then...
(C) algorithm outputs a solution with congestion O(log t/ log log t), and this holds with high probability.

10

18.4 Reminder about Chernoff inequality
18.4.0.19 The Chernoff Bound — General Case
18.4.0.20 Chernoff inequality

Problem 18.4.1. Let X1, . . . Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi, Pr

[
Xi = 0

]
= 1− pi,

Y =
∑
i

Xi, and µ = E
[
Y
]
.

We are interested in bounding the probability that Y ≥ (1 + δ)µ.

18.4.0.21 Chernoff inequality

Theorem 18.4.2 (Chernoff inequality). For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e− 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

and

Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e− 1.

18.4.0.22 More Chernoff...

Theorem 18.4.3. Under the same assumptions as the theorem above, we have

Pr
[
Y < (1− δ)µ

]
≤ exp

(
−µδ

2

2

)
.

11

	Weighted vertex cover
	Weighted vertex cover

	Revisiting Set Cover
	Minimizing congestion
	Reminder about Chernoff inequality

