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Part 1

Weighted vertex cover






18.1 Weighted vertex cover
18.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V, E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.
(A) vertex cover: subset of vertices V so each edge is covered.
(B) NP-Hard
(C) ...unweighted Vertex Cover problem.
(D) ... write as an integer program (IP):
(E) W e V: 2, =1 <= v in the vertex cover.
) Yvu € E: covered. = =z, V x, true. = x,+ 1z, > 1.
) minimize total cost: min Y,y 2yC,.
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18.1.1 Weighted vertex cover
18.1.1.1 State as IP — Relax — LP

min Z CyTy,

vev
such that z, € {0,1} Y eV (18.1)
Ty +x, >1 Vvu € E.
(A) ... NP-Hard. min 3 ey
(B) relax the integer program. ot 0< 1 WV
(C) allow z, get values € [0, 1]. " - ’
(D) z, € {0,1} replaced by 0 < z, < 1. The ry <1 Wev,
resulting LP is z, +x,>1 VYvuekE.

18.1.1.2 Weighted vertex cover — rounding the LP

) Optimal solution to this LP: Z, value of var X, Vv € V.
) optimal value of LP solution is @ = "¢y ¢/ Zy.
) optimal integer solution: zl, W € V and of.
) Any valid solution to IP is valid solution for LP!
) a<al
Integral solution not better than LP.
) Got fractional solution (i.e., values of ).
) Fractional solution is better than the optimal cost.
) Q: How to turn fractional solution into a (valid!) integer solution?
) Using rounding.

18.1.1.3 How to round?

(A) consider vertex v and fractional value .
(B) If z, = 1 then include in solution!
(

C) If z, = 0 then do IlOt not include in solution.
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if z, =0.9 = LP considers v as being 0.9 useful.

The LP puts its money where its belief is...

...a. value is a function of this “belief” generated by the LP.
Big idea: Trust LP values as guidance to usefulness of vertices.
Pick all vertices > threshold of usefulness according to LP.
S={v|m=>1/2}.

Claim: S a valid vertex cover, and cost is low.

Indeed, edge cover as: Yvu € E have =, + 7, > 1.

T Ta € (0,1)

= I, >1/20r 7z, >1/2.

— veE SorueS (or both).

= S covers all the edges of G.
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18.1.1.4 Cost of solution
Cost of S:

cS:ZcV:ZLcVS22@'CVSQZ§CCV:2&§2QI,

veS vesS vesS veV

since T, > 1/2 asv € S.

a! is cost of the optimal solution —

Theorem 18.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single
LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes
polynomial time.

18.1.2 The lessons we can take away
18.1.2.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.

(B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(C) Solving a relaxation of an optimization problem into a LP provides us with insight.

(D) But... have to be creative in the rounding.

18.2 Revisiting Set Cover
18.2.0.2 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen O(logn) approximation.

Set Cover
Instance: (S,F)

S - a set of n elements
F - a family of subsets of S, s.t. Uxer X =S.
Question: The set X C F such that X contains as few sets as possible, and X’ covers S.




18.2.0.3 Set Cover — IP & LP

min a= Z Ty,
UeF
st.  zy€{0,1} VU € 7,
Z g > 1 Vs e S.
UeF,seU

Next, we relax this IP into the following LP.

min a = Z Ty,

ves
0<zy <1 VU € T,
Z Ty Z 1 Vs e S.

Ued,scU

18.2.0.4 Set Cover — IP & LP

LP solution: YU € &, zy, and a.

Opt IP solution: VU € F, z{;, and o'.

Use LP solution to guide in rounding process.

If z is close to 1 then pick U to cover.

If zy close to 0 do not.

Idea: Pick U € F: randomly choose U with probability z;;.
Resulting family of sets G.

Zg: indicator variable. 1if S € G.

Cost of G is > gcq Zg, and the expected cost is E[cost of 9} = E[Xges Zs] = ZSE?E[ZS} =
ZSG?Pr|:S € 9] =YgesTs =a < al.

(J) In expectation, G is not too expensive.
(K) Bigus problumos: § might fail to cover some element s € S.
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18.2.0.5 Set Cover — Rounding continued

(A) Solution: Repeat rounding stage m = 10 [Ilgn]| = O(logn) times.
(B) n=|9].

(C) G;: random cover computed in ith iteration.

(D) H = U;G;. Return H as the required cover.

18.2.0.6 The set H covers S

(A) For an element s € S, we have that

> x>, (18.2)

UeT,scU

(B) probability s not covered by G; (ith iteration set).
Pr[s not covered by 91}



= Pr{ no U € F, s.t. s € U picked into 91}

= HUES",seU Pr

= II a-a)< I ew(-7p)

UeT,seU Ued,seU
—~ 1 1
= exp(— ZUeff,seU fUU) < eXP(—l) < 2 < 35

U was not picked into 9¢]

C) probability s is not covered in all m iterations < (%)m < n—%o,

(
(D) ...since m = O(logn).
(E) probability one of n elements of S is not covered by H is < n(1/n'%) = 1/n°.

18.2.0.7 Cost of solution
(A) Have: E{cost of 92} <al.

(B) = Each iteration expected cost of cover < cost of optimal solution (i.e., af).
(C) Expected cost of the solution is

ey < ZCBi < mal = O(o/logn) )
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18.2.0.8 The result

Theorem 18.2.1. By solving an LP one can get an O(logn)-approximation to set cover by a random-
ized algorithm. The algorithm succeeds with high probability.

18.3 Minimizing congestion
18.3.0.9 Minimizing congestion by example
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(A) G: graph. n vertices.
(B) m;, o; paths with the same endpoints v;,u; € V(G), fori =1,... .
(C) Rule I: Send one unit of flow from v; to u;.
(D) Rule II: Choose whether to use m; or o;.
(E) Target: No edge in G is being used too much.
Definition 18.3.1. Given a set X of paths in a graph G, the congestion of X is the maximum
number of paths in X that use the same edge.



18.3.0.11 Minimizing congestion
(A) IP = LP:

min w

s.t. z; >0 1=1,...,1,
z; <1 1=1,...,t,
S+ Y (1—z)<w Vee E.

ecT; eco;

) T;: value of z; in the optimal LLP solution.

) w: value of w in LP solution.

) Optimal congestion must be bigger than w.

) X;: random variable one with probability Z;, and zero otherwise.
) If X; =1 then use 7 to route from v; to u;.

(G) Otherwise use o;.

18.3.0.12 Minimizing congestion

(A) Congestion of e is Yo = Y ecr. Xi + Deeo, (1 — X5).
(B) And in expectation

= B[] =B[¥ X+ T X))

ecT; eco;

=Y B[X|+ Y E[1-X)]

ecT; eco;

=2 T+ (1-%)<w

ecT; eco;
(C) w: Fractional congestion (from LP solution).

18.3.0.13 Minimizing congestion - continued

(A) }/e - Zeem X’L + Zeeai(l - XZ)
(B) Y is just a sum of independent 0/1 random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!

18.3.0.14 Minimizing congestion - continued

(A) By Chernoff inequality:

2 A2
Pr |:Y; > (1 + (5)Oée:| < exp(—a‘f ) < exp(—wj> .

400
(B) Let 0 =/ —Int. We have that
w

2/\
PI‘[Ye > (1+ (5)044 < exp<—54w> <

$100 ’

o~

(C) If t > n'/% — V edges in graph congestion < (1 + &)w.
(D) ¢: Number of pairs, n: Number of vertices in G.
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18.3.0.15 Minimizing congestion - continued

(A) Got: For § = Ufgolnt We have

T 1
Pr |:Y Z <1+5>Oée:| < exp<—4> S W’

(B) Play with the numbers. If t = n, and w > y/n. Then, the solution has congestion larger than the
optimal solution by a factor of

V201
1+5—1+1/—1nt<1 ?/f”

which is of course extremely close to 1, if n is sufficiently large.

18.3.0.16 Minimizing congestion: result

Theorem 18.3.2. (A) G: Graph n vertices.

(B) (s1,t1),..., (s, t): pairs o vertices

(C) m;,04: two different paths connecting s; to t;

(D) W: Fractional congestion at least n'/?,

(E) opt: Congestion of optimal solution.

(F) = In polynomial time (LP solving time) choose paths
(A) congestion ¥ edges: < (1 + §)opt

(B) 6= | Znt.

18.3.0.17 When the congestion is low

(A) Assume w is a constant.

(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set 6 = cInt/Inlnt, where ¢ is a constant. For p = ae, we have that

65 #
Pr{Ye > (1+ 5)/1} < (W)

— exp (u((s (14 6)In(1+ 5)))

=exp| — puc Int to(l)

where ¢’ is a constant that depends on ¢ and grows if ¢ grows.
18.3.0.18 When the congestion is low

(A) Just proved that...
(B) if the optimal congestion is O(1), then...

(C) algorithm outputs a solution with congestion O(logt/loglogt), and this holds with high probability.
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18.4 Reminder about Chernoff inequality

18.4.0.19 The Chernoff Bound — General Case
18.4.0.20 Chernoff inequality

Problem 18.4.1. Let X4,...X,, be n independent Bernoulli trials, where
Y:ZXZ-, and u:E[Y}.

We are interested in bounding the probability that Y > (1 + d)pu.

18.4.0.21 Chernoff inequality
Theorem 18.4.2 (Chernoff inequality). For any § > 0,

Prly > (1+0)u] < (uf;)w)ﬂ

Or in a more simplified form, for any 6 < 2e — 1,
PI‘[Y > (1+ 5),14 < exp(—,u52/4) :
and
Pr[Y > (14 0)u] < 2740+,
ford >2e—1.

18.4.0.22 More Chernoff...

Theorem 18.4.3. Under the same assumptions as the theorem above, we have

Pr[y < (1-0)u] < exp(—uf) .
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