## Chapter 18

## Approximation Algorithms using Linear Programming

CS 573: Algorithms, Fall 2014
October 28, 2014

## Part I

## Weighted vertex cover

### 18.1 Weighted vertex cover

### 18.1.0.1 Weighted vertex cover

Weighted Vertex Cover problem $G=(\mathrm{V}, \mathrm{E})$.
Each vertex $v \in V$ : cost $\mathrm{c}_{\mathrm{v}}$.
Compute a vertex cover of minimum cost.
(A) vertex cover: subset of vertices V so each edge is covered.
(B) NP-Hard
(C) ...unweighted Vertex Cover problem.
(D) ... write as an integer program (IP):
(E) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=1 \Longleftrightarrow \mathrm{v}$ in the vertex cover.
(F) $\forall \mathrm{vu} \in \mathrm{E}$ : covered. $\Longrightarrow x_{\mathrm{v}} \vee x_{\mathrm{u}}$ true. $\Longrightarrow x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1$.
(G) minimize total cost: $\min \sum_{\mathrm{v} \in \mathrm{V}} x_{\mathrm{v}} \mathrm{c}_{\mathrm{v}}$.

### 18.1.1 Weighted vertex cover

18.1.1.1 State as IP $\Longrightarrow$ Relax $\Longrightarrow$ LP

$$
\begin{align*}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, \\
\text { such that } & x_{\mathrm{v}} \in\{0,1\}  \tag{18.1}\\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1
\end{align*}
$$

(A) ... NP-Hard.
(B) relax the integer program.
(C) allow $x_{\mathrm{v}}$ get values $\in[0,1]$.
(D) $x_{v} \in\{0,1\}$ replaced by $0 \leq x_{v} \leq 1$. The resulting LP is

$$
\begin{array}{|lll|}
\hline \min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & 0 \leq x_{\mathrm{v}} & \forall \mathrm{v} \in \mathrm{~V}, \\
& x_{\mathrm{v}} \leq 1 & \forall \mathrm{v} \in \mathrm{~V}, \\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1 & \forall \mathrm{vu} \in \mathrm{E} . \\
\hline
\end{array}
$$

### 18.1.1.2 Weighted vertex cover - rounding the LP

(A) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of var $X_{\mathrm{v}}, \forall \mathrm{v} \in \mathrm{V}$.
(B) optimal value of LP solution is $\widehat{\alpha}=\sum_{\mathrm{v} \in \mathrm{V}} \mathrm{c}_{\mathrm{v}} \widehat{\mathrm{x}_{\mathrm{v}}}$.
(C) optimal integer solution: $x_{\mathrm{v}}^{I}, \forall \mathrm{v} \in \mathrm{V}$ and $\alpha^{I}$.
(D) Any valid solution to IP is valid solution for LP!
(E) $\widehat{\alpha} \leq \alpha^{I}$.

Integral solution not better than LP.
(F) Got fractional solution (i.e., values of $\widehat{x_{\mathrm{v}}}$ ).
(G) Fractional solution is better than the optimal cost.
(H) Q: How to turn fractional solution into a (valid!) integer solution?
(I) Using rounding.

### 18.1.1.3 How to round?

(A) consider vertex v and fractional value $\widehat{x_{\mathrm{v}}}$.
(B) If $\widehat{x_{\mathrm{v}}}=1$ then include in solution!
(C) If $\widehat{x_{\mathrm{v}}}=0$ then do $\mathbf{1 O t}$ not include in solution.
(D) if $\widehat{x_{\mathrm{v}}}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.
(E) The LP puts its money where its belief is...
(F) ... $\widehat{\alpha}$ value is a function of this "belief" generated by the LP.
(G) Big idea: Trust LP values as guidance to usefulness of vertices.
(H) Pick all vertices $\geq$ threshold of usefulness according to LP.
(I) $S=\left\{\mathrm{v} \mid \widehat{x_{\mathrm{v}}} \geq 1 / 2\right\}$.
(J) Claim: $S$ a valid vertex cover, and cost is low.
(K) Indeed, edge cover as: $\forall \mathrm{vu} \in \mathrm{E}$ have $\widehat{x_{\mathrm{v}}}+\widehat{x_{\mathrm{u}}} \geq 1$.
(L) $\widehat{x_{\mathrm{v}}}, \widehat{x_{\mathrm{u}}} \in(0,1)$
$\Longrightarrow \widehat{x_{\mathrm{v}}} \geq 1 / 2$ or $\widehat{x_{\mathrm{u}}} \geq 1 / 2$.
$\Longrightarrow \mathrm{v} \in S$ or $\mathrm{u} \in S$ (or both).
$\Longrightarrow S$ covers all the edges of G.

### 18.1.1.4 Cost of solution

Cost of $S$ :

$$
\mathrm{c}_{S}=\sum_{\mathrm{v} \in S} \mathrm{c}_{\mathrm{v}}=\sum_{\mathrm{v} \in S} 1 \cdot \mathrm{c}_{\mathrm{v}} \leq \sum_{\mathrm{v} \in S} 2 \widehat{x_{\mathrm{v}}} \cdot \mathrm{c}_{\mathrm{v}} \leq 2 \sum_{\mathrm{v} \in \mathrm{~V}} \widehat{x_{\mathrm{v}}} \mathrm{c}_{\mathrm{v}}=2 \widehat{\alpha} \leq 2 \alpha^{I},
$$

since $\widehat{x_{\mathrm{v}}} \geq 1 / 2$ as $\mathrm{v} \in S$.
$\alpha^{I}$ is cost of the optimal solution $\Longrightarrow$
Theorem 18.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

### 18.1.2 The lessons we can take away

### 18.1.2.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(C) Solving a relaxation of an optimization problem into a LP provides us with insight.
(D) But... have to be creative in the rounding.

### 18.2 Revisiting Set Cover

### 18.2.0.2 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen $O(\log n)$ approximation.

## Set Cover

Instance: $(S, \mathcal{F})$
$S$ - a set of $n$ elements
$\mathcal{F}$ - a family of subsets of $S$, s.t. $\bigcup_{X \in \mathcal{F}} X=S$.
Question: The set $\mathcal{X} \subseteq F$ such that $\mathcal{X}$ contains as few sets as possible, and $\mathcal{X}$ covers $S$.

### 18.2.0.3 Set Cover - IP \& LP

$$
\begin{array}{lll}
\text { min } & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
\text { s.t. } & x_{U} \in\{0,1\} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S .
\end{array}
$$

Next, we relax this IP into the following LP.

$$
\begin{array}{ll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, \\
& 0 \leq x_{U} \leq 1 \\
\sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall U \in \mathcal{F}, \\
& \forall s \in S
\end{array}
$$

### 18.2.0.4 Set Cover - IP \& LP

(A) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\alpha}$.
(B) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{I}$, and $\alpha^{I}$.
(C) Use LP solution to guide in rounding process.
(D) If $\widehat{x_{U}}$ is close to 1 then pick $U$ to cover.
(E) If $\widehat{x_{U}}$ close to 0 do not.
(F) Idea: Pick $U \in \mathcal{F}$ : randomly choose $U$ with probability $\widehat{x_{U}}$.
(G) Resulting family of sets $\mathcal{G}$.
(H) $Z_{S}$ : indicator variable. 1 if $S \in \mathcal{G}$.
(I) Cost of $\mathcal{G}$ is $\sum_{S \in \mathcal{F}} Z_{S}$, and the expected cost is $\mathbf{E}[\operatorname{cost}$ of $\mathcal{G}]=\mathbf{E}\left[\sum_{S \in \mathcal{F}} Z_{S}\right]=\sum_{S \in \mathcal{F}} \mathbf{E}\left[Z_{S}\right]=$ $\sum_{S \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{S \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha} \leq \alpha^{I}$.
(J) In expectation, $\mathcal{G}$ is not too expensive.
(K) Bigus problumos: $\mathcal{G}$ might fail to cover some element $s \in S$.

### 18.2.0.5 Set Cover - Rounding continued

(A) Solution: Repeat rounding stage $m=10\lceil\lg n\rceil=O(\log n)$ times.
(B) $n=|S|$.
(C) $\mathcal{G}_{i}$ : random cover computed in $i$ th iteration.
(D) $\mathcal{H}=\cup_{i} \mathcal{G}_{i}$. Return $\mathcal{H}$ as the required cover.

### 18.2.0.6 The set $\mathcal{H}$ covers $S$

(A) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{18.2}
\end{equation*}
$$

(B) probability $s$ not covered by $\mathcal{G}_{i}$ (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[\text { no } U \in \mathcal{F}, \text { s.t. } s \in U \text { picked into } \mathcal{G}_{i}\right] \\
& =\prod_{U \in \mathcal{F}, s \in U} \operatorname{Pr}\left[U \text { was not picked into } \mathcal{G}_{i}\right] \\
& =\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right) \leq \prod_{U \in \mathcal{F}, s \in U} \exp \left(-\widehat{x_{U}}\right) \\
& =\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}, \leq \frac{1}{2}
\end{aligned}
$$

(C) probability $s$ is not covered in all $m$ iterations $\leq\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}}$,
(D) ...since $m=O(\log n)$.
(E) probability one of $n$ elements of $S$ is not covered by $\mathcal{H}$ is $\leq n\left(1 / n^{10}\right)=1 / n^{9}$.

### 18.2.0.7 Cost of solution

(A) Have: $\mathbf{E}\left[\right.$ cost of $\left.\mathcal{G}_{i}\right] \leq \alpha^{I}$.
$(\mathrm{B}) \Longrightarrow$ Each iteration expected cost of cover $\leq$ cost of optimal solution (i.e., $\alpha^{I}$ ).
(C) Expected cost of the solution is

$$
\mathrm{c}_{\mathcal{H}} \leq \sum_{i} \mathrm{c}_{B_{i}} \leq m \alpha^{I}=O\left(\alpha^{I} \log n\right)
$$

### 18.2.0.8 The result

Theorem 18.2.1. By solving an LP one can get an $O(\log n)$-approximation to set cover by a randomized algorithm. The algorithm succeeds with high probability.

### 18.3 Minimizing congestion

### 18.3.0.9 Minimizing congestion by example


18.3.0.10 Minimizing congestion
(A) G: graph. $n$ vertices.
(B) $\pi_{i}, \sigma_{i}$ paths with the same endpoints $\mathrm{v}_{i}, \mathrm{u}_{i} \in \mathrm{~V}(\mathrm{G})$, for $i=1, \ldots, t$.
(C) Rule I: Send one unit of flow from $v_{i}$ to $u_{i}$.
(D) Rule II: Choose whether to use $\pi_{i}$ or $\sigma_{i}$.
(E) Target: No edge in $G$ is being used too much.

Definition 18.3.1. Given a set $X$ of paths in a graph G , the congestion of $X$ is the maximum number of paths in $X$ that use the same edge.

### 18.3.0.11 Minimizing congestion

(A) $\mathrm{IP} \Longrightarrow \mathrm{LP}$ :

$$
\begin{array}{clr}
\text { min } & w & \\
\text { s.t. } & x_{i} \geq 0 & i=1, \ldots, t, \\
& x_{i} \leq 1 & i=1, \ldots, t, \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w & \forall \mathrm{e} \in E .
\end{array}
$$

(B) $\widehat{x_{i}}$ : value of $x_{i}$ in the optimal LP solution.
(C) $\widehat{w}$ : value of $w$ in LP solution.
(D) Optimal congestion must be bigger than $\widehat{w}$.
(E) $X_{i}$ : random variable one with probability $\widehat{x_{i}}$, and zero otherwise.
(F) If $X_{i}=1$ then use $\pi$ to route from $v_{i}$ to $u_{i}$.
(G) Otherwise use $\sigma_{i}$.

### 18.3.0.12 Minimizing congestion

(A) Congestion of e is $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(B) And in expectation

$$
\begin{aligned}
\alpha_{\mathrm{e}} & =\mathbf{E}\left[Y_{\mathrm{e}}\right]=\mathbf{E}\left[\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \mathbf{E}\left[X_{i}\right]+\sum_{\mathrm{e} \in \sigma_{i}} \mathbf{E}\left[\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \widehat{x_{i}}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-\widehat{x_{i}}\right) \leq \widehat{w} .
\end{aligned}
$$

(C) $\widehat{w}$ : Fractional congestion (from LP solution).

### 18.3.0.13 Minimizing congestion - continued

(A) $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(B) $Y_{\mathrm{e}}$ is just a sum of independent $0 / 1$ random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!

### 18.3.0.14 Minimizing congestion - continued

(A) By Chernoff inequality:

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\alpha_{\mathrm{e}} \delta^{2}}{4}\right) \leq \exp \left(-\frac{\widehat{w} \delta^{2}}{4}\right)
$$

(B) Let $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have that

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(C) If $t \geq n^{1 / 50} \Longrightarrow \forall$ edges in graph congestion $\leq(1+\delta) \widehat{w}$.
(D) $t$ : Number of pairs, $n$ : Number of vertices in G.

### 18.3.0.15 Minimizing congestion - continued

(A) Got: For $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(B) Play with the numbers. If $t=n$, and $\widehat{w} \geq \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$
1+\delta=1+\sqrt{\frac{20}{\widehat{w}} \ln t} \leq 1+\frac{\sqrt{20 \ln n}}{n^{1 / 4}}
$$

which is of course extremely close to 1 , if $n$ is sufficiently large.

### 18.3.0.16 Minimizing congestion: result

Theorem 18.3.2. (A) G: Graph $n$ vertices.
(B) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$ : pairs o vertices
(C) $\pi_{i}, \sigma_{i}$ : two different paths connecting $s_{i}$ to $t_{i}$
(D) $\widehat{w}$ : Fractional congestion at least $n^{1 / 2}$.
(E) opt: Congestion of optimal solution.
$(F) \Longrightarrow$ In polynomial time (LP solving time) choose paths
(A) congestion $\forall$ edges: $\leq(1+\delta) \mathrm{opt}$
(B) $\delta=\sqrt{\frac{20}{\widehat{\omega}} \ln t}$.

### 18.3.0.17 When the congestion is low

(A) Assume $\widehat{w}$ is a constant.
(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set $\delta=c \ln t / \ln \ln t$, where $c$ is a constant. For $\mu=\alpha_{\mathrm{e}}$, we have that

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \mu\right] & \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\
& =\exp (\mu(\delta-(1+\delta) \ln (1+\delta))) \\
& =\exp \left(-\mu c^{\prime} \ln t\right) \leq \frac{1}{t^{O(1)}}
\end{aligned}
$$

where $c^{\prime}$ is a constant that depends on $c$ and grows if $c$ grows.

### 18.3.0.18 When the congestion is low

(A) Just proved that...
(B) if the optimal congestion is $O(1)$, then...
(C) algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

### 18.4 Reminder about Chernoff inequality

### 18.4.0.19 The Chernoff Bound - General Case <br> 18.4.0.20 Chernoff inequality

Problem 18.4.1. Let $X_{1}, \ldots X_{n}$ be $n$ independent Bernoulli trials, where

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=1\right]=p_{i}, & \operatorname{Pr}\left[X_{i}=0\right]
\end{aligned}=1-p_{i}, ~ 子=\sum_{i} X_{i}, \quad \text { and } \quad \mu=\mathbf{E}[Y] .
$$

We are interested in bounding the probability that $Y \geq(1+\delta) \mu$.

### 18.4.0.21 Chernoff inequality

Theorem 18.4.2 (Chernoff inequality). For any $\delta>0$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

Or in a more simplified form, for any $\delta \leq 2 e-1$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right)
$$

and

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<2^{-\mu(1+\delta)}
$$

for $\delta \geq 2 e-1$.

### 18.4.0.22 More Chernoff...

Theorem 18.4.3. Under the same assumptions as the theorem above, we have

$$
\operatorname{Pr}[Y<(1-\delta) \mu] \leq \exp \left(-\mu \frac{\delta^{2}}{2}\right)
$$

