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Simplex algorithm
Simplex( L̂ a LP )

Transform L̂ into slack form.
Let L be the resulting slack form.
L′ ← Feasible(L)
x ← LPStartSolution(L′)
x ′ ← SimplexInner(L′, x) (*)
z ← objective function value of x ′
if z > 0 then

return “No solution”
x ′′ ← SimplexInner(L, x ′)
return x ′′
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Simplex algorithm...
1. SimplexInner: solves a LP if the trivial solution of

assigning zero to all the nonbasic variables is feasible.
2. L′ = Feasible(L) returns a new LP with feasible

solution.
3. Done by adding new variable x0 to each equality.
4. Set target function in L′ to min x0.
5. original LP L feasible ⇐⇒ LP L′ has feasible solution

with x0 = 0.
6. Apply SimplexInner to L′ and solution computed (for

L′) by LPStartSolution(L′).
7. If x0 = 0 then have a feasible solution to L.
8. Use solution in SimplexInner on L.
9. need to describe SimplexInner: solve LP in slack form

given a feasible solution (all nonbasic vars assigned value
0).
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Notations
B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N| - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables (i.e., num-
ber of inequalities)
A = {aij} - The matrix of coefficients
N ∪ B = {1, . . . , n + m}
v - objective function constant.
LP in slack form is specified by a tuple (N,B,A, b, c, v).
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The corresponding LP
max z = v +

∑
j∈N

cjxj ,

s.t. xi = bi −
∑
j∈N

aijxj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . , n + m.
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Reminder - basic/nonbasic

Basic variables

Nonbasic variables
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The SimplexInner Algorithm
Description SimplexInner algorithm:

1. LP is in slack form.
2. Trivial solution x = τ (i.e., all nonbasic variables zero), is

feasible.
3. objective value for this solution is v .
4. Reminder: Objective function is z = v + ∑

j∈N cjxj .
5. xe: nonbasic variable with positive coefficient in objective

function.
6. Formally: e is one of the indices of

{
j
∣∣∣ cj > 0, j ∈ N

}
.

7. xe is the entering variable (enters set of basic variables).
8. If increase value xe (from current value of 0 in τ )...
9. ... one of basic variables is going to vanish (i.e., become

zero).
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Choosing the leaving variable
1. xe: entering variable
2. xl : leaving variable – vanishing basic variable.
3. increase value of xe till xl becomes zero.
4. How do we now which variable is xl ?
5. set all nonbasic to 0 zero, except xe

6. xi = bi − aiexe, for all i ∈ B.
7. Require: ∀i ∈ B xi = bi − aiexe ≥ 0.
8. =⇒ xe ≤ (bi/aie)
9. l = arg mini bi/aie

10. If more than one achieves mini bi/aie, just pick one.
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Pivoting on xe...
1. Determined xe and xl .
2. Rewrite equation for xl in LP.

2.1 (Every basic variable has an equation in the LP!)
2.2 xl = bl −

∑
j∈N aljxj

=⇒ xe =
bl

ale
−

∑
j∈N∪{l}

alj

ale
xj , where all = 1.

3. Cleanup: remove all appearances (on right) in LP of xe.
4. Substituting xe into the other equalities, using above.
5. Alternatively, do Gaussian elimination remove any

appearance of xe on right side LP (including objective).
Transfer xl on the left side, to the right side.
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Pivoting continued...
1. End of this process: have new equivalent LP.
2. basic variables: B′ =(B \ {l}) ∪ {e}
3. non-basic variables: N ′ =(N \ {e}) ∪ {l}.
4. End of this pivoting stage:

LP objective function value increased.
5. Made progress.
6. LP is completely defined by which variables are basic,

and which are non-basic.
7. Pivoting never returns to a combination (of

basic/non-basic variable) already visited.
8. ...because improve objective in each pivoting step.
9. Can do at most

(
n+m

n

)
≤
(

n+m
n · e

)n
.

10. examples where 2n pivoting steps are needed.
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Simplex algorithm summary...
1. Each pivoting step takes polynomial time in n and m.
2. Running time of Simplex is exponential in the worst case.
3. In practice, Simplex is extremely fast.
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Degeneracies
1. Simplex might get stuck if one of the bi s is zero.
2. More than > m hyperplanes (i.e., equalities) passes

through the same point.
3. Result: might not be able to make any progress at all in a

pivoting step.
4. Solution I: add tiny random noise to each coefficient.

Can be done symbolically.
Intuitively, the degeneracy, being a local phenomena on
the polytope disappears with high probability.
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Degeneracies – cycling
1. Might get into cycling: a sequence of pivoting operations

that do not improve the objective function, and the bases
you get are cyclic (i.e., infinite loop).

2. Solution II: Bland’s rule.
Always choose the lowest index variable for entering and
leaving out of the possible candidates.
(Not prove why this work - but it does.)
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Correctness of LP
Definition
A solution to an LP is a basic solution if it the result of
setting all the nonbasic variables to zero.
Simplex algorithm deals only with basic solutions.
Theorem
For an arbitrary linear program, the following statements are
true:

(A) If there is no optimal solution, the problem is either
infeasible or unbounded.

(B) If a feasible solution exists, then a basic feasible
solution exists.

(C) If an optimal solution exists, then a basic optimal
solution exists.

Proof: is constructive by running the simplex algorithm.
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On the ellipsoid method and interior point methods
1. Simplex has exponential running time in the worst case.
2. ellipsoid method is weakly polynomial.

It is polynomial in the number of bits of the input.
3. Khachian in 1979 came up with it. Useless in practice.
4. In 1984, Karmakar came up with a different method,

called the interior-point method.
5. Also weakly polynomial. Quite useful in practice.
6. Result in arm race between the interior-point method and

the simplex method.
7. BIG OPEN QUESTION: Is there strongly polynomial time

algorithm for linear programming?
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Duality...
1. Every linear program L has a dual linear program L′.
2. Solving the dual problem is essentially equivalent to

solving the primal linear program original LP.
3. Lets look an example..
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Duality by Example
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

1. η: maximal possible value of target function.
2. Any feasible solution⇒ a lower bound on η.
3. In above: x1 = 1, x2 = x3 = 0 is feasible, and implies

z = 4 and thus η ≥ 4.
4. x1 = x2 = 0, x3 = 3 is feasible =⇒ η ≥ z = 9.
5. How close this solution is to opt? (i.e., η)
6. If very close to optimal – might be good enough. Maybe

stop?
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Duality by Example: II
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

1. Add the first inequality (multiplied by 2) to the second
inequality (multiplied by 3):

2( x1 + 4x2 ) ≤ 2(1)
+3(3x1 − x2 + x3) ≤ 3(3).

2. The resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (1)
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Duality by Example: II
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

1. got 11x1 + 5x2 + 3x3 ≤ 11.
2. inequality must hold for any feasible solution of L.
3. Objective: z = 4x1 + x2 + 3x3 and x1,x2 and x3 are all

non-negative.
4. Inequality above has larger coefficients than objective (for

corresponding variables)
5. For any feasible solution:

z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,
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Duality by Example: III
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

1. For any feasible solution:
z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,

2. Opt solution is LP L is somewhere between 9 and 11.
3. Multiply first inequality by y1, second inequality by y2 and

add them up:
y1(x1 + 4x2 ) ≤ y1(1)

+ y2(3x1 - x2 + x3 ) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
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Duality by Example: IV
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

1. (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.

4 ≤ y1 + 3y2

1 ≤ 4y1 − y2

3 ≤ y2,

1. Compare to target
function – require
expression bigger than
target function in each
variable.

=⇒ z = 4x1 + x2 + 3x3 ≤
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
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Duality by Example: IV
Primal LP:
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

Dual LP: L̂
min y1 + 3y2

s.t. y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0.

1. Best upper bound on η (max value of z) then solve the
LP L̂.

2. L̂: Dual program to L.
3. opt. solution of L̂ is an upper bound on optimal solution

for L.
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Primal program/Dual program

max
n∑

j=1
cjxj

s.t.
n∑

j=1
aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

min
m∑

i=1
biyi

s.t.
m∑

i=1
aijyi ≥ cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Primal program/Dual program

max cT x
s. t. Ax ≤ b.

x ≥ 0.

min yT b
s. t. yT A ≥ cT .

y ≥ 0.
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Primal program/Dual program
What happens when you take the dual of the dual?

max
n∑

j=1
cjxj

s.t.
n∑

j=1
aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

min
m∑

i=1
biyi

s.t.
m∑

i=1
aijyi ≥ cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Primal program / Dual program in standard form

max
n∑

j=1
cjxj

s.t.
n∑

j=1
aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

max
m∑

i=1
(−bi)yi

s.t.
m∑

i=1
(−aij)yi ≤ −cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.
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Dual program in standard form
Dual of a dual program

max
m∑

i=1
(−bi)yi

s.t.
m∑

i=1
(−aij)yi ≤ −cj ,

for j = 1, . . . , n,
yi ≥ 0,

for i = 1, . . . ,m.

min
n∑

j=1
−cjxj

s.t.
n∑

j=1
(−aij)xj ≥ −bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.
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Dual of dual program
Dual of a dual program written in standard form

min
n∑

j=1
−cjxj

s.t.
n∑

j=1
(−aij)xj ≥ −bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

max
n∑

j=1
cjxj

s.t.
n∑

j=1
aijxj ≤ bi ,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . , n.

=⇒ Dual of the dual LP is the primal LP!
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Result
Proved the following:
Lemma
Let L be an LP, and let L′ be its dual. Let L′′ be the dual to
L′. Then L and L′′ are the same LP.
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Weak duality theorem
Theorem
If (x1, x2, . . . , xn) is feasible for the primal LP and
(y1, y2, . . . , ym) is feasible for the dual LP, then∑

j
cjxj ≤

∑
i

biyi .

Namely, all the feasible solutions of the dual bound all the
feasible solutions of the primal.
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Weak duality theorem – proof
Proof.
By substitution from the dual form, and since the two
solutions are feasible, we know that

∑
j

cjxj ≤
∑

j

( m∑
i=1

yiaij

)
xj ≤

∑
i

∑
j

aijxj

 yi ≤
∑

i
biyi .

1. y being dual feasible implies cT ≤ yT A
2. x being primal feasible implies Ax ≤ b
3. ⇒ cT x ≤ (yT A)x ≤ yT (Ax) ≤ yT b
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Weak duality is weak...
1. If apply the weak duality theorem on the dual program,

2. =⇒
m∑

i=1
(−bi)yi ≤

n∑
j=1
−cjxj ,

3. which is the original inequality in the weak duality
theorem.

4. Weak duality theorem does not imply the strong duality
theorem which will be discussed next.
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The strong duality theorem
Theorem (Strong duality theorem.)
If the primal LP problem has an optimal solution
x∗ =

(
x∗1 , . . . , x∗n

)
then the dual also has an optimal solution,

y∗ =
(
y∗1 , . . . , y∗m

)
, such that
∑

j
cjx∗j =

∑
i

biy∗i .

Proof is tedious and omitted.
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Shortest path

max dt

s.t. ds ≤ 0
du + ω(u, v) ≥ dv

∀ (u → v) ∈ E,
dx ≥ 0 ∀x ∈ V.

Equivalently:
max dt

s.t. ds ≤ 0
dv − du ≤ ω(u, v)

∀ (u → v) ∈ E,
dx ≥ 0 ∀x ∈ V.

1. G = (V,E): graph. s:
source , t: target

2. ∀ (u → v) ∈ E: weight
ω(u, v) on edge.

3. Q: Comp. shortest s-t path.
4. No edges into s/out of t.
5. dx : var=dist. s to x,
∀x ∈ V.

6. ∀ (u → v) ∈ E:
du + ω(u, v) ≥ dv .

7. Also ds = 0.
8. Trivial solution: all variables

0.
9. Target: find assignment max

dt.
10. LP to solve this!
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The dual

max dt

s.t. ds ≤ 0
dv − du ≤ ω(u, v)

∀ (u → v) ∈ E,
dx ≥ 0 ∀x ∈ V.

min
∑

(u→v)∈E
yuvω(u, v)

s.t. ys −
∑

(s→u)∈E
ysu ≥ 0 (∗)

∑
(u→x)∈E

yux −
∑

(x→v)∈E
yxv ≥ 0

∀x ∈ V \ {s, t} (∗∗)∑
(u→t)∈E

yut ≥ 1 (∗ ∗ ∗)

yuv ≥ 0, ∀ (u → v) ∈ E,
ys ≥ 0.
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The dual – details
1. yuv : dual variable for the edge (u → v).
2. ys: dual variable for ds ≤ 0
3. Think about the yuv as a flow on the edge yuv .
4. Assume that weights are positive.
5. LP is min cost flow of sending 1 unit flow from source s

to t.
6. Indeed... (**) can be assumed to be hold with equality in

the optimal solution...
7. conservation of flow.
8. Equation (***) implies that one unit of flow arrives to the

sink t.
9. (*) implies that at least ys units of flow leaves the source.

10. Remaining of LP implies that ys ≥ 1.
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Integrality
1. In the previous example there is always an optimal

solution with integral values.
2. This is not an obvious statement.
3. This is not true in general.
4. If it were true we could solve NPC problems with LP.
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Set cover...
Details in notes...

Set cover LP:

min
∑

Fj∈F
xj

s.t.
∑

Fj∈F,
ui∈Fj

xj ≥ 1 ∀ui ∈ S,

xj ≥ 0 ∀Fj ∈ F.
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Set cover dual is a packing LP...
Details in notes...

max
∑
ui∈S

yi

s.t.
∑

ui∈Fj

yi ≤ 1 ∀Fj ∈ F,

yi ≥ 0 ∀ui ∈ S.
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Network flow

max
∑

(s→v)∈E
xs→v

xu→v ≤ c(u → v) ∀ (u → v) ∈ E∑
(u→v)∈E

xu→v −
∑

(v→w)∈E
xv→w ≤ 0 ∀v ∈ V \ {s, t}

−
∑

(u→v)∈E
xu→v +

∑
(v→w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀ (u → v) ∈ E.
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Dual of network flow...

min
∑

(u→v)∈E
c(u → v) yu→v

du − dv ≤ yu→v ∀ (u → v) ∈ E
yu→v ≥ 0 ∀ (u → v) ∈ E
ds = 1, dt = 0.

Under right interpretation: shortest path (see notes).
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Duality and min-cut max-flow
Details in class notes

Lemma
The Min-Cut Max-Flow Theorem follows from the strong
duality Theorem for Linear Programming.
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Solving LPs without ever getting into a loop -
symbolic perturbations

Details in the class notes.
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