CS 573: Algorithms, Fall 2014

Linear Programming II

Lecture 17
October 23, 2014

Simplex algorithm

Simplex ($\hat{\boldsymbol{L}}$ a LP)

Transform $\hat{\boldsymbol{L}}$ into slack form.
Let \boldsymbol{L} be the resulting slack form.
$L^{\prime} \leftarrow$ Feasible(L)
$x \leftarrow$ LPStartSolution(L^{\prime})
$x^{\prime} \leftarrow$ SimplexInner $\left(L^{\prime}, x\right)$
$z \leftarrow$ objective function value of \boldsymbol{x}^{\prime}
if $\boldsymbol{z}>\mathbf{0}$ then
return "No solution"
$x^{\prime \prime} \leftarrow$ SimplexInner $\left(L, x^{\prime}\right)$
return $x^{\prime \prime}$

Simplex algorithm...

1. SimplexInner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
2. $\boldsymbol{L}^{\prime}=\operatorname{Feasible}(\boldsymbol{L})$ returns a new LP with feasible solution.
3. Done by adding new variable x_{0} to each equality.
4. Set target function in \boldsymbol{L}^{\prime} to $\boldsymbol{\operatorname { m i n }} \boldsymbol{x}_{0}$.
5. original LP \boldsymbol{L} feasible \Longleftrightarrow LP \boldsymbol{L}^{\prime} has feasible solution with $x_{0}=\mathbf{0}$.
6. Apply SimplexInner to \boldsymbol{L}^{\prime} and solution computed (for L^{\prime}) by LPStartSolution $\left(L^{\prime}\right)$.
7. If $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0}$ then have a feasible solution to \boldsymbol{L}.
8. Use solution in SimplexInner on \boldsymbol{L}.
9. need to describe SimplexInner: solve LP in slack form given a feasible solution (all nonbasic vars assigned value $0)$.

The corresponding

$$
\begin{aligned}
\max & z=v+\sum_{j \in N} c_{j} x_{j}, \\
\text { s.t. } & x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B, \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m .
\end{aligned}
$$

Reminder - basic/nonbasic

$z=29-$| $\frac{1}{9} x_{3}-\frac{1}{9} x_{5}-\frac{2}{9} x_{6}$ |
| :--- |
| x_{1} |
| x_{2} |
| x_{2} |
| $x_{4} x_{3}+\frac{1}{6} x_{5}-\frac{1}{3} x_{6}$ |
| x_{4} |
| $=4-8$ |
| $\frac{8}{3} x_{3}-\frac{2}{3} x_{5}+\frac{1}{3} x_{6}$ |
| $\frac{1}{2} x_{3}+\frac{1}{2} x_{5}$ |

$\underbrace{}_{\text {Basic variables }}$

Choosing the leaving variable

1. x_{e} : entering variable

2. x_{l} : leaving variable - vanishing basic variable.
3. increase value of $\boldsymbol{x}_{\boldsymbol{e}}$ till $\boldsymbol{x}_{\boldsymbol{l}}$ becomes zero.
4. How do we now which variable is $\boldsymbol{x}_{\boldsymbol{l}}$?
5. set all nonbasic to $\mathbf{0}$ zero, except $\boldsymbol{x}_{\boldsymbol{e}}$
6. $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}-\boldsymbol{a}_{i e} \boldsymbol{x}_{\boldsymbol{e}}$, for all $\boldsymbol{i} \in \boldsymbol{B}$.
7. Require: $\forall i \in B \quad \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{b}_{\boldsymbol{i}}-\boldsymbol{a}_{i e} \boldsymbol{x}_{\boldsymbol{e}} \geq \mathbf{0}$.
8. $\Longrightarrow \boldsymbol{x}_{\boldsymbol{e}} \leq\left(\boldsymbol{b}_{\boldsymbol{i}} / \boldsymbol{a}_{i e}\right)$
9. $I=\arg \min _{i} \boldsymbol{b}_{i} / \boldsymbol{a}_{i e}$
10. If more than one achieves $\min _{\boldsymbol{i}} \boldsymbol{b}_{\boldsymbol{i}} / \boldsymbol{a}_{\boldsymbol{i} \boldsymbol{e}}$, just pick one.

Pivoting on $\mathrm{x}_{\mathrm{e}} \ldots$

1. Determined $\boldsymbol{x}_{\boldsymbol{e}}$ and $\boldsymbol{x}_{\boldsymbol{l}}$.
2. Rewrite equation for $\boldsymbol{x}_{\boldsymbol{l}}$ in LP.
2.1 (Every basic variable has an equation in the LP!)
$2.2 x_{l}=b_{l}-\sum_{j \in N} \boldsymbol{a}_{\boldsymbol{l} j} x_{j}$

$$
\Longrightarrow \quad x_{e}=\frac{b_{l}}{a_{l e}}-\sum_{j \in N \cup\{l\}} \frac{a_{l j}}{a_{l e}} x_{j}, \quad \text { where } a_{\| l}=1 .
$$

3. Cleanup: remove all appearances (on right) in LP of $\boldsymbol{x}_{\boldsymbol{e}}$.
4. Substituting x_{e} into the other equalities, using above.
5. Alternatively, do Gaussian elimination remove any appearance of \boldsymbol{x}_{e} on right side LP (including objective). Transfer $\boldsymbol{x}_{\boldsymbol{l}}$ on the left side, to the right side.

Pivoting continued...

1. End of this process: have new equivalent LP.
2. basic variables: $B^{\prime}=(B \backslash\{I\}) \cup\{e\}$
3. non-basic variables: $\boldsymbol{N}^{\prime}=(N \backslash\{e\}) \cup\{I\}$.
4. End of this pivoting stage:

LP objective function value increased.
5. Made progress.
6. LP is completely defined by which variables are basic, and which are non-basic.
7. Pivoting never returns to a combination (of basic/non-basic variable) already visited.
8. ...because improve objective in each pivoting step.
9. Can do at most $\binom{n+m}{n} \leq\left(\frac{n+m}{n} \cdot \boldsymbol{e}\right)^{n}$.
10. examples where $\mathbf{2}^{n}$ pivoting steps are needed.

Degeneracies

1. Simplex might get stuck if one of the $\boldsymbol{b}_{i} \mathrm{~s}$ is zero.
2. More than $>\boldsymbol{m}$ hyperplanes (i.e., equalities) passes through the same point.
3. Result: might not be able to make any progress at all in a pivoting step.
4. Solution I: add tiny random noise to each coefficient. Can be done symbolically.
Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

Degeneracies - cycling

1. Might get into cycling: a sequence of pivoting operations that do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).
2. Solution II: Bland's rule.

Always choose the lowest index variable for entering and leaving out of the possible candidates.
(Not prove why this work - but it does.)

Correctness of

Definition
A solution to an LP is a basic solution if it the result of setting all the nonbasic variables to zero.
Simplex algorithm deals only with basic solutions.
Theorem
For an arbitrary linear program, the following statements are true:
(A) If there is no optimal solution, the problem is either infeasible or unbounded.
(B) If a feasible solution exists, then a basic feasible solution exists.
(C) If an optimal solution exists, then a basic optimal solution exists.
Proof: is constructive by running the simplex algorithm.

On the ellipsoid method and interior point methods

1. Simplex has exponential running time in the worst case.
2. ellipsoid method is weakly polynomial.

It is polynomial in the number of bits of the input.
3. Khachian in 1979 came up with it. Useless in practice.
4. In 1984, Karmakar came up with a different method, called the interior-point method.
5. Also weakly polynomial. Quite useful in practice.
6. Result in arm race between the interior-point method and the simplex method.
7. BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

Duality...

1. Every linear program \boldsymbol{L} has a dual linear program \boldsymbol{L}^{\prime}.
2. Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
3. Lets look an example..

Duality by Example

$$
\begin{array}{cl}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

1. $\boldsymbol{\eta}$: maximal possible value of target function.
2. Any feasible solution \Rightarrow a lower bound on $\boldsymbol{\eta}$.
3. In above: $\boldsymbol{x}_{1}=\mathbf{1}, \boldsymbol{x}_{2}=\boldsymbol{x}_{3}=\mathbf{0}$ is feasible, and implies $z=4$ and thus $\eta \geq 4$.
4. $x_{1}=x_{2}=0, x_{3}=\mathbf{3}$ is feasible $\Longrightarrow \eta \geq z=9$.
5. How close this solution is to opt? (i.e., $\boldsymbol{\eta}$)
6. If very close to optimal - might be good enough. Maybe stop?

Duality by Example: II

$$
\begin{aligned}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

1. got $11 x_{1}+5 x_{2}+3 x_{3} \leq 11$.
2. inequality must hold for any feasible solution of \boldsymbol{L}.
3. Objective: $z=4 x_{1}+x_{2}+3 x_{3}$ and x_{1}, x_{2} and x_{3} are all non-negative.
4. Inequality above has larger coefficients than objective (for corresponding variables)
5. For any feasible solution:
$z=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11$,

Duality by Example: II

$$
\begin{aligned}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

1. Add the first inequality (multiplied by 2) to the second

$$
\begin{aligned}
& \text { (multi } \\
& \text { y } 3 \text {): }
\end{aligned}
$$ inequality (multiplied by 3):

$$
\begin{aligned}
2\left(x_{1}+4 x_{2}\right) & \leq 2(1) \\
+3\left(3 x_{1}-x_{2}+x_{3}\right) & \leq 3(3) .
\end{aligned}
$$

2. The resulting inequality is

$$
\begin{equation*}
11 x_{1}+5 x_{2}+3 x_{3} \leq 11 \tag{1}
\end{equation*}
$$

Duality by Example: III

$$
\begin{aligned}
\max & z=4 x_{1}+x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

1. For any feasible solution:

$$
z=4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11
$$

2. Opt solution is LP \mathbf{L} is somewhere between $\mathbf{9}$ and $\mathbf{1 1}$.
3. Multiply first inequality by $\boldsymbol{y}_{\mathbf{1}}$, second inequality by $\boldsymbol{y}_{\mathbf{2}}$ and add them up:

$y_{1}\left(x_{1}\right.$	+	$4 x_{2}$			$) \leq$	$y_{1}(1)$
$+y_{2}\left(3 x_{1}\right.$	-	x_{2}	+	x_{3}	$) \leq$	$y_{2}(3)$
$\left(y_{1}+3 y_{2}\right) x_{1}$	+	$\left(4 y_{1}-y_{2}\right) x_{2}$	+	$y_{2} x_{3}$	\leq	$y_{1}+3 y_{2}$.

Duality by Example: IV

$$
\begin{aligned}
& \max z=4 x_{1}+x_{2}+3 x_{3} \\
& \text { s.t. } x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0 \\
& \hline
\end{aligned}
$$

1. $\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}$.
2. Compare to target function - require
$4 \leq y_{1}+3 y_{2}$
$1 \leq 4 y_{1}-y_{2}$ expression bigger than target function in each variable.
$\Longrightarrow z=4 x_{1}+x_{2}+3 x_{3} \leq$

$$
\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2} .
$$

Duality by Example: IV

1. Best upper bound on $\boldsymbol{\eta}$ (max value of \boldsymbol{z}) then solve the LP \boldsymbol{L}.
2. $\widehat{\boldsymbol{L}}:$ Dual program to \boldsymbol{L}.
3. opt. solution of $\hat{\boldsymbol{L}}$ is an upper bound on optimal solution for L.

Primal program/Dual program

Dualvariables \quadPrimal variables	$x_{1} \geqq 0$	$x_{2} \geqq 0$	$x_{3} \geqq 0$		$x_{n} \geqq 0$	Primal relation	$\operatorname{Min} v$
$y_{1} \geqq 0$	a_{11}	a_{12}	a_{13}	\cdots	$a_{1 n}$	\leqq	b_{1}
$y_{2} \geqq 0$	a_{21}	a_{22}	a_{23}	\ldots	$a_{2 n}$	\leqq	b_{2}
\vdots	\vdots	\vdots	\vdots		\vdots	!	\vdots
$y_{m} \geqq 0$	$a_{m 1}$	$a_{m 2}$	$a_{m 3}$	\ldots	$a_{m n}$	\leqq	b_{m}
Dual Relation	IV	IV	IV		IV		
Max z	c_{1}	c_{2}	c_{3}	\ldots	c_{n}		

\max	$\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$
s. t.	$\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$
	$\boldsymbol{x} \geq \mathbf{0}$

$$
\begin{array}{ll}
\min & \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{b} \\
\text { s. t. } & \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{A} \geq \boldsymbol{c}^{\boldsymbol{T}} . \\
& \boldsymbol{y} \geq \mathbf{0} .
\end{array}
$$

Primal program/Dual program

What happens when you take the dual of the dual?

$$
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& \text { for } i=1, \ldots, m, \\
& x_{j} \geq 0, \\
& \text { for } j=1, \ldots, n \text {. } \\
& \boldsymbol{\operatorname { m i n }} \sum_{i=1}^{m} b_{i} y_{i} \\
& \text { s.t. } \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}, \\
& \text { for } j=1, \ldots, n, \\
& \boldsymbol{y}_{\boldsymbol{i}} \geq \mathbf{0}, \\
& \text { for } i=1, \ldots, m .
\end{aligned}
$$

Primal program / Dual program in standard form

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \text { for } i=1, \ldots, m \\
& x_{j} \geq 0 \\
& \text { for } j=1, \ldots, n
\end{aligned}
$$

$$
\begin{array}{ll}
\max & \sum_{i=1}^{m}\left(-b_{i}\right) y_{i} \\
\text { s.t. } & \sum_{i=1}^{m}\left(-a_{i j}\right) y_{i} \leq-c_{j} \\
& \quad \text { for } j=1, \ldots, n \\
& y_{i} \geq 0 \\
& \text { for } i=1, \ldots, m
\end{array}
$$

Dual of dual program

Dual of a dual program written in standard form

$$
\begin{aligned}
& \min \sum_{j=1}^{n}-c_{j} x_{j} \\
& \begin{array}{r}
\text { s.t. } \sum_{j=1}^{n}\left(-a_{i j}\right) x_{j} \geq-b_{i}, \\
\\
\text { for } i=1, \ldots, m,
\end{array} \\
& \boldsymbol{x}_{\boldsymbol{j}} \geq \mathbf{0}, \\
& \text { for } j=1, \ldots, n \text {. } \\
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \\
& \text { for } i=1, \ldots, m \text {, } \\
& x_{j} \geq 0, \\
& \text { for } j=1, \ldots, n \text {. }
\end{aligned}
$$

\Longrightarrow Dual of the dual LP is the primal LP!

Result

Proved the following:
Lemma
Let \boldsymbol{L} be an LP, and let \boldsymbol{L}^{\prime} be its dual. Let $\boldsymbol{L}^{\prime \prime}$ be the dual to \mathbf{L}^{\prime}. Then \boldsymbol{L} and $\mathbf{L}^{\prime \prime}$ are the same LP.

Weak duality theorem

Theorem
If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is feasible for the primal LP and $\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{m}}\right)$ is feasible for the dual LP, then

$$
\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i} .
$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem - proof

Proof.
By substitution from the dual form, and since the two solutions are feasible, we know that
$\sum_{j} c_{j} x_{j} \leq \sum_{j}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j} \leq \sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \leq \sum_{i} b_{i} y_{i}$.

1. \boldsymbol{y} being dual feasible implies $\boldsymbol{c}^{\boldsymbol{T}} \leq \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{A}$
2. \boldsymbol{x} being primal feasible implies $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$
3. $\Rightarrow c^{\top} x \leq\left(y^{\top} A\right) x \leq y^{\top}(A x) \leq y^{\top} b$

Weak duality is weak...

1. If apply the weak duality theorem on the dual program,
2. $\Longrightarrow \sum_{i=1}^{m}\left(-b_{i}\right) y_{i} \leq \sum_{j=1}^{n}-c_{j} x_{j}$,
3. which is the original inequality in the weak duality theorem.
4. Weak duality theorem does not imply the strong duality theorem which will be discussed next.

The strong duality theorem

Theorem (Strong duality theorem.)
If the primal LP problem has an optimal solution
$x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ then the dual also has an optimal solution,
$\boldsymbol{y}^{*}=\left(\boldsymbol{y}_{1}^{*}, \ldots, \boldsymbol{y}_{\boldsymbol{m}}^{*}\right)$, such that

$$
\sum_{j} c_{j} x_{j}^{*}=\sum_{i} b_{i} y_{i}^{*}
$$

Proof is tedious and omitted.

The dual

$$
\begin{array}{ll}
\min & \sum_{(u \rightarrow v) \in \mathrm{E}} y_{u v} \omega(u, v) \\
\text { s.t. } & \boldsymbol{y}_{\mathrm{s}}-\sum_{(\mathrm{s} \rightarrow u) \in \mathrm{E}} \boldsymbol{y}_{\mathrm{s} u} \geq \mathbf{0}
\end{array}
$$

$$
y_{\mathrm{s}} \geq 0
$$

Shortest path

1. $\mathbf{G}=(\mathbf{V}, \mathbf{E})$: graph. $\mathbf{s}:$ source, \mathbf{t} : target
$\max d_{t}$
s.t. $\quad \boldsymbol{d}_{\mathrm{s}} \leq \mathbf{0}$
2. $\forall(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathbf{E}$: weight $\omega(u, v)$ on edge.
$\boldsymbol{d}_{u}+\omega(u, v) \geq \boldsymbol{d}_{v}$
3. Q: Comp. shortest s-t path. $u, v) \geq d_{v}$
$\forall(u \rightarrow v) \in E_{5}^{4}$
$\boldsymbol{d}_{x} \geq \mathbf{0} \quad \forall x \in \mathbf{V}$.

$$
\boldsymbol{d}_{x}: \text { var }=\text { dist. } \mathbf{s} \text { to } \boldsymbol{x},
$$

Equivalently:

$$
\text { No edges into } \mathbf{s} / \text { out of } \mathbf{t} \text {. }
$$

$$
\forall x \in \mathbf{V}
$$

$\max d_{t}$
6. $\forall(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathrm{E}$:
s.t. $\quad \boldsymbol{d}_{\mathrm{s}} \leq \mathbf{0}$ $d_{u}+\omega(u, v) \geq d_{v}$.
$\boldsymbol{d}_{v}-\boldsymbol{d}_{u} \leq \omega(u, v)$
7. Also $\boldsymbol{d}_{\mathrm{s}}=\mathbf{0}$. $\forall(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathbf{E}^{8 .}, \stackrel{\text { Trivial solution: all variables }}{\mathbf{0}}$
$d_{x} \geq 0 \quad \forall x \in V$.
9. Target: find assignment max $\boldsymbol{d}_{\mathrm{t}}$.

10. LP to solve this!

The dual - details

1. $\boldsymbol{y}_{u v}$: dual variable for the edge $(\boldsymbol{u} \rightarrow \boldsymbol{v})$.
2. $\boldsymbol{y}_{\mathbf{s}}$: dual variable for $\boldsymbol{d}_{\mathbf{s}} \leq \mathbf{0}$
3. Think about the $\boldsymbol{y}_{u v}$ as a flow on the edge $\boldsymbol{y}_{u v}$.
4. Assume that weights are positive.
5. LP is min cost flow of sending $\mathbf{1}$ unit flow from source \mathbf{s} to \mathbf{t}.
6. Indeed... (**) can be assumed to be hold with equality in the optimal solution...
7. conservation of flow.
8. Equation $\left({ }^{* * *}\right)$ implies that one unit of flow arrives to the sink t.
9. $\left({ }^{*}\right)$ implies that at least $\boldsymbol{y}_{\mathrm{s}}$ units of flow leaves the source.
10. Remaining of LP implies that $\boldsymbol{y}_{\mathrm{s}} \geq \mathbf{1}$.

Integrality

1. In the previous example there is always an optimal solution with integral values.
2. This is not an obvious statement.
3. This is not true in general.
4. If it were true we could solve NPC problems with LP.

Set cover...

Details in notes..

Set cover LP:

$$
\begin{array}{lll}
\min & \sum_{F_{j} \in \mathcal{F}} x_{j} & \\
\text { s.t. } & \sum_{\substack{F_{j} \in \mathcal{F}, u_{i} \in F_{j}}} x_{j} \geq 1 & \forall u_{i} \in \mathbf{S} \\
& x_{j} \geq \mathbf{0} & \forall F_{j} \in \mathcal{F} .
\end{array}
$$

Set cover dual is a packing LP...
Details in notes..

Network flow

$$
\begin{array}{ll}
\max & \sum_{(\mathrm{s} \rightarrow v) \in \mathrm{E}} x_{\mathrm{s} \rightarrow v} \\
& x_{u \rightarrow v} \leq \mathrm{c}(u \rightarrow v) \\
\sum_{(u \rightarrow v) \in \mathrm{E}} x_{u \rightarrow v}-\sum_{(v \rightarrow w) \in \mathrm{E}} x_{v \rightarrow w} \leq 0 & \forall v \in \mathrm{~V} \backslash\{\mathrm{~s}, \mathrm{t}\} \\
-\sum_{(u \rightarrow v) \in \mathrm{E}} x_{u \rightarrow v}+\sum_{(v \rightarrow w) \in \mathrm{E}} x_{v \rightarrow w} \leq 0 & \forall v \in \mathrm{~V} \backslash\{\mathrm{~s}, \mathrm{t}\} \\
\mathbf{0 \leq x _ { u \rightarrow v }} & \forall(u \rightarrow v) \in \mathrm{E} .
\end{array}
$$

Dual of network flow...

$$
\begin{array}{ll}
\min \sum_{(u \rightarrow v) \in \mathrm{E}} \mathrm{c}(u \rightarrow v) y_{u \rightarrow v} & \\
d_{u}-d_{v} \leq y_{u \rightarrow v} & \forall(u \rightarrow v) \in \mathrm{E} \\
y_{u \rightarrow v} \geq 0 & \forall(u \rightarrow v) \in \mathrm{E} \\
d_{\mathrm{s}}=1, \quad d_{\mathrm{t}}=0 . &
\end{array}
$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

Solving LPs without ever getting into a loop symbolic perturbations

Details in the class notes.

