
CS 573: Algorithms, Fall 2014

Randomized Algorithms III –
Min Cut
Lecture 15
October 16, 2014

Sariel (UIUC) CS573 1 Fall 2014 1 / 37

Part I

Min cut

Sariel (UIUC) CS573 2 Fall 2014 2 / 37

Min cut

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.
Sariel (UIUC) CS573 3 Fall 2014 3 / 37

Min cut

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.
Sariel (UIUC) CS573 3 Fall 2014 3 / 37

Min cut

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.
Sariel (UIUC) CS573 3 Fall 2014 3 / 37

Min cut

V \ SS

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.

Sariel (UIUC) CS573 3 Fall 2014 3 / 37

Min cut

V \ SS

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.

Sariel (UIUC) CS573 3 Fall 2014 3 / 37

Some definitions

1 conditional probability of X given Y is

Pr
[
X = x |Y = y

]
=

Pr
[

(X=x)∩(Y =y)
]

Pr
[

Y =y
] .

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣∣Y = y
]
· Pr[Y = y].

2 X, Y events are independent, if
Pr
[
X = x ∩Y = y

]
= Pr

[
X = x

]
· Pr

[
Y = y

]
.

=⇒ Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37

Some definitions

1 conditional probability of X given Y is

Pr
[
X = x |Y = y

]
=

Pr
[

(X=x)∩(Y =y)
]

Pr
[

Y =y
] .

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣∣Y = y
]
· Pr[Y = y].

2 X, Y events are independent, if
Pr
[
X = x ∩Y = y

]
= Pr

[
X = x

]
· Pr

[
Y = y

]
.

=⇒ Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37

Some definitions

1 conditional probability of X given Y is

Pr
[
X = x |Y = y

]
=

Pr
[

(X=x)∩(Y =y)
]

Pr
[

Y =y
] .

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣∣Y = y
]
· Pr[Y = y].

2 X, Y events are independent, if
Pr
[
X = x ∩Y = y

]
= Pr

[
X = x

]
· Pr

[
Y = y

]
.

=⇒ Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37

Some more probability

Lemma
E1, . . . ,En : n events (not necessarily independent). Then,

Pr
[
∩n

i=1 Ei
]

= Pr
[
E1
]
∗ Pr

[
E2 |E1

]
∗ Pr

[
E3

∣∣∣E1 ∩ E2
]
∗ . . .

∗ Pr
[
En

∣∣∣E1 ∩ . . . ∩ En−1
]

.

Sariel (UIUC) CS573 5 Fall 2014 5 / 37

Edge contraction...

G: x y

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.

Sariel (UIUC) CS573 6 Fall 2014 6 / 37

Edge contraction...

G: x y
G/xy:

{x, y}

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.

Sariel (UIUC) CS573 6 Fall 2014 6 / 37

Edge contraction...

G: x y
G/xy:

{x, y}

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.

Sariel (UIUC) CS573 6 Fall 2014 6 / 37

Edge contraction...

G: x y
G/xy:

{x, y}

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.

Sariel (UIUC) CS573 6 Fall 2014 6 / 37

Edge contraction...

G: x y
G/xy:

{x, y}

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.

Sariel (UIUC) CS573 6 Fall 2014 6 / 37

Min cut in weighted graph

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Min cut in weighted graph

2
2

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Min cut in weighted graph

2
2

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Min cut in weighted graph

2
2

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Min cut in weighted graph

2
2

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Min cut in weighted graph

2
2

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.

Sariel (UIUC) CS573 7 Fall 2014 7 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)

Sariel (UIUC) CS573 8 Fall 2014 8 / 37

Contraction

(2)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

(2)

x y

(3)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

(2)

x y

(3)

{x, y}

(4)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

x y

(3)

{x, y}

(4)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

{x, y}

(4)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

{x, y}

(4)

2
2

(5)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

(5)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

(7)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

(7)

2
2

22

(8)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

22

(8)

2
2

2

2
2

(9)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

22

(8)

2
2

2

2
2

(9)

2
2

2

2
3

(10)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

2

2
2

(9)

2
2

2

2
3

(10)

2
3

44

5

(11)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
2

2

2
3

(10)

2
3

44

5

(11)

4

5

(12)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

2
3

44

5

(11)

4

5

(12)

9

(13)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

4

5

(12)

9

(13)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

9

(13)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction

9

(13) (14)

Sariel (UIUC) CS573 9 Fall 2014 9 / 37

Contraction - all together now

x y
2

2
2

2
22

(a) (b) (c) (d)

2
2

2

2
2 2

2
2

2
3

2
3

44

5

4

5

(e) (f) (g) (h)

9

(i) (j)
Sariel (UIUC) CS573 10 Fall 2014 10 / 37

But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???

Sariel (UIUC) CS573 11 Fall 2014 11 / 37

But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???

Sariel (UIUC) CS573 11 Fall 2014 11 / 37

But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???

Sariel (UIUC) CS573 11 Fall 2014 11 / 37

But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???

Sariel (UIUC) CS573 11 Fall 2014 11 / 37

But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???

Sariel (UIUC) CS573 11 Fall 2014 11 / 37

The algorithm...

Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

ei ← random edge from E(Gi)
Gi+1 ← Gi/ei
i ← i + 1

Let (S, V \ S) be the cut in the original graph
corresponding to the single edge in Gi

return (S, V \ S).

Sariel (UIUC) CS573 12 Fall 2014 12 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37

Lemma...

Lemma
G: mincut of size k and n vertices, then |E(G)| ≥ kn

2 .

Proof.
Each vertex degree is at least k, otherwise the vertex itself would
form a minimum cut of size smaller than k. As such, there are at
least ∑v∈V degree(v)/2 ≥ nk/2 edges in the graph.

Sariel (UIUC) CS573 14 Fall 2014 14 / 37

Lemma...

Lemma
If we pick in random an edge e from a graph G, then with probability
at most 2

n it belong to the minimum cut.

Proof.
There are at least nk/2 edges in the graph and exactly k edges in
the minimum cut. Thus, the probability of picking an edge from the
minimum cut is smaller then k/(nk/2) = 2/n.

Sariel (UIUC) CS573 15 Fall 2014 15 / 37

Lemma

Lemma
MinCut outputs the mincut with prob. ≥

2
n(n − 1)

.

Proof
1 Ei : event that ei is not in the minimum cut of Gi .
2 MinCut outputs mincut if all the events E0, . . . ,En−3 happen.

3 Pr
[
Ei

∣∣∣E0 ∩ E1 ∩ . . . ∩ Ei−1
]
≥ 1−

2
|V (Gi)|

= 1−
2

n − i
.

=⇒ ∆ = Pr[E0 ∩ . . . ∩ En−3] = Pr[E0] · Pr
[
E1

∣∣∣E0
]
·

Pr
[
E2

∣∣∣E0 ∩ E1
]
· . . . · Pr

[
En−3

∣∣∣E0 ∩ . . . ∩ En−4
]

Sariel (UIUC) CS573 16 Fall 2014 16 / 37

Lemma

Lemma
MinCut outputs the mincut with prob. ≥

2
n(n − 1)

.

Proof
1 Ei : event that ei is not in the minimum cut of Gi .
2 MinCut outputs mincut if all the events E0, . . . ,En−3 happen.

3 Pr
[
Ei

∣∣∣E0 ∩ E1 ∩ . . . ∩ Ei−1
]
≥ 1−

2
|V (Gi)|

= 1−
2

n − i
.

=⇒ ∆ = Pr[E0 ∩ . . . ∩ En−3] = Pr[E0] · Pr
[
E1

∣∣∣E0
]
·

Pr
[
E2

∣∣∣E0 ∩ E1
]
· . . . · Pr

[
En−3

∣∣∣E0 ∩ . . . ∩ En−4
]

Sariel (UIUC) CS573 16 Fall 2014 16 / 37

Proof continued...

As such, we have

∆ ≥
n−3∏
i=0

(
1−

2
n − i

)
=

n−3∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . . ·
2
4
·

1
3

=
2

n · (n − 1)
.

Sariel (UIUC) CS573 17 Fall 2014 17 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

=
n
·

n − 1
· · · · · ·

2
·

1

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

=
n
·

n − 1
· · · · · ·

2
·

1

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

=
n − 2

n
·

n − 3
n − 1

·
n − 4
n − 2

·
n − 5
n − 3

· · ·
3
5
·

2
4
·

1
3

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

= ����n − 2
n
·

n − 3
n − 1

·
n − 4
����n − 2

·
n − 5
n − 3

· · ·
3
5
·

2
4
·

1
3

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

= ����n − 2
n
·
XXXXn − 3
n − 1

·
n − 4
����n − 2

·
n − 5
XXXXn − 3

· · · �
3
5
·

2
4
·

1
�3

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

= ����n − 2
n
·
XXXXn − 3
n − 1

· �
���XXXXn − 4

����n − 2
· �

���XXXXn − 5
XXXXn − 3

· · · �
3
�S5
·

2
�S4
·

1
�3

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

= ����n − 2
n
·
XXXXn − 3
n − 1

· �
���XXXXn − 4

����n − 2
· �

���XXXXn − 5
XXXXn − 3

· · · �
3
�S5
·

2
�S4
·

1
�3

=
n
·

n − 1
· · · · · ·

2
·

1

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

= ����n − 2
n
·
XXXXn − 3
n − 1

· �
���XXXXn − 4

����n − 2
· �

���XXXXn − 5
XXXXn − 3

· · · �
3
�S5
·

2
�S4
·

1
�3

=
n
·

n − 1
· · · · · ·

2
·

1

=
2

n(n − 1)

Sariel (UIUC) CS573 18 Fall 2014 18 / 37

Running time analysis...

Observation
MinCut runs in O(n2) time.

Observation
The algorithm always outputs a cut, and the cut is not smaller than
the minimum cut.

Definition
Amplification: running an experiment again and again till the things
we want to happen, with good probability, do happen.

Sariel (UIUC) CS573 19 Fall 2014 19 / 37

Getting a good probability

MinCutRep: algorithm runs MinCut n(n − 1) times and return
the minimum cut computed.

Lemma
probability MinCutRep fails to return the minimum cut is < 0.14.

Proof.
MinCut fails to output the mincut in each execution is at most
1− 2

n(n−1) .
MinCutRep fails, only if all n(n − 1) executions of MinCut fail.(
1− 2

n(n−1)

)n(n−1)
≤ exp

(
− 2

n(n−1) · n(n − 1)
)

= exp(−2) <

0.14, since 1− x ≤ e−x for 0 ≤ x ≤ 1.

Sariel (UIUC) CS573 20 Fall 2014 20 / 37

Result

Theorem
One can compute mincut in O(n4) time with constant probability to
get a correct result. In O(n4 log n) time the minimum cut is
returned with high probability.

Sariel (UIUC) CS573 21 Fall 2014 21 / 37

Faster algorithm

Why MinCutRep needs so many executions?
Probability of failure in first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1−

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . .

=
(n − ν)(n − ν − 1)

n · (n − 1)
.

=⇒ ν = n/2: Prob of success ≈ 1/4.
=⇒ ν = n −

√
n: Prob of success ≈ 1/n.

Sariel (UIUC) CS573 22 Fall 2014 22 / 37

Faster algorithm

Why MinCutRep needs so many executions?
Probability of failure in first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1−

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . .

=
(n − ν)(n − ν − 1)

n · (n − 1)
.

=⇒ ν = n/2: Prob of success ≈ 1/4.
=⇒ ν = n −

√
n: Prob of success ≈ 1/n.

Sariel (UIUC) CS573 22 Fall 2014 22 / 37

Faster algorithm

Why MinCutRep needs so many executions?
Probability of failure in first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1−

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . .

=
(n − ν)(n − ν − 1)

n · (n − 1)
.

=⇒ ν = n/2: Prob of success ≈ 1/4.
=⇒ ν = n −

√
n: Prob of success ≈ 1/n.

Sariel (UIUC) CS573 22 Fall 2014 22 / 37

Faster algorithm

Why MinCutRep needs so many executions?
Probability of failure in first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1−

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . .

=
(n − ν)(n − ν − 1)

n · (n − 1)
.

=⇒ ν = n/2: Prob of success ≈ 1/4.
=⇒ ν = n −

√
n: Prob of success ≈ 1/n.

Sariel (UIUC) CS573 22 Fall 2014 22 / 37

Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37

Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37

Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37

Contract...
Contract(G, t) shrinks G till it has only t vertices. FastCut computes the
minimum cut using Contract.

Contract(G, t)
while |(G)| > t do

Pick a random edge
e in G.

G← G/e
return G

FastCut(G = (V , E))
G -- multi-graph

begin
n ← |V (G)|
if n ≤ 6 then

Compute minimum cut
of G and return cut.

t ←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return mincut of X1 and X2.

end

Sariel (UIUC) CS573 24 Fall 2014 24 / 37

Lemma...

Lemma
The running time of FastCut(G) is O(n2 log n), where
n = |V (G)|.

Proof.
Well, we perform two calls to Contract(G, t) which takes O(n2)
time. And then we perform two recursive calls on the resulting
graphs. We have:
T(n) = O(n2) + 2T

(
n√
2

)
The solution to this recurrence is O(n2 log n) as one can easily
(and should) verify.

Sariel (UIUC) CS573 25 Fall 2014 25 / 37

Lemma...

Lemma
The running time of FastCut(G) is O(n2 log n), where
n = |V (G)|.

Proof.
Well, we perform two calls to Contract(G, t) which takes O(n2)
time. And then we perform two recursive calls on the resulting
graphs. We have:
T(n) = O(n2) + 2T

(
n√
2

)
The solution to this recurrence is O(n2 log n) as one can easily
(and should) verify.

Sariel (UIUC) CS573 25 Fall 2014 25 / 37

Success at each step

Lemma
Probability that mincut in contracted graph is original mincut is at
least 1/2.

Proof.
Plug in ν = n − t = n −

⌈
1 + n/

√
2
⌉

into success probability:

Pr
[
E0 ∩ . . . ∩ En−t

]
≥

Sariel (UIUC) CS573 26 Fall 2014 26 / 37

Success at each step

Lemma
Probability that mincut in contracted graph is original mincut is at
least 1/2.

Proof.
Plug in ν = n − t = n −

⌈
1 + n/

√
2
⌉

into success probability:

Pr
[
E0 ∩ . . . ∩ En−t

]
≥

t(t − 1)
n · (n − 1)

Sariel (UIUC) CS573 26 Fall 2014 26 / 37

Success at each step

Lemma
Probability that mincut in contracted graph is original mincut is at
least 1/2.

Proof.
Plug in ν = n − t = n −

⌈
1 + n/

√
2
⌉

into success probability:

Pr
[
E0 ∩ . . . ∩ En−t

]
≥

t(t − 1)
n · (n − 1)

=

⌈
1 + n/

√
2
⌉(⌈

1 + n/
√

2
⌉
− 1

)
n(n − 1)

≥
1
2

.

Sariel (UIUC) CS573 26 Fall 2014 26 / 37

Probability of success...

Lemma
FastCut finds the minimum cut with probability larger than
Ω (1/ log n).

See class notes for a formal proof. We provide a more elegant direct
argument shortly.

Sariel (UIUC) CS573 27 Fall 2014 27 / 37

Amplification

Lemma
Running FastCut repeatedly c · log2 n times, guarantee that the
algorithm outputs mincut with probability ≥ 1− 1/n2.
c is a constant large enough.

Proof.
1 FastCut succeeds with prob ≥ c′/ log n, c′ is a constant.
2 ...fails with prob. ≤ 1− c′/ log n.
3 ...fails in m reps with prob. ≤(1− c′/ log n)m . But then

(1− c′/ log n)m ≤
(
e−c′/ log n

)m
≤ e−mc′/ log n ≤ 1

n2 ,

for m = (2 log n) /c′.

Sariel (UIUC) CS573 28 Fall 2014 28 / 37

Amplification

Lemma
Running FastCut repeatedly c · log2 n times, guarantee that the
algorithm outputs mincut with probability ≥ 1− 1/n2.
c is a constant large enough.

Proof.
1 FastCut succeeds with prob ≥ c′/ log n, c′ is a constant.
2 ...fails with prob. ≤ 1− c′/ log n.
3 ...fails in m reps with prob. ≤(1− c′/ log n)m . But then

(1− c′/ log n)m ≤
(
e−c′/ log n

)m
≤ e−mc′/ log n ≤ 1

n2 ,

for m = (2 log n) /c′.

Sariel (UIUC) CS573 28 Fall 2014 28 / 37

Amplification

Lemma
Running FastCut repeatedly c · log2 n times, guarantee that the
algorithm outputs mincut with probability ≥ 1− 1/n2.
c is a constant large enough.

Proof.
1 FastCut succeeds with prob ≥ c′/ log n, c′ is a constant.
2 ...fails with prob. ≤ 1− c′/ log n.
3 ...fails in m reps with prob. ≤(1− c′/ log n)m . But then

(1− c′/ log n)m ≤
(
e−c′/ log n

)m
≤ e−mc′/ log n ≤ 1

n2 ,

for m = (2 log n) /c′.

Sariel (UIUC) CS573 28 Fall 2014 28 / 37

Theorem

Theorem
One can compute the minimum cut in a graph G with n vertices in
O(n2 log3 n) time. The algorithm succeeds with probability
≥ 1− 1/n2.

Proof.
We do amplification on FastCut by running it O(log2 n) times.
The running time bound follows from lemma...

Sariel (UIUC) CS573 29 Fall 2014 29 / 37

Part II

On coloring trees and min-cut

Sariel (UIUC) CS573 30 Fall 2014 30 / 37

Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).

Sariel (UIUC) CS573 31 Fall 2014 31 / 37

Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).

Sariel (UIUC) CS573 31 Fall 2014 31 / 37

Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).

Sariel (UIUC) CS573 31 Fall 2014 31 / 37

Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).

Sariel (UIUC) CS573 31 Fall 2014 31 / 37

Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).

Sariel (UIUC) CS573 31 Fall 2014 31 / 37

Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

Sariel (UIUC) CS573 32 Fall 2014 32 / 37

Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

Sariel (UIUC) CS573 32 Fall 2014 32 / 37

Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

Sariel (UIUC) CS573 32 Fall 2014 32 / 37

Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

Sariel (UIUC) CS573 32 Fall 2014 32 / 37

Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.

Sariel (UIUC) CS573 32 Fall 2014 32 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 By induction. For h = 1: ρ1 = 3/4 ≥ 1/(1 + 1).
2 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

3 f ′(x) = 1− x/2. =⇒ f ′(x) > 0 for x ∈ [0, 1].
4 f (x) is increasing in the range [0, 1]
5 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

6 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 By induction. For h = 1: ρ1 = 3/4 ≥ 1/(1 + 1).
2 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

3 f ′(x) = 1− x/2. =⇒ f ′(x) > 0 for x ∈ [0, 1].
4 f (x) is increasing in the range [0, 1]
5 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

6 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 By induction. For h = 1: ρ1 = 3/4 ≥ 1/(1 + 1).
2 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

3 f ′(x) = 1− x/2. =⇒ f ′(x) > 0 for x ∈ [0, 1].
4 f (x) is increasing in the range [0, 1]
5 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

6 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 By induction. For h = 1: ρ1 = 3/4 ≥ 1/(1 + 1).
2 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

3 f ′(x) = 1− x/2. =⇒ f ′(x) > 0 for x ∈ [0, 1].
4 f (x) is increasing in the range [0, 1]
5 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

6 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

2 f (x) is increasing in the range [0, 1]
3 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

4 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

2 f (x) is increasing in the range [0, 1]
3 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

4 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

Sariel (UIUC) CS573 33 Fall 2014 33 / 37

Back to FastCut...

1 Recursion tree for FastCut corresponds to such a coloring.
2 Every call performs two recursive calls.
3 Contraction in recursion succeeds with prob 1/2.

Draw recursion edge in black if successful.
4 algorithm succeeds ⇐⇒ there black path from root of

recursion tree to leaf.
5 Since depth of tree H ≤ 2 + log√2 n.
6 by above... probability of success is
≥ 1/(h + 1) ≥ 1/(3 + log√2 n).

Sariel (UIUC) CS573 34 Fall 2014 34 / 37

Galton-Watson processes

1 Start with a single node.
2 Each node has two children.
3 Each child survives with probability half (independently).
4 If a child survives then it is going to have two children, and so

on.
5 A single node give a rise to a random tree.
6 Q: Probability that the original node has descendants h

generations in the future.
7 Prove this probability is at least 1/(h + 1).

Sariel (UIUC) CS573 35 Fall 2014 35 / 37

Galton-Watson process

1 Victorians worried: aristocratic surnames were disappearing.
2 Family names passed on only through the male children.
3 Family with no male children had its family name disappear.
4 # male children of a person is an independent random variable

X ∈ {0, 1, 2, . . .}.
5 Starting with a single person, its family (as far as male children

are concerned) is a random tree with the degree of a node being
distributed according to X .

6 .. A family disappears if E[X] ≤ 1, and it has a constant
probability of surviving if E[X] > 1.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

Galton-Watson process

1 Victorians worried: aristocratic surnames were disappearing.
2 Family names passed on only through the male children.
3 Family with no male children had its family name disappear.
4 # male children of a person is an independent random variable

X ∈ {0, 1, 2, . . .}.
5 Starting with a single person, its family (as far as male children

are concerned) is a random tree with the degree of a node being
distributed according to X .

6 .. A family disappears if E[X] ≤ 1, and it has a constant
probability of surviving if E[X] > 1.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

Galton-Watson process

1 Victorians worried: aristocratic surnames were disappearing.
2 Family names passed on only through the male children.
3 Family with no male children had its family name disappear.
4 # male children of a person is an independent random variable

X ∈ {0, 1, 2, . . .}.
5 Starting with a single person, its family (as far as male children

are concerned) is a random tree with the degree of a node being
distributed according to X .

6 .. A family disappears if E[X] ≤ 1, and it has a constant
probability of surviving if E[X] > 1.

Sariel (UIUC) CS573 36 Fall 2014 36 / 37

Galton-Watson process

1 ... Infant mortality is dramatically down. No longer a problem.
2 Countries with family names that were introduced long time

ago...
3 ...have very few surnames.

Koreans have 250 surnames, and three surnames form 45% of
the population).

4 Countries introduced surnames recently have more surnames.
Dutch have surnames only for the last 200 years, and there are
68, 000 different family names).

Sariel (UIUC) CS573 37 Fall 2014 37 / 37

Galton-Watson process

1 ... Infant mortality is dramatically down. No longer a problem.
2 Countries with family names that were introduced long time

ago...
3 ...have very few surnames.

Koreans have 250 surnames, and three surnames form 45% of
the population).

4 Countries introduced surnames recently have more surnames.
Dutch have surnames only for the last 200 years, and there are
68, 000 different family names).

Sariel (UIUC) CS573 37 Fall 2014 37 / 37

Galton-Watson process

1 ... Infant mortality is dramatically down. No longer a problem.
2 Countries with family names that were introduced long time

ago...
3 ...have very few surnames.

Koreans have 250 surnames, and three surnames form 45% of
the population).

4 Countries introduced surnames recently have more surnames.
Dutch have surnames only for the last 200 years, and there are
68, 000 different family names).

Sariel (UIUC) CS573 37 Fall 2014 37 / 37

Notes

Sariel (UIUC) CS573 38 Fall 2014 38 / 37

Notes

Sariel (UIUC) CS573 39 Fall 2014 39 / 37

Notes

Sariel (UIUC) CS573 40 Fall 2014 40 / 37

Notes

Sariel (UIUC) CS573 41 Fall 2014 41 / 37

	Min Cut
	Problem Definition

	Min cut
	The Algorithm
	The resulting algorithm
	Analysis

	A faster algorithm

	On coloring trees and min-cut

