CS 573: Algorithms, Fall 2014

Randomized Algorithms III – Min Cut

Lecture 15 October 16, 2014

Part I

Min cut

 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges.

Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

 $(S, V \setminus S) = ig\{ uv \ \Big| \ u \in S, v \in V \setminus S, ext{ and } uv \in E ig\},$

 $|(S, V \setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.

 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges. Interested in *cuts* in \mathbf{G} .

Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

 $(S, V \setminus S) = ig\{ uv \ \Big| \ u \in S, v \in V \setminus S, ext{ and } uv \in E ig\},$

 $|(old S, old V \setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.

 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges. Interested in *cuts* in \mathbf{G} .

Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

$$(S,\,V\setminus S)=\left\{uv\;\Big|\;u\in S,v\in\,V\setminus S, ext{ and }uv\in E
ight\},$$

 $|(S, V \setminus S)|$ is size of the cut

minimum cut / *mincut*: cut in graph with min size.

 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges. Interested in *cuts* in \mathbf{G} .

Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

 $(S, V \setminus S) = ig\{uv \ \Big| \ u \in S, v \in V \setminus S, ext{ and } uv \in Eig\},$

 $|(S, V \setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.

 $\mathbf{G} = (V, E)$: undirected graph, n vertices, m edges. Interested in *cuts* in \mathbf{G} .

Definition

cut in **G**: a partition of V: S and $V \setminus S$. Edges of the cut:

 $(S, V \setminus S) = ig\{ uv \ \Big| \ u \in S, v \in V \setminus S, ext{ and } uv \in E ig\},$

 $|(S, V \setminus S)|$ is size of the cut

minimum cut / mincut: cut in graph with min size.

Some definitions

• conditional probability of X given Y is

$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X=x) \cap (Y=y)]}{\Pr[Y=y]}$$

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y]$$
• X, Y events are *independent*, if

$$\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

$$\implies \Pr[X = x \mid Y = y] = \Pr[X = x].$$

Some definitions

• conditional probability of X given Y is

$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X=x) \cap (Y=y)]}{\Pr[Y=y]}.$$

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y]$$
• X, Y events are independent, if

$$\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

$$\implies \Pr[X = x \mid Y = y] = \Pr[X = x].$$

Some definitions

a conditional probability of X given Y is
$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X=x) \cap (Y=y)]}{\Pr[Y=y]}.$$

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y]$$
a X, Y events are *independent*, if
$$\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

$$\implies \Pr[X = x \mid Y = y] = \Pr[X = x].$$

Some more probability

Lemma

 $\mathcal{E}_1, \ldots, \mathcal{E}_n$: *n* events (not necessarily independent). Then,

$$\Pr\left[\bigcap_{i=1}^{n} \mathcal{E}_{i}\right] = \Pr\left[\mathcal{E}_{1}\right] * \Pr\left[\mathcal{E}_{2} \left|\mathcal{E}_{1}\right\right] * \Pr\left[\mathcal{E}_{3} \left|\mathcal{E}_{1} \cap \mathcal{E}_{2}\right] * \dots \\ * \Pr\left[\mathcal{E}_{n} \left|\mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{n-1}\right]\right].$$

G:

- edge contraction: e = xy in **G**.
- ② ... merge $oldsymbol{x},oldsymbol{y}$ into a single vertex.
- Interpretation in the self loops.
- Image: marginal edges multi-graph.
- 5 ... weights/ multiplicities on the edges.

- edge contraction: e = xy in **G**.
- ② ... merge x,y into a single vertex.
- Image: Image:
- ... parallel edges *multi-graph*.
- 5 ... weights/ multiplicities on the edges.

- edge contraction: e = xy in G.
- ② ... merge x, y into a single vertex.
- Interpose self loops.
- In parallel edges multi-graph.
- 5 ... weights/ multiplicities on the edges.

- edge contraction: e = xy in G.
- Image x, y into a single vertex.
- ...remove self loops.
- ... parallel edges multi-graph.
- Image: weights / multiplicities on the edges.

- edge contraction: e = xy in G.
- Image x, y into a single vertex.
- Interpose self loops.
- ... parallel edges multi-graph.
- Summer in the edges.

- Graph represented using adjacency lists.
- Intersection of the end of the two vertices being contracted.
- O Using hashing to do fix-ups.
 - (i.e., fix adjacency list of vertices connected to $oldsymbol{x},oldsymbol{y}.)$
- Include edge weight in computing cut weight.

- Graph represented using adjacency lists.
- In Merging the adjacency lists of the two vertices being contracted.
- Using hashing to do fix-ups.
 (i.e., fix adjacency list of vertices connected to x, y.)
- Include edge weight in computing cut weight.

- Graph represented using adjacency lists.
- In Merging the adjacency lists of the two vertices being contracted.
- Using hashing to do fix-ups.
 (i.e., fix adjacency list of vertices connected to x, y.)
- Include edge weight in computing cut weight.

- Graph represented using adjacency lists.
- Ø Merging the adjacency lists of the two vertices being contracted.
- Using hashing to do fix-ups.
 (i.e., fix adjacency list of vertices connected to x, y.)
- Include edge weight in computing cut weight.

- Graph represented using adjacency lists.
- 2 Merging the adjacency lists of the two vertices being contracted.
- Using hashing to do fix-ups. (i.e., fix adjacency list of vertices connected to x, y.)
- Include edge weight in computing cut weight.

- Graph represented using adjacency lists.
- Ø Merging the adjacency lists of the two vertices being contracted.
- Using hashing to do fix-ups.
 (i.e., fix adjacency list of vertices connected to x, y.)
- Include edge weight in computing cut weight.

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- The cut $S = \{x\}$ is not in G/xy.
- $\textcircled{0} \implies$ size mincut in ${\sf G}/xy \ge$ mincut in ${\sf G}.$
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- ③ The cut $S = \{x\}$ is not in G/xy .
 -) \implies size mincut in ${f G}/xy \ge$ mincut in ${f G}.$
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- The cut $S = \{x\}$ is not in G/xy.
 - \implies size mincut in $\mathbf{G}/xy \ge$ mincut in \mathbf{G} .
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- The cut $S = \{x\}$ is not in G/xy.
- **9** \implies size mincut in $G/xy \ge$ mincut in G.
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

Observation

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- The cut $S = \{x\}$ is not in G/xy.
- \implies size mincut in $G/xy \ge$ mincut in G.

Idea: Repeatedly perform edge contractions (benefits: shrink graph)...

 Every vertex in contracted graph is a connected component in the original graph.)

- A cut in G/xy is a valid cut in G.
- **2** There \exists cuts in **G** are not in **G**/xy.
- The cut $S = \{x\}$ is not in G/xy.
- $\bigcirc \implies$ size mincut in $\mathsf{G}/xy \ge$ mincut in G .
- Idea: Repeatedly perform edge contractions (benefits: shrink graph)...
- Every vertex in contracted graph is a connected component in the original graph.)

9 (13)

Contraction - all together now

Not min cut!

- ② Contracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

- Not min cut!
- Ontracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

- Not min cut!
- Ontracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

- Not min cut!
- Ontracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

- Not min cut!
- Ontracted wrong edge somewhere...
- If never contract an edge in the cut...
- ...get min cut in the end!
- We might still get min cut even if we contract edge min cut. Why???

The algorithm...

```
\begin{array}{l} \mbox{Algorithm MinCut}({\tt G}) & {\tt G}_0 \leftarrow G \\ i = 0 & \\ \mbox{while } {\tt G}_i \mbox{ has more than two vertices } {\tt do} & \\ e_i \leftarrow \mbox{ random edge from } {\tt E}({\tt G}_i) & \\ {\tt G}_{i+1} \leftarrow G_i/e_i & \\ i \leftarrow i+1 & \\ \\ \mbox{Let } (S, V \setminus S) \mbox{ be the cut in the original graph} & \\ & \\ & \mbox{ corresponding to the single edge in } {\tt G}_i & \\ \mbox{ return } (S, V \setminus S). & \end{array}
```

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index *i*, $\beta_{i-1} < r \leq \beta_i$. Return x_i .

Edges have weight...

- Incompute total weight of each vertex (adjacent edges).
- Ick randomly a vertex by weight
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index $i, \beta_{i-1} < r \leq \beta_i$. Return x_i .

Edges have weight...

- I...compute total weight of each vertex (adjacent edges).
- Ick randomly a vertex by weight
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index $i, \beta_{i-1} < r \leq \beta_i$. Return x_i .

Edges have weight...

- I...compute total weight of each vertex (adjacent edges).
- Ick randomly a vertex by weight.
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index $i, \beta_{i-1} < r \leq \beta_i$. Return x_i .

Edges have weight...

- I...compute total weight of each vertex (adjacent edges).
- Ick randomly a vertex by weight
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^{i} \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index *i*, $\beta_{i-1} < r \leq \beta_i$. Return x_i .

Edges have weight...

...compute total weight of each vertex (adjacent edges)

- Pick randomly a vertex by weight.
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index *i*, $\beta_{i-1} < r \leq \beta_i$. Return x_i .

- Edges have weight...
- Incompute total weight of each vertex (adjacent edges).
- Ick randomly a vertex by weight.
 - Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^i \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index *i*, $\beta_{i-1} < r \leq \beta_i$. Return x_i .

- Edges have weight...
- Incompute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.

Pick random edge adjacent to this vertex.

Lemma

 $X = \{x_1, \ldots, x_n\}$: elements, $\omega(x_i)$: integer positive weight. Pick randomly, in O(n) time, an element $\in X$, with prob picking x_i being $\omega(x_i) / W$, where $W = \sum_{i=1}^n \omega(x_i)$.

Proof.

Randomly choose $r \in [0, W]$. Precompute $\beta_i = \sum_{k=1}^{i} \omega(x_k) = \beta_{i-1} + \omega(x_i)$. Find first index *i*, $\beta_{i-1} < r \leq \beta_i$. Return x_i .

- Edges have weight...
- Incompute total weight of each vertex (adjacent edges).
- Pick randomly a vertex by weight.
- 9 Pick random edge adjacent to this vertex.

G: mincut of size k and n vertices, then $|\mathsf{E}(\mathsf{G})| \geq \frac{kn}{2}$.

Proof.

Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of size smaller than k. As such, there are at least $\sum_{v \in V} \text{degree}(v)/2 \ge nk/2$ edges in the graph.

If we pick in random an edge e from a graph **G**, then with probability at most $\frac{2}{n}$ it belong to the minimum cut.

Proof.

There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus, the probability of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n.

Lemma

MinCut outputs the mincut with prob. $\geq \frac{2}{n(n-1)}$.

Proof

- \mathcal{E}_i : event that e_i is not in the minimum cut of \mathbf{G}_i .
- **Omega MinCut** outputs mincut if all the events $\mathcal{E}_0, \ldots, \mathcal{E}_{n-3}$ happen.
- $Pr[\mathcal{E}_{i} \mid \mathcal{E}_{0} \cap \mathcal{E}_{1} \cap \ldots \cap \mathcal{E}_{i-1}] \geq 1 \frac{2}{|V(G_{i})|} = 1 \frac{2}{n-i}.$ $\Rightarrow \Delta = Pr[\mathcal{E}_{0} \cap \ldots \cap \mathcal{E}_{n-3}] = Pr[\mathcal{E}_{0}] \cdot Pr[\mathcal{E}_{1} \mid \mathcal{E}_{0}] \cdot$ $Pr[\mathcal{E}_{2} \mid \mathcal{E}_{0} \cap \mathcal{E}_{1}] \cdot \ldots \cdot Pr[\mathcal{E}_{n-3} \mid \mathcal{E}_{0} \cap \ldots \cap \mathcal{E}_{n-4}]$

Lemma

MinCut outputs the mincut with prob. $\geq -\frac{1}{n!}$

$$\geq \frac{2}{n(n-1)}.$$

Proof

\$\mathbb{E}_i\$: event that \$e_i\$ is not in the minimum cut of \$\mathbb{G}_i\$.
\$\mathbb{MinCut}\$ outputs mincut if all the events \$\mathbb{E}_0, \ldots, \mathbb{E}_{n-3}\$ happen.
\$\mathbb{Pr}[\mathbb{E}_i | \mathbb{E}_0 ∩ \mathbb{E}_1 ∩ \ldots ∩ \mathbb{E}_{i-1}] ≥ 1 - \frac{2}{|V(G_i)|} = 1 - \frac{2}{n-i}\$.
\$\mathbb{Pr}[\mathbb{E}_i | \mathbb{E}_0 ∩ \mathbb{E}_1 ∩ \ldots ∩ \mathbb{E}_{i-1}] ≥ 1 - \frac{2}{|V(G_i)|} = 1 - \frac{2}{n-i}\$.
\$\mathbb{Pr}[\mathbb{E}_i | \mathbb{E}_0 ∩ \mathbb{E}_1 ∩ \ldots ∩ \mathbb{E}_{i-1}] ≥ 1 - \frac{2}{|V(G_i)|} = 1 - \frac{2}{n-i}\$.
\$\mathbb{Pr}[\mathbb{E}_i | \mathbb{E}_0 ∩ \mathbb{E}_1 ∩ \mathbb{E}_{i-1}] = \mathbf{Pr}[\mathbb{E}_0] \cdots \mathbf{Pr}[\mathbf{E}_1 | \mathbb{E}_0] \cdots \mathbf{Pr}[\mathbb{E}_1 | \mathbf{E}_0] \cdots \mathbf{Pr}[\mathbf{E}_{n-3} | \mathbf{E}_0 ∩ \ldots ∩ \mathbf{E}_{n-4}]\$

Proof continued...

As such, we have

$$egin{array}{rl} \Delta &\geq& \prod\limits_{i=0}^{n-3} igg(1-rac{2}{n-i}igg) = \prod\limits_{i=0}^{n-3} rac{n-i-2}{n-i} \ &=& rac{n-2}{n} \, st rac{n-3}{n-1} \, st rac{n-4}{n-2} \dots \cdot rac{2}{4} \cdot rac{1}{3} \ &=& rac{2}{n \cdot (n-1)}. \end{array}$$

Some math restated...

$$\begin{aligned} \alpha &= \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ &= \frac{n-2}{n} \cdot \frac{(n-1)-2}{n-1} \cdot \frac{(n-2)-2}{n-2} \cdots \frac{4-2}{4} \cdot \frac{3-2}{3} \\ &= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot \frac{n-5}{n-3} \cdots \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \\ &= \frac{n}{n} \cdot \frac{n-1}{n-1} \cdot \frac{2}{n-1} \cdot \frac{2}{n-1} \cdot \frac{1}{n-1} \end{aligned}$$

Running time analysis...

Observation

MinCut runs in $O(n^2)$ time.

Observation

The algorithm always outputs a cut, and the cut is not smaller than the minimum cut.

Definition

Amplification: running an experiment again and again till the things we want to happen, with good probability, do happen.

Getting a good probability

MinCutRep: algorithm runs **MinCut** n(n-1) times and return the minimum cut computed.

Lemma

probability MinCutRep fails to return the minimum cut is < 0.14.

Proof.

MinCut fails to output the mincut in each execution is at most $1 - \frac{2}{n(n-1)}$. **MinCutRep** fails, only if all n(n-1) executions of **MinCut** fail. $\left(1 - \frac{2}{n(n-1)}\right)^{n(n-1)} \le \exp\left(-\frac{2}{n(n-1)} \cdot n(n-1)\right) = \exp(-2) < 0.14$, since $1 - x \le e^{-x}$ for $0 \le x \le 1$.

Theorem

One can compute mincut in $O(n^4)$ time with constant probability to get a correct result. In $O(n^4 \log n)$ time the minimum cut is returned with high probability.

Why MinCutRep needs so many executions? Probability of failure in first ν iterations is

$$\Prig[egin{split} &\mathbb{Pr}ig[eta_0 \cap \ldots \cap eta_{
u-1}ig] \geq \prod_{i=0}^{
u-1} igg(1-rac{2}{n-i}igg) = \prod_{i=0}^{
u-1} rac{n-i-2}{n-i} \ &= rac{n-2}{n} \, st \, rac{n-3}{n-1} \, st \, rac{n-4}{n-2} \cdots \ &= rac{(n-
u)(n-
u-1)}{n\cdot(n-1)}. \end{split}$$

 $\implies
u = n/2$: Prob of success $\approx 1/4$. $\implies
u = n - \sqrt{n}$: Prob of success $\approx 1/n$.

Why **MinCutRep** needs so many executions? Probability of failure in first ν iterations is

$$\Pr\left[\mathcal{E}_{0}\cap\ldots\cap\mathcal{E}_{\nu-1}\right] \geq \prod_{i=0}^{\nu-1} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{\nu-1} \frac{n-i-2}{n-i}$$
$$= \frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} \cdots$$
$$= \frac{(n-\nu)(n-\nu-1)}{n \cdot (n-1)}.$$

 $\implies
u = n/2$: Prob of success $\approx 1/4$. $\implies
u = n - \sqrt{n}$: Prob of success $\approx 1/n$.

Why **MinCutRep** needs so many executions? Probability of failure in first ν iterations is

$$\Pr\left[\mathcal{E}_{0}\cap\ldots\cap\mathcal{E}_{\nu-1}\right] \geq \prod_{i=0}^{\nu-1} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{\nu-1} \frac{n-i-2}{n-i}$$
$$= \frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} \cdots$$
$$= \frac{(n-\nu)(n-\nu-1)}{n \cdot (n-1)}.$$

 $\implies
u = n/2$: Prob of success $\approx 1/4$. $\implies
u = n - \sqrt{n}$: Prob of success $\approx 1/n$.

Why **MinCutRep** needs so many executions? Probability of failure in first ν iterations is

$$\Pr\left[\mathcal{E}_{0}\cap\ldots\cap\mathcal{E}_{\nu-1}\right] \geq \prod_{i=0}^{\nu-1} \left(1 - \frac{2}{n-i}\right) = \prod_{i=0}^{\nu-1} \frac{n-i-2}{n-i}$$
$$= \frac{n-2}{n} * \frac{n-3}{n-1} * \frac{n-4}{n-2} \cdots$$
$$= \frac{(n-\nu)(n-\nu-1)}{n \cdot (n-1)}.$$

$$\implies \nu = n/2: \text{ Prob of success} \approx 1/4.$$
$$\implies \nu = n - \sqrt{n}: \text{ Prob of success} \approx 1/n.$$

Insight

As the graph get smaller probability for bad choice increases.

- ② Currently do the amplification from the outside of the algorithm.
- Put amplification directly into the algorithm.

Insight

- As the graph get smaller probability for bad choice increases.
- 2 Currently do the amplification from the outside of the algorithm.
 - Put amplification directly into the algorithm.

Insight

- As the graph get smaller probability for bad choice increases.
- 2 Currently do the amplification from the outside of the algorithm.
- Out amplification directly into the algorithm.

Contract...

Contract(G, t) shrinks G till it has only t vertices. FastCut computes the minimum cut using Contract.

 $\begin{array}{l} \mbox{Contract(} \mathbf{G},t\) \\ \mbox{while } |(G)| > t\ \mbox{do} \\ \mbox{Pick a random edge} \\ e\ \mbox{in } \mathbf{G}. \\ \mbox{G} \leftarrow G/e \\ \mbox{return } \mathbf{G} \end{array}$

FastCut(G = (V, E))**G** -- multi-graph begin $n \leftarrow |V(G)|$ if n < 6 then Compute minimum cut of G and return cut. $t \leftarrow \left[1 + n/\sqrt{2}\right]$ $H_1 \leftarrow \text{Contract}(G, t)$ $H_2 \leftarrow \text{Contract}(G, t)$ /* Contract is randomized!!! */ $X_1 \leftarrow \mathsf{FastCut}(H_1),$ $X_2 \leftarrow \mathsf{FastCut}(H_2)$ **return** mincut of X_1 and X_2 . end

The running time of $\mathsf{FastCut}(G)$ is $O(n^2 \log n)$, where n = |V(G)|.

Proof.

Well, we perform two calls to Contract(G, t) which takes $O(n^2)$ time. And then we perform two recursive calls on the resulting graphs. We have: $T(n) = O(n^2) + 2T(\frac{n}{\sqrt{2}})$ The solution to this recurrence is $O(n^2 \log n)$ as one can easily (and should) verify

The running time of $\mathsf{FastCut}(G)$ is $O(n^2 \log n)$, where n = |V(G)|.

Proof.

Well, we perform two calls to Contract(G, t) which takes $O(n^2)$ time. And then we perform two recursive calls on the resulting graphs. We have: $T(n) = O(n^2) + 2T\left(\frac{n}{\sqrt{2}}\right)$ The solution to this recurrence is $O(n^2 \log n)$ as one can easily

(and should) verify.

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in $u = n - t = n - \left[1 + n/\sqrt{2}\right]$ into success probability:

$$\Pr\left[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{n-t}\right] \geq$$

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in $u = n - t = n - \left[1 + n/\sqrt{2}\right]$ into success probability:

$$\Prig[{f {f \epsilon}_0 \cap \ldots \cap {f {f \epsilon}_{n-t}} ig] \geq rac{t(t-1)}{n \cdot (n-1)}$$

Success at each step

Lemma

Probability that mincut in contracted graph is original mincut is at least 1/2.

Proof.

Plug in
$$\nu = n - t = n - \left\lceil 1 + n/\sqrt{2} \right\rceil$$
 into success probability:

$$\Pr\left[\mathcal{E}_0 \cap \ldots \cap \mathcal{E}_{n-t}\right] \ge \frac{t(t-1)}{n \cdot (n-1)}$$

$$= \frac{\left\lceil 1 + n/\sqrt{2} \right\rceil \left(\left\lceil 1 + n/\sqrt{2} \right\rceil - 1\right)}{n(n-1)} \ge \frac{1}{2}.$$

26

Probability of success...

Lemma

FastCut finds the minimum cut with probability larger than $\Omega(1/\log n)$.

See class notes for a formal proof. We provide a more elegant direct argument shortly.

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. *c* is a constant large enough.

Proof.

I FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.

② ...fails with prob. $\leq 1 - c' / \log n$.

Solution in *m* represented in the set of the set o

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. *c* is a constant large enough.

Proof.

1 FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.

2 ... fails with prob. $\leq 1 - c' / \log n$.

3 ...fails in *m* reps with prob. $\leq (1 - c' / \log n)^m$. But then $(1 - c' / \log n)^m \leq \left(e^{-c' / \log n}\right)^m \leq e^{-mc' / \log n} \leq \frac{1}{n^2},$ for $m = (2 \log n) / c'$.

Running FastCut repeatedly $c \cdot \log^2 n$ times, guarantee that the algorithm outputs mincut with probability $\geq 1 - 1/n^2$. *c* is a constant large enough.

Proof.

- **I** FastCut succeeds with prob $\geq c'/\log n$, c' is a constant.
- 2 ... fails with prob. $\leq 1 c' / \log n$.
- $\begin{array}{l} \textbf{③} \quad ... \text{fails in } m \text{ reps with prob.} \leq (1 c'/\log n)^m. \text{ But then} \\ (1 c'/\log n)^m \leq \left(e^{-c'/\log n}\right)^m \leq e^{-mc'/\log n} \leq \frac{1}{n^2}, \\ \text{for } m = (2\log n)/c'. \end{array}$

Theorem

Theorem

One can compute the minimum cut in a graph **G** with *n* vertices in $O(n^2 \log^3 n)$ time. The algorithm succeeds with probability $\geq 1 - 1/n^2$.

Proof.

We do amplification on **FastCut** by running it $O(\log^2 n)$ times. The running time bound follows from lemma...

Part II

On coloring trees and min-cut

• T_h be a complete binary tree of height h.

- andomly color its edges by black and white.
- (1) \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $\rho_h = \Pr[\mathcal{E}_h].$
- \circ $\rho_0 = 1$ and $\rho_1 = 3/4$ (see below).

- T_h be a complete binary tree of height h.
- ② Randomly color its edges by black and white.
- (1) \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $\bullet \ \boldsymbol{\rho}_h = \Pr[\boldsymbol{\mathcal{E}}_h].$
- \circ $ho_0=1$ and $ho_1=3/4$ (see below).

- T_h be a complete binary tree of height h.
- ② Randomly color its edges by black and white.
- **③** \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $P_h = \Pr[\mathcal{E}_h].$
- \circ $\rho_0 = 1$ and $\rho_1 = 3/4$ (see below).

- T_h be a complete binary tree of height h.
- ② Randomly color its edges by black and white.
- § \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $\bullet \ \rho_h = \Pr[\mathcal{E}_h].$
- $\rho_0 = 1$ and $\rho_1 = 3/4$ (see below).

- T_h be a complete binary tree of height h.
- ② Randomly color its edges by black and white.
- **③** \mathcal{E}_h : there exists a black path from root T_h to one of its leafs.
- $\bullet \ \rho_h = \Pr[\mathcal{E}_h].$
- $\rho_0 = 1$ and $\rho_1 = 3/4$ (see below).

Bounding $ho_{ m h}$

• u root of T_h : children u_l and u_r .

- 2) ho_{h-1} : Probability for black path $u_l \rightsquigarrow$ children
- Solution Prob of black path from u through u_1 is: $\Pr\left[uu_l \text{ is black}\right] \cdot \rho_{h-1} = \rho_{h-1}/2$
- In Prob. no black path through u_l is $1ho_{h-1}/2$.
- \odot Prob no black path is: $(1ho_{h-1}/2)^2$

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2} \Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}$$

Bounding $ho_{ m h}$

- u root of T_h : children u_l and u_r .
- 2) ho_{h-1} : Probability for black path $u_l \rightsquigarrow$ children
- Prob of black path from u through u_1 is:

 $\Pr \left| u u_l
ight.$ is black $\left| \, \cdot \,
ho_{h-1} =
ho_{h-1}/2$

- In Prob. no black path through u_l is $1ho_{h-1}/2$.
- ${}_{\bigcirc}$ Prob no black path is: $(1ho_{h-1}/2)^2$

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2} \Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}$$

Bounding ρ_h

• u root of T_h : children u_l and u_r .

- 2) ho_{h-1} : Probability for black path $u_l \rightsquigarrow$ children
- Prob of black path from u through u_1 is: $\Pr\left[uu_l \text{ is black}\right] \cdot \rho_{h-1} = \rho_{h-1}/2$
- ④ Prob. no black path through u_l is $1ho_{h-1}/2$.

$$ho_h = 1 - igg(1 - rac{
ho_{h-1}}{2}igg)^2 = rac{
ho_{h-1}}{2} igg(2 - rac{
ho_{h-1}}{2}igg) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}$$

Bounding ρ_h

• u root of T_h : children u_l and u_r .

2) ho_{h-1} : Probability for black path $u_l \rightsquigarrow$ children

Prob of black path from u through u_1 is: $\Pr\left[uu_l \text{ is black}\right] \cdot \rho_{h-1} = \rho_{h-1}/2$

Prob. no black path through u_l is 1 - ρ_{h-1}/2.
Prob no black path is: (1 - ρ_{h-1}/2)²
We have

$$ho_h = 1 - igg(1 - rac{
ho_{h-1}}{2}igg)^2 = rac{
ho_{h-1}}{2} igg(2 - rac{
ho_{h-1}}{2}igg) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}$$

Bounding ρ_h

• u root of T_h : children u_l and u_r .

- 2) ho_{h-1} : Probability for black path $u_l \rightsquigarrow$ children
- Prob of black path from u through u_1 is: $\Pr\left[uu_l \text{ is black}\right] \cdot \rho_{h-1} = \rho_{h-1}/2$
- Output Prob. no black path through u_l is $1 \rho_{h-1}/2$.
- **§** Prob no black path is: $(1ho_{h-1}/2)^2$

$$ho_h = 1 - \Big(1 - rac{
ho_{h-1}}{2}\Big)^2 = rac{
ho_{h-1}}{2} \Big(2 - rac{
ho_{h-1}}{2}\Big) =
ho_{h-1} - rac{
ho_{h-1}^2}{4}.$$

Lemma...

Lemma

```
We have that 
ho_h \geq 1/(h+1).
```

Proof.

1 By induction. For h = 1: $\rho_1 = 3/4 > 1/(1+1)$. ② $ho_h =
ho_{h-1} - rac{
ho_{h-1}^2}{4} = f(
ho_{h-1})$, for $f(x) = x - x^2/4$.

Sariel (UIUC)

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

④ f(x) is increasing in the range [0,1]

By induction:

$$egin{aligned} &
ho_h = f\left(
ho_{h-1}
ight) \geq f\left(rac{1}{(h-1)+1}
ight) = rac{1}{h} - rac{1}{4h^2}. \ &
ho_h = rac{1}{h} - rac{1}{4h^2}. \end{aligned}$$

Lemma...

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

$$\rho_h = \rho_{h-1} - \frac{\rho_{h-1}^2}{4} = f(\rho_{h-1}), \text{ for } f(x) = x - x^2/4.$$

$$f'(x)=1-x/2. \implies f'(x)>0$$
 for $x\in [0,1].$

• f(x) is increasing in the range [0,1]

By induction:

$$oldsymbol{
ho}_{h}=oldsymbol{f}\left(oldsymbol{
ho}_{h-1}
ight)\geq oldsymbol{f}\left(rac{1}{G}
ight)$$

 $oldsymbol{0} \ rac{1}{h} - rac{1}{4h^2} \geq rac{1}{h+1} \quad \Leftrightarrow \quad 4h(h+1) - (h+1) \geq 4h^2 \quad \Leftrightarrow$

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

9
$$ho_h =
ho_{h-1} - rac{
ho_{h-1}^2}{4} = f(
ho_{h-1})$$
, for $f(x) = x - x^2/4$.

2 f(x) is increasing in the range [0,1]

O By induction:

$$egin{aligned} &
ho_h = f\left(
ho_{h-1}
ight) \geq f\left(rac{1}{(h-1)+1}
ight) = rac{1}{h} - rac{1}{4h^2}. \ &rac{1}{h} - rac{1}{4h^2} \geq rac{1}{h+1} & \Leftrightarrow & 4h(h+1) - (h+1) \geq 4h^2 \end{aligned}$$

 $4h^2+4h-h-1\geq 4h^2 \quad \Leftrightarrow \quad 3h\geq 1,$

Lemma

We have that $\rho_h \geq 1/(h+1)$.

Proof.

•
$$\rho_h = \rho_{h-1} - \frac{\rho_{h-1}^2}{4} = f(\rho_{h-1})$$
, for $f(x) = x - x^2/4$.

2 f(x) is increasing in the range [0,1]

O By induction:

$$\begin{split} \rho_{h} &= f\left(\rho_{h-1}\right) \geq f\left(\frac{1}{(h-1)+1}\right) = \frac{1}{h} - \frac{1}{4h^{2}}.\\ \bullet \quad \frac{1}{h} - \frac{1}{4h^{2}} \geq \frac{1}{h+1} \quad \Leftrightarrow \quad 4h(h+1) - (h+1) \geq 4h^{2} \quad \Leftrightarrow \\ & 4h^{2} + 4h - h - 1 \geq 4h^{2} \quad \Leftrightarrow \quad 3h \geq 1, \end{split}$$

Back to FastCut...

- Recursion tree for FastCut corresponds to such a coloring.
- 2 Every call performs two recursive calls.
- Contraction in recursion succeeds with prob 1/2.
 Draw recursion edge in black if successful.
- Since depth of tree $H \leq 2 + \log_{\sqrt{2}} n$.
- by above... probability of success is $\geq 1/(h+1) \geq 1/(3 + \log_{\sqrt{2}} n)$.

- Start with a single node.
- 2 Each node has two children.
- Seach child survives with probability half (independently).
- If a child survives then it is going to have two children, and so on.
- A single node give a rise to a random tree.
- Q: Probability that the original node has descendants h generations in the future.
- Prove this probability is at least 1/(h+1).

- Victorians worried: aristocratic surnames were disappearing.
- Pamily names passed on only through the male children.
- I Family with no male children had its family name disappear.
- # male children of a person is an independent random variable $X \in \{0, 1, 2, \ldots\}$.
- Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to X.
- .. A family disappears if $\mathbf{E}[X] \leq 1$, and it has a constant probability of surviving if $\mathbf{E}[X] > 1$.

- Victorians worried: aristocratic surnames were disappearing.
- Isometry of the second seco
- Family with no male children had its family name disappear.
- # male children of a person is an independent random variable $X \in \{0, 1, 2, \ldots\}$.
- Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to X.
- .. A family disappears if $\mathbf{E}[X] \leq 1$, and it has a constant probability of surviving if $\mathbf{E}[X] > 1$.

- Victorians worried: aristocratic surnames were disappearing.
- Isometry of the second seco
- S Family with no male children had its family name disappear.
- # male children of a person is an independent random variable $X \in \{0, 1, 2, \ldots\}$.
- Starting with a single person, its family (as far as male children are concerned) is a random tree with the degree of a node being distributed according to *X*.
- .. A family disappears if $E[X] \leq 1$, and it has a constant probability of surviving if E[X] > 1.

- **1** ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames.
 Koreans have 250 surnames, and three surnames form 45% of the population).
- Countries introduced surnames recently have more surnames.
 Dutch have surnames only for the last 200 years, and there are 68,000 different family names).

- **1** ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames.
 Koreans have 250 surnames, and three surnames form 45% of the population).
- Countries introduced surnames recently have more surnames.
 Dutch have surnames only for the last 200 years, and there are 68,000 different family names).

- **1** ... Infant mortality is dramatically down. No longer a problem.
- Countries with family names that were introduced long time ago...
- ...have very few surnames.
 Koreans have 250 surnames, and three surnames form 45% of the population).
- Countries introduced surnames recently have more surnames.
 Dutch have surnames only for the last 200 years, and there are 68,000 different family names).