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Part I

Min cut
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Min cut

G = (V , E): undirected graph, n ver-
tices, m edges.
Interested in cuts in G.

Definition
cut in G: a partition of V : S and V \ S.
Edges of the cut:

(S, V \ S) =
{
uv

∣∣∣ u ∈ S, v ∈ V \ S, and uv ∈ E
}

,

|(S, V \ S)| is size of the cut

minimum cut / mincut: cut in graph with min size.
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Some definitions

1 conditional probability of X given Y is

Pr
[
X = x |Y = y

]
=

Pr
[

(X=x)∩(Y =y)
]

Pr
[

Y =y
] .

Pr
[
(X = x) ∩ (Y = y)

]
= Pr

[
X = x

∣∣∣∣Y = y
]
· Pr[Y = y].

2 X, Y events are independent, if
Pr
[
X = x ∩Y = y

]
= Pr

[
X = x

]
· Pr

[
Y = y

]
.

=⇒ Pr
[
X = x

∣∣∣Y = y
]

= Pr
[
X = x

]
.
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Some more probability

Lemma
E1, . . . ,En : n events (not necessarily independent). Then,

Pr
[
∩n

i=1 Ei
]

= Pr
[
E1
]
∗ Pr

[
E2 |E1

]
∗ Pr

[
E3

∣∣∣E1 ∩ E2
]
∗ . . .

∗ Pr
[
En

∣∣∣E1 ∩ . . . ∩ En−1
]

.
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Edge contraction...

G: x y

1 edge contraction: e = xy in G.
2 ... merge x, y into a single vertex.
3 ...remove self loops.
4 ... parallel edges – multi-graph.
5 ... weights/ multiplicities on the edges.
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Min cut in weighted graph

2
2

Edge contraction implemented in O(n) time:
1 Graph represented using adjacency lists.
2 Merging the adjacency lists of the two vertices being contracted.
3 Using hashing to do fix-ups.

(i.e., fix adjacency list of vertices connected to x, y.)
4 Include edge weight in computing cut weight.
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Cuts under contractions

Observation
1 A cut in G/xy is a valid cut in G.
2 There ∃ cuts in G are not in G/xy.
3 The cut S = {x} is not in G/xy.
4 =⇒ size mincut in G/xy ≥ mincut in G.

1 Idea: Repeatedly perform edge contractions (benefits: shrink
graph)...

2 Every vertex in contracted graph is a connected component in
the original graph.)
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Contraction

(2)
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Contraction

2
3

44

5

(11)

4

5
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Contraction

9

(13)
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Contraction

9

(13) (14)
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Contraction - all together now

x y
2

2
2

2
22

(a) (b) (c) (d)

2
2

2

2
2 2

2
2

2
3

2
3

44

5

4

5

(e) (f) (g) (h)

9

(i) (j)
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But...

1 Not min cut!
2 Contracted wrong edge somewhere...
3 If never contract an edge in the cut...
4 ...get min cut in the end!
5 We might still get min cut even if we contract edge min cut.

Why???
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The algorithm...

Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

ei ← random edge from E(Gi)
Gi+1 ← Gi/ei
i ← i + 1

Let (S, V \ S) be the cut in the original graph
corresponding to the single edge in Gi

return (S, V \ S).
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How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



How to pick a random edge?

Lemma
X = {x1, . . . , xn}: elements, ω(xi): integer positive weight.
Pick randomly, in O(n) time, an element ∈ X , with prob picking xi
being ω(xi) /W , where W = ∑n

i=1 ω(xi).

Proof.
Randomly choose r ∈ [0, W ].
Precompute βi = ∑i

k=1 ω(xk) = βi−1 + ω(xi).
Find first index i, βi−1 < r ≤ βi . Return xi .

1 Edges have weight...
2 ...compute total weight of each vertex (adjacent edges).
3 Pick randomly a vertex by weight.
4 Pick random edge adjacent to this vertex.

Sariel (UIUC) CS573 13 Fall 2014 13 / 37



Lemma...

Lemma
G: mincut of size k and n vertices, then |E(G)| ≥ kn

2 .

Proof.
Each vertex degree is at least k, otherwise the vertex itself would
form a minimum cut of size smaller than k. As such, there are at
least ∑v∈V degree(v)/2 ≥ nk/2 edges in the graph.
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Lemma...

Lemma
If we pick in random an edge e from a graph G, then with probability
at most 2

n it belong to the minimum cut.

Proof.
There are at least nk/2 edges in the graph and exactly k edges in
the minimum cut. Thus, the probability of picking an edge from the
minimum cut is smaller then k/(nk/2) = 2/n.
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Lemma

Lemma
MinCut outputs the mincut with prob. ≥

2
n(n − 1)

.

Proof
1 Ei : event that ei is not in the minimum cut of Gi .
2 MinCut outputs mincut if all the events E0, . . . ,En−3 happen.

3 Pr
[
Ei

∣∣∣E0 ∩ E1 ∩ . . . ∩ Ei−1
]
≥ 1−

2
|V (Gi)|

= 1−
2

n − i
.

=⇒ ∆ = Pr[E0 ∩ . . . ∩ En−3] = Pr[E0] · Pr
[
E1

∣∣∣E0
]
·

Pr
[
E2

∣∣∣E0 ∩ E1
]
· . . . · Pr

[
En−3

∣∣∣E0 ∩ . . . ∩ En−4
]
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Proof continued...

As such, we have

∆ ≥
n−3∏
i=0

(
1−

2
n − i

)
=

n−3∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . . ·
2
4
·

1
3

=
2

n · (n − 1)
.
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Some math restated...

α =
(

1−
2
n

)(
1−

2
n − 1

)(
1−

2
n − 2

)
· · ·

(
1−

2
4

)(
1−

2
3

)

=
n − 2

n
·

(n − 1)− 2
n − 1

·
(n − 2)− 2

n − 2
· · ·

4− 2
4
·

3− 2
3

=
n
·

n − 1
· · · · · ·

2
·

1
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n
·
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·
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n − 2

·
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n − 3

· · ·
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5
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4
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Running time analysis...

Observation
MinCut runs in O(n2) time.

Observation
The algorithm always outputs a cut, and the cut is not smaller than
the minimum cut.

Definition
Amplification: running an experiment again and again till the things
we want to happen, with good probability, do happen.

Sariel (UIUC) CS573 19 Fall 2014 19 / 37



Getting a good probability

MinCutRep: algorithm runs MinCut n(n − 1) times and return
the minimum cut computed.

Lemma
probability MinCutRep fails to return the minimum cut is < 0.14.

Proof.
MinCut fails to output the mincut in each execution is at most
1− 2

n(n−1) .
MinCutRep fails, only if all n(n − 1) executions of MinCut fail.(
1− 2

n(n−1)

)n(n−1)
≤ exp

(
− 2

n(n−1) · n(n − 1)
)

= exp(−2) <

0.14, since 1− x ≤ e−x for 0 ≤ x ≤ 1.
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Result

Theorem
One can compute mincut in O(n4) time with constant probability to
get a correct result. In O(n4 log n) time the minimum cut is
returned with high probability.
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Faster algorithm

Why MinCutRep needs so many executions?
Probability of failure in first ν iterations is

Pr
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1−

2
n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
∗

n − 3
n − 1

∗
n − 4
n − 2

. . .

=
(n − ν)(n − ν − 1)

n · (n − 1)
.

=⇒ ν = n/2: Prob of success ≈ 1/4.
=⇒ ν = n −

√
n: Prob of success ≈ 1/n.
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Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37



Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37



Faster algorithm...

Insight
1 As the graph get smaller probability for bad choice increases.
2 Currently do the amplification from the outside of the algorithm.
3 Put amplification directly into the algorithm.

Sariel (UIUC) CS573 23 Fall 2014 23 / 37



Contract...
Contract(G, t) shrinks G till it has only t vertices. FastCut computes the
minimum cut using Contract.

Contract( G, t )
while |(G)| > t do

Pick a random edge
e in G.

G← G/e
return G

FastCut(G = (V , E))
G -- multi-graph

begin
n ← |V (G)|
if n ≤ 6 then

Compute minimum cut
of G and return cut.

t ←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return mincut of X1 and X2.

end
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Lemma...

Lemma
The running time of FastCut(G) is O(n2 log n), where
n = |V (G)|.

Proof.
Well, we perform two calls to Contract(G, t) which takes O(n2)
time. And then we perform two recursive calls on the resulting
graphs. We have:
T(n) = O(n2) + 2T

(
n√
2

)
The solution to this recurrence is O(n2 log n) as one can easily
(and should) verify.
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Success at each step

Lemma
Probability that mincut in contracted graph is original mincut is at
least 1/2.

Proof.
Plug in ν = n − t = n −

⌈
1 + n/

√
2
⌉

into success probability:

Pr
[
E0 ∩ . . . ∩ En−t

]
≥
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Probability of success...

Lemma
FastCut finds the minimum cut with probability larger than
Ω (1/ log n).

See class notes for a formal proof. We provide a more elegant direct
argument shortly.
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Amplification

Lemma
Running FastCut repeatedly c · log2 n times, guarantee that the
algorithm outputs mincut with probability ≥ 1− 1/n2.
c is a constant large enough.

Proof.
1 FastCut succeeds with prob ≥ c′/ log n, c′ is a constant.
2 ...fails with prob. ≤ 1− c′/ log n.
3 ...fails in m reps with prob. ≤(1− c′/ log n)m . But then

(1− c′/ log n)m ≤
(
e−c′/ log n

)m
≤ e−mc′/ log n ≤ 1

n2 ,

for m = (2 log n) /c′.
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Theorem

Theorem
One can compute the minimum cut in a graph G with n vertices in
O(n2 log3 n) time. The algorithm succeeds with probability
≥ 1− 1/n2.

Proof.
We do amplification on FastCut by running it O(log2 n) times.
The running time bound follows from lemma...
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Part II

On coloring trees and min-cut
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Trees and coloring edges...

1 Th be a complete binary tree of height h.
2 Randomly color its edges by black and white.
3 Eh : there exists a black path from root Th to one of its leafs.
4 ρh = Pr[Eh].
5 ρ0 = 1 and ρ1 = 3/4 (see below).
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Bounding ρh

1 u root of Th : children ul and ur .
2 ρh−1: Probability for black path ul  children
3 Prob of black path from u through u1 is:

Pr
[
uul is black

]
· ρh−1 = ρh−1/2

4 Prob. no black path through ul is 1− ρh−1/2.
5 Prob no black path is: (1− ρh−1/2)2

6 We have

ρh = 1−
(

1−
ρh−1

2

)2
=

ρh−1

2

(
2−

ρh−1

2

)
= ρh−1 −

ρ2
h−1

4
.
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Lemma...

Lemma
We have that ρh ≥ 1/(h + 1).

Proof.
1 By induction. For h = 1: ρ1 = 3/4 ≥ 1/(1 + 1).
2 ρh = ρh−1 −

ρ2
h−1
4 = f (ρh−1), for f (x) = x − x2/4.

3 f ′(x) = 1− x/2. =⇒ f ′(x) > 0 for x ∈ [0, 1].
4 f (x) is increasing in the range [0, 1]
5 By induction:

ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2

.

6 1
h −

1
4h2 ≥ 1

h+1 ⇔ 4h(h + 1)− (h + 1) ≥ 4h2 ⇔
4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,
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Back to FastCut...

1 Recursion tree for FastCut corresponds to such a coloring.
2 Every call performs two recursive calls.
3 Contraction in recursion succeeds with prob 1/2.

Draw recursion edge in black if successful.
4 algorithm succeeds ⇐⇒ there black path from root of

recursion tree to leaf.
5 Since depth of tree H ≤ 2 + log√2 n.
6 by above... probability of success is
≥ 1/(h + 1) ≥ 1/(3 + log√2 n).

Sariel (UIUC) CS573 34 Fall 2014 34 / 37



Galton-Watson processes

1 Start with a single node.
2 Each node has two children.
3 Each child survives with probability half (independently).
4 If a child survives then it is going to have two children, and so

on.
5 A single node give a rise to a random tree.
6 Q: Probability that the original node has descendants h

generations in the future.
7 Prove this probability is at least 1/(h + 1).
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Galton-Watson process

1 Victorians worried: aristocratic surnames were disappearing.
2 Family names passed on only through the male children.
3 Family with no male children had its family name disappear.
4 # male children of a person is an independent random variable

X ∈ {0, 1, 2, . . .}.
5 Starting with a single person, its family (as far as male children

are concerned) is a random tree with the degree of a node being
distributed according to X .

6 .. A family disappears if E[X] ≤ 1, and it has a constant
probability of surviving if E[X] > 1.
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