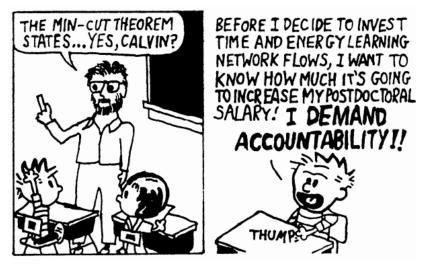
CS 573: Algorithms, Fall 2014

Network Flow II

Lecture 12 October 2, 2014



http://www.cs.berkeley.edu/~jrs/Calvin

Sariel (UIUC)

People that do not know maximum flows: essentially everybody.

- ② Average salary on earth † \$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- In Salary of people that learned maximum flows: > \$10,000
- \odot Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

1 People that do not know maximum flows: essentially everybody.

- 2 Average salary on earth (\$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- In Salary of people that learned maximum flows: > \$10,000
- \odot Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

- People that do not know maximum flows: essentially everybody.
- 2 Average salary on earth (\$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- \odot Salary of people that learned maximum flows: > \$10,000
- **(5)** Salary of people that did not learn maximum flows: < **\$5**,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

- People that do not know maximum flows: essentially everybody.
- 2 Average salary on earth (\$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- Salary of people that learned maximum flows: > \$10,000
- \odot Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

- People that do not know maximum flows: essentially everybody.
- 2 Average salary on earth (\$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- **(**) Salary of people that learned maximum flows: > \$10,000
- Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

- People that do not know maximum flows: essentially everybody.
- 2 Average salary on earth (\$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- **(**) Salary of people that learned maximum flows: > \$10,000
- Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

- People that do not know maximum flows: essentially everybody.
- ② Average salary on earth † \$5,000
- People that know maximum flow most of them work in programming related jobs and make at least \$10,000 a year.
- **(**) Salary of people that learned maximum flows: > \$10,000
- Salary of people that did not learn maximum flows: < \$5,000.
- Salary of people that know Latin: 0 (unemployed).

Conclusion

Ford Fulkerson

 $\begin{array}{l} \textbf{algFordFulkerson}(\textbf{G}, s, t) \\ \text{Initialize flow } f \text{ to zero} \\ \textbf{while } \exists \text{ path } \pi \text{ from } s \text{ to } t \text{ in } \textbf{G}_f \text{ do} \\ c_f(\pi) \leftarrow \min \left\{ c_f(u, v) \mid (u \rightarrow v) \in \pi \right\} \\ \textbf{for } \forall (u \rightarrow v) \in \pi \text{ do} \\ f(u, v) \leftarrow f(u, v) + c_f(\pi) \\ f(v, u) \leftarrow f(v, u) - c_f(\pi) \end{array}$

Lemma

If the capacities on the edges of **G** are integers, then algFordFulkerson runs in $O(m |f^*|)$ time, where $|f^*|$ is the amount of flow in the maximum flow and m = |E(G)|.

Proof of Lemma...

Proof.

Observe that the **algFordFulkerson** method performs only subtraction, addition and **min** operations. Thus, if it finds an augmenting path π , then $c_f(\pi)$ must be a *positive* integer number. Namely, $c_f(\pi) \ge 1$. Thus, $|f^*|$ must be an integer number (by induction), and each iteration of the algorithm improves the flow by at least 1. It follows that after $|f^*|$ iterations the algorithm stops. Each iteration takes O(m + n) = O(m) time, as can be easily verified.

Observation (Integrality theorem)

If the capacity function c takes on only integral values, then the maximum flow f produced by the algFordFulkerson method has the property that |f| is integer-valued. Moreover, for all vertices u and v, the value of f(u, v) is also an integer.

Edmonds-Karp algorithm

Edmonds-Karp: modify **algFordFulkerson** so it always returns the shortest augmenting path in G_f .

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph \mathbf{G}_f . Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

 $orall v \in V \setminus \{s,t\}$ the function $\delta_f(v)$ increases.

Edmonds-Karp algorithm

Edmonds-Karp: modify **algFordFulkerson** so it always returns the shortest augmenting path in G_f .

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph \mathbf{G}_f . Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

 $orall v \in V \setminus \{s,t\}$ the function $\delta_f(v)$ increases.

Edmonds-Karp algorithm

Edmonds-Karp: modify **algFordFulkerson** so it always returns the shortest augmenting path in G_f .

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph \mathbf{G}_f . Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

 $orall v \in V \setminus \{s,t\}$ the function $\delta_f(v)$ increases.

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- **(**) iteration when edge (u
 ightarrow v) disappears.
- ${f 0}~~({m u} o {m v})$ appeared in augmenting path ${m \pi}.$
- **③** Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- ${\scriptstyle \textcircled{ 0 } }$ till (u
 ightarrow v) "magically" reappears.
- ${ullet}$... augmenting path ${m \sigma}$ that contained the edge $(v
 ightarrow {m u}).$
- g: flow used to compute σ .
- ${old O}$ We have: $\delta_g(u)=\delta_g(v)+1\geq \delta_f(v)+1=\delta_f(u)+2$
 -) distance of $m{s}$ to $m{u}$ had increased by $m{2}$. QED

Sariel (UIUC)

8

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- $\textcircled{0} \hspace{0.1 iteration when edge } (u \rightarrow v) \hspace{0.1 iteration} {\textnormal{disappears.}}$
- 2 (u
 ightarrow v) appeared in augmenting path π .
- **③** Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- ④ till (u
 ightarrow v) "magically" reappears.
- ${f eta}$... augmenting path ${m \sigma}$ that contained the edge $({m v} o {m u}).$
- g: flow used to compute σ .
- 🖉 We have: $\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$
 -) distance of $m{s}$ to $m{u}$ had increased by $m{2}.$ QED

Sariel (UIUC)

8

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f O}~(u o v)$ appeared in augmenting path $\pi.$
- Solution Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- ④ till $(oldsymbol{u}
 ightarrow oldsymbol{v})$ "magically" reappears.
- ${f 0}\,$... augmenting path ${m \sigma}$ that contained the edge (v
 ightarrow u).
- g: flow used to compute σ .
- ② We have: $\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$

) distance of $m{s}$ to $m{u}$ had increased by $m{2}$. QED

Sariel (UIUC)

```
8
```

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f 0}~(u o v)$ appeared in augmenting path $\pi.$
- So Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- till $(u \rightarrow v)$ "magically" reappears.
- ${ullet}$... augmenting path σ that contained the edge (v
 ightarrow u).
- $\bigcirc~g$: flow used to compute σ .
- ${old O}$ We have: $\delta_g(u)=\delta_g(v)+1\geq \delta_f(v)+1=\delta_f(u)+2$
 -) distance of $m{s}$ to $m{u}$ had increased by $m{2}.$ QED

Sariel (UIUC)

8

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f O}~(u o v)$ appeared in augmenting path $\pi.$
- Solution Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- till $(u \rightarrow v)$ "magically" reappears.
- ${f 0}$... augmenting path σ that contained the edge (v
 ightarrow u).
- \bigcirc g: flow used to compute σ .
- ${old O}$ We have: $\delta_g(u)=\delta_g(v)+1\geq \delta_f(v)+1=\delta_f(u)+2$
 -) distance of $m{s}$ to $m{u}$ had increased by $m{2}$. QED

Sariel (UIUC)

```
8
```

Fall 2014 8 / 18

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f O}~(u o v)$ appeared in augmenting path $\pi.$
- Solution Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- till (u
 ightarrow v) "magically" reappears.
- ${f 0}$... augmenting path σ that contained the edge (v
 ightarrow u).
- g: flow used to compute σ .
- We have: $\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$

) distance of s to $oldsymbol{u}$ had increased by $oldsymbol{2}.$ QED

Sariel (UIUC)

```
8
```

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f O}~(u o v)$ appeared in augmenting path $\pi.$
- Solution Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- till (u
 ightarrow v) "magically" reappears.
- ${f 0}$... augmenting path σ that contained the edge (v
 ightarrow u).
- g: flow used to compute σ .
- ${old O}$ We have: $\delta_g(u)=\delta_g(v)+1\geq \delta_f(v)+1=\delta_f(u)+2$

) distance of $m{s}$ to $m{u}$ had increased by $m{2}.$ QED

Sariel (UIUC)

```
8
```

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most n/2 times, n = |V(G)|.

Proof.

- () iteration when edge (u o v) disappears.
- ${f O}~(u o v)$ appeared in augmenting path $\pi.$
- Solution Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
- till (u
 ightarrow v) "magically" reappears.
- ${f 0}$... augmenting path σ that contained the edge (v
 ightarrow u).
- g: flow used to compute σ .
- ${old O}$ We have: $\delta_g(u)=\delta_g(v)+1\geq \delta_f(v)+1=\delta_f(u)+2$
- I distance of s to u had increased by 2. QED.

Comments...

- $\delta_{?}(u)$ might become infinity.
- 2 u is no longer reachable from s.
- ${f 0}$ By monotonicity, the edge (u
 ightarrow v) would never appear again.

Observation

For every iteration/augmenting path of Edmonds-Karp algorithm, at least one edge disappears from the residual graph $G_{?}$.

Edmonds-Karp # of iterations

Lemma

Edmonds-Karp handles O(nm) augmenting paths before it stops. Its running time is $O(nm^2)$, where n = |V(G)| and m = |E(G)|.

Proof.

- Every edge might disappear at most n/2 times.
- At most nm/2 edge disappearances during execution Edmonds-Karp.
- In each iteration, by path augmentation, at least one edge disappears.
- **Solution** Edmonds-Karp algorithm perform at most O(mn) iterations.
- Somputing augmenting path takes O(m) time.
- Overall running time is $O(nm^2)$.

Lemma

Edmonds-Karp run on $\mathbf{G} = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in \mathbf{G}_f increases monotonically.

Proof

9 By Contradiction. *f*: flow before (first fatal) iteration.

g: flow after.

- (a) v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
- 0 v: $\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v).$

Lemma

Edmonds-Karp run on $\mathbf{G} = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in \mathbf{G}_f increases monotonically.

Proof

- **9** By Contradiction. *f*: flow before (first fatal) iteration.
- 2 g: flow after.
- I v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
- 0 v: $\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v).$

Lemma

Edmonds-Karp run on $\mathbf{G} = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in \mathbf{G}_f increases monotonically.

Proof

- **9** By Contradiction. *f*: flow before (first fatal) iteration.
- 2 g: flow after.
- v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
- $\textcircled{0}~v:~\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v).$

Lemma

Edmonds-Karp run on $\mathbf{G} = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in \mathbf{G}_f increases monotonically.

Proof

- **9** By Contradiction. *f*: flow before (first fatal) iteration.
- 2 g: flow after.
- v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
- $\ \, {\boldsymbol {\it o}} \ \, {\boldsymbol {\it v}}: \ \, \delta_g({\boldsymbol {\it v}}) \ \, {\rm is \ minimal \ and \ \, } \\ \, \delta_g({\boldsymbol {\it v}}) < \delta_f({\boldsymbol {\it v}}).$

Proof continued...

π = s → ··· → u → v: shortest path in G_g from s to v.
(u → v) ∈ E(G_g), and thus δ_g(u) = δ_g(v) - 1.
By choice of v: δ_g(u) ≥ δ_f(u).
(i) If (u → v) ∈ E(G_f) then

 $\delta_f(v) \leq \delta_f(u) + 1 \leq \delta_g(u) + 1 = \delta_g(v) - 1 + 1 = \delta_g(v)$

This contradicts our assumptions that $\delta_f(v) > \delta_g(v)$.

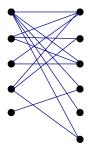
Proof continued II

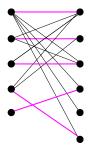
(ii) f $(u \rightarrow v) \notin \mathsf{E}(\mathsf{G}_f)$:

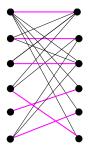
- π used in computing g from f contains $(v \rightarrow u)$.
- ② $(u \rightarrow v)$ reappeared in the residual graph G_g (while not being present in G_f).
- Algorithm always augment along the shortest path. By assumption $\delta_g(v) < \delta_f(v)$, and definition of u: $\delta_f(u) = \delta_f(v) + 1 > \delta_g(v) = \delta_g(u) + 1,$
- $\textcircled{9} \implies \delta_f(u) > \delta_g(u)$

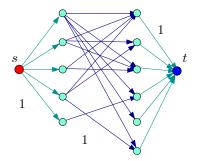
 \implies monotonicity property fails for u.

But: $\delta_g(u) < \delta_g(v)$. A contradiction.









Definition

 $\mathbf{G} = (V, E)$: undirected graph. $M \subseteq E$: *matching* if all vertices $v \in V$, at most one edge of M is incident on v.

M is maximum matching if for any matching M': $|M| \ge |M'|$.

M is *perfect* if it involves all vertices.

Computing bipartite matching

Theorem

Compute maximum bipartite matching in O(nm) time.

Proof.

- **Q** G: bipartite graph G. (n vertices and m edges)
- 2 Create new graph H with source on left and sink right.
- Oirect all edges from left to right. Set all capacities to one.
- **③** By Integrality theorem, flow in H is 0/1 on edges.
- A flow of value k in $H \implies$ a collection of k vertex disjoint s t paths \implies matching in **G** of size k.
- M: matching of k edge in G, \implies flow of value k in H.
- Q Running time of the algorithm is O(nm). Max flow is n, and as such, at most n augmenting paths.

Sariel (UIUC)

Extension: Multiple Sources and Sinks

Question

Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?

Extension: Multiple Sources and Sinks

Question

Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?

Solution

The idea is to create a super source, that send all its flow to the old sources and similarly create a super sink that receives all the flow. Clearly, computing flow in both networks in equivalent.

Proof by figures

