CS 573: Algorithms, Fall 2014

Network Flow 1l

Lecture 12
October 2, 2014

Fall 2014 1/18

Accountability

BEFORE IDECIDE TOINVEST
TIME AND ENERGY LEARNING
NETWORK FLOWS, T WANT TO
KNOW HOW MUCH (T'S GOING
TOINCREASE MY PoSTDOCTORAL

SALAKY! T DEMAND
ACCOUNTABILITYI!
:._N_‘NL

THE MIN-CUT THEOREM
| STATES... YES, CALVIN?
\gprve

http://www.cs.berkeley.edu/~jrs/Calvin

Sariel (UIUC) CS573 2 Fall 2014 2 /18

http://www.cs.berkeley.edu/~jrs/

Accountability

© People that do not know maximum flows: essentially everybody.

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

© People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5,000

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

© People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5,000

© People that know maximum flow — most of them work in
programming related jobs and make at least $10, 000 a year.

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

© People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5,000

© People that know maximum flow — most of them work in
programming related jobs and make at least $10, 000 a year.

@ Salary of people that learned maximum flows: > $10, 000

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

© People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5,000

© People that know maximum flow — most of them work in
programming related jobs and make at least $10, 000 a year.

@ Salary of people that learned maximum flows: > $10, 000
@ Salary of people that did not learn maximum flows: < $5, 000.

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

© People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5,000

© People that know maximum flow — most of them work in
programming related jobs and make at least $10, 000 a year.

@ Salary of people that learned maximum flows: > $10, 000
@ Salary of people that did not learn maximum flows: < $5, 000.
@ Salary of people that know Latin: 0 (unemployed).

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Accountability

@ People that do not know maximum flows: essentially everybody.
@ Average salary on earth j $5, 000

© People that know maximum flow — most of them work in
programming related jobs and make at least $10, 000 a year.

@ Salary of people that learned maximum flows: > $10, 000
@ Salary of people that did not learn maximum flows: < $5, 000.
@ Salary of people that know Latin: 0 (unemployed).

Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 /18

Ford Fulkerson

algFordFulkerson (G, s, t)
Initialize flow f to zero
while 3 path 7w from s to t in Gy do

cp(m) min{cf(u, v) ‘ (u —v) € 71'}
for V(u — v) € © do

F(u, v) < f(u, v) + cp(m)

F(v,u) < f(v,u) — cf(ﬂ')

If the capacities on the edges of G are integers, then
algFordFulkerson runs in O(m |f*|) time, where |f*| is the
amount of flow in the maximum flow and m = |E(G)|.

Sariel (UIUC) CS573 4 Fall 2014 4 /18

Proof of Lemma...

Proof.

Observe that the algFordFulkerson method performs only
subtraction, addition and min operations. Thus, if it finds an
augmenting path 7, then c(7) must be a positive integer number.
Namely, ¢f(7) > 1. Thus, |f*| must be an integer number (by
induction), and each iteration of the algorithm improves the flow by
at least 1. It follows that after |f*| iterations the algorithm stops.
Each iteration takes O(m + n) = O(m) time, as can be easily
verified.]

v

Sariel (UIUC) CS573 5 Fall 2014 5 /18

Integrality theorem

Observation (Integrality theorem)

If the capacity function c takes on only integral values, then the
maximum flow f produced by the algFordFulkerson method has the
property that |f| is integer-valued. Moreover, for all vertices u and
v, the value of f(u, v) is also an integer.

Sariel (UIUC) CS573 [3 Fall 2014 6 /18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gy.

Sariel (UIUC) CS573 7 Fall 2014 7 /18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gy.

Definition

For a flow f, let d;(v) be the length of the shortest path from the
source s to v in the residual graph G¢. Each edge is considered to be
of length 1.

Sariel (UIUC) CS573 7 Fall 2014 7 /18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gy.

Definition

For a flow f, let d;(v) be the length of the shortest path from the
source s to v in the residual graph G¢. Each edge is considered to be
of length 1.

Assume the following key lemma:

Vv € V \ {s, t} the function §¢(v) increases. \

Sariel (UIUC) CS573 7 Fall 2014 7 /18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Proof.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.
@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.
@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.
Q till (v — v) "magically” reappears.

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.

@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.
Q till (v — v) "magically” reappears.

© ... augmenting path o that contained the edge (v — u).

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Proof.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.

@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.
Q till (v — v) "magically” reappears.

© ... augmenting path o that contained the edge (v — u).
Q g: flow used to compute .

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.

@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.
Q till (v — v) "magically” reappears.

© ... augmenting path o that contained the edge (v — u).
©Q g: flow used to compute o.

@ We have: d,(u) = d,4(v) +1 > 6¢(v) + 1 = df(u) + 2

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

The disappearing/reappearing lemma

During execution Edmonds-Karp, edge (u — v) might
disappear/reappear from Gy at most n/2 times, n = | V(G)]|.

Q iteration when edge (u — v) disappears.

@ (u — v) appeared in augmenting path 7.

@ Fully utilized: ¢f(7) = ¢f(uv). f flow in beginning of iter.
Q till (v — v) "magically” reappears.

© ... augmenting path o that contained the edge (v — u).
©Q g: flow used to compute o.

@ We have: d,(u) = d,4(v) +1 > 6¢(v) + 1 = df(u) + 2
@ distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8/ 18

Comments...

Q 6-(u) might become infinity.
@ wu is no longer reachable from s.
© By monotonicity, the edge (u — v) would never appear again.

Observation

For every iteration/augmenting path of Edmonds-Karp algorithm,
at least one edge disappears from the residual graph G-.

Sariel (UIUC) CS573) Fall 2014 9/ 18

Edmonds-Karp # of iterations

Edmonds-Karp handles O(nm) augmenting paths before it stops.
Its running time is O(nm?), where n = |V (G)| and m = |E(G)]|.

Proof.
@ Every edge might disappear at most 1/2 times.

@ At most nm /2 edge disappearances during execution
Edmonds-Karp.

In each iteration, by path augmentation, at least one edge
disappears.

o
© Edmonds-Karp algorithm perform at most O(mn) iterations.
@ Computing augmenting path takes O(m) time.

o

Overall running time is O(nm?).

Sariel (UIUC) [GSLYA] 10 Fall 2014 10 / 18

Shortest distance increases during Edmonds-Karp

execution

Edmonds-Karp run on G = (V, E), s, t, thenVv € V \ {s, t},
the distance §¢(v) in Gy increases monotonically.

© By Contradiction. f: flow before (first fatal) iteration.

Sariel (UIUC) CS573 11 Fall 2014 11 /18

Shortest distance increases during Edmonds-Karp

execution

Edmonds-Karp run on G = (V, E), s, t, thenVv € V \ {s, t},
the distance §¢(v) in Gy increases monotonically.

© By Contradiction. f: flow before (first fatal) iteration.
Q g: flow after.

Sariel (UIUC) CS573 11 Fall 2014 11 /18

Shortest distance increases during Edmonds-Karp

execution

Edmonds-Karp run on G = (V, E), s, t, thenVv € V \ {s, t},
the distance §¢(v) in Gy increases monotonically.

© By Contradiction. f: flow before (first fatal) iteration.

Q g: flow after.
@ v: vertex s.t. §,(v) is minimal, among all counter example
vertices.

Sariel (UIUC) CS573 11 Fall 2014 11 /18

Shortest distance increases during Edmonds-Karp
execution

Edmonds-Karp run on G = (V, E), s, t, thenVv € V \ {s, t},
the distance §¢(v) in Gy increases monotonically.

© By Contradiction. f: flow before (first fatal) iteration.
Q g: flow after.

@ v: vertex s.t. §,(v) is minimal, among all counter example
vertices.

Q v: d,4(v) is minimal and §,(v) < &¢(v).

Sariel (UIUC) CS573 11 Fall 2014 11 /18

Proof continued...

Q@ m=3s— .-+ — u — v: shortest path in G, from s to v.
Q@ (u — v) € E(Gy), and thus d,(u) = d4(v) — 1.
@ By choice of v: §,(u) > d¢(u).

(i) If (u — v) € E(Gy) then

07(v) < 0p(u) +1 < dg(u) +1 = dy(v) =141 =d,(

This contradicts our assumptions that 6¢(v) > &,(v).

Sariel (UIUC) CS573 12 Fall 2014 12 /18

Proof continued I

(i) f (v — v) & E(Gy):
@ 7 used in computing g from f contains (v — u).

@ (u — v) reappeared in the residual graph G, (while not being
present in Gy).

© =— m pushed a flow in the other direction on the edge
(u — v). Namely, (v — u) € .

© Algorithm always augment along the shortest path. By
assumption d,(v) < d¢(v), and definition of wu:
d9p(u) = dp(v) +1 > d4(v) = dy(u) + 1,
Q@ — ds(u) > d,(u)
==> monotonicity property fails for u.
But: d,(u) < d4(v). A contradiction. n

Sariel (UIUC) CS573 13 Fall 2014 13 /18

Bipartite Matching

Sariel (UIUC) CS573 14 Fall 2014 14 /18

Bipartite Matching

Sariel (UIUC) CS573 14 Fall 2014 14 /18

Bipartite Matching
N7

Sariel (UIUC) CS573 14 Fall 2014 14 /18

Bipartite Matching

Fall 2014 14 / 18

Bipartite matching

G = (V, E): undirected graph.
M C E: matching if all vertices v € V, at most one edge of M
is incident on w.

M is maximum matching if for any matching M’: | M| > |M’|.

M is perfect if it involves all vertices.

Sariel (UIUC) CS573 15 Fall 2014 15/ 18

Computing bipartite matching

Compute maximum bipartite matching in O(nm) time.

© G: bipartite graph G. (n vertices and m edges)

© Create new graph H with source on left and sink right.

© Direct all edges from left to right. Set all capacities to one.

© By Integrality theorem, flow in H is 0/1 on edges.

Q A flow of value k in H = a collection of k vertex disjoint

s — t paths = matching in G of size k.

Q M: matching of k edge in G, = flow of value k in H.
@ Running time of the algorithm is O(nm). Max flow is n, and

as such, at most n augmenting paths.

Sariel (UIUC) CS573 16

Fall 2014

16 / 18

Extension: Multiple Sources and Sinks

Given a flow network with several sources and sinks, how can we
compute maximum flow on such a network?

Sariel (UIUC) CS573 17 Fall 2014 17 / 18

Extension: Multiple Sources and Sinks

Given a flow network with several sources and sinks, how can we
compute maximum flow on such a network?

The idea is to create a super source, that send all its flow to the old
sources and similarly create a super sink that receives all the flow.
Clearly, computing flow in both networks in equivalent.

Sariel (UIUC) CS573 17 Fall 2014 17 / 18

Proof by figures
<7 AN

Sariel (UIUC) CS573 19 Fall 2014 19 /18

Sariel (UIUC) CS573 20 Fall 2014 20/ 18

Sariel (UIUC) CS573 21 Fall 2014 21 /18

Sariel (UIUC) CS573 22 Fall 2014 22 /18

	Accountability
	The Ford-Fulkerson Method
	The Edmonds-Karp algorithm
	Applications and extensions for Network Flow
	Maximum Bipartite Matching

