
CS 573: Algorithms, Fall 2014

Network Flow II
Lecture 12
October 2, 2014

Sariel (UIUC) CS573 1 Fall 2014 1 / 18

Accountability

http://www.cs.berkeley.edu/˜jrs/Calvin

Sariel (UIUC) CS573 2 Fall 2014 2 / 18

http://www.cs.berkeley.edu/~jrs/

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Accountability

1 People that do not know maximum flows: essentially everybody.
2 Average salary on earth ¡ $5, 000
3 People that know maximum flow – most of them work in

programming related jobs and make at least $10, 000 a year.
4 Salary of people that learned maximum flows: > $10, 000
5 Salary of people that did not learn maximum flows: < $5, 000.
6 Salary of people that know Latin: 0 (unemployed).

Conclusion
Thus, by just learning maximum flows (and not knowing
Latin) you can double your future salary!

Sariel (UIUC) CS573 3 Fall 2014 3 / 18

Ford Fulkerson

algFordFulkerson(G,s,t)
Initialize flow f to zero
while ∃ path π from s to t in Gf do

cf (π)← min
{

cf (u, v)
∣∣∣ (u → v) ∈ π

}
for ∀ (u → v) ∈ π do

f (u, v)← f (u, v) + cf (π)
f (v, u)← f (v, u)− cf (π)

Lemma
If the capacities on the edges of G are integers, then
algFordFulkerson runs in O(m |f ∗|) time, where |f ∗| is the
amount of flow in the maximum flow and m = |E(G)|.

Sariel (UIUC) CS573 4 Fall 2014 4 / 18

Proof of Lemma...

Proof.
Observe that the algFordFulkerson method performs only
subtraction, addition and min operations. Thus, if it finds an
augmenting path π, then cf (π) must be a positive integer number.
Namely, cf (π) ≥ 1. Thus, |f ∗| must be an integer number (by
induction), and each iteration of the algorithm improves the flow by
at least 1. It follows that after |f ∗| iterations the algorithm stops.
Each iteration takes O(m + n) = O(m) time, as can be easily
verified.

Sariel (UIUC) CS573 5 Fall 2014 5 / 18

Integrality theorem

Observation (Integrality theorem)
If the capacity function c takes on only integral values, then the
maximum flow f produced by the algFordFulkerson method has the
property that |f | is integer-valued. Moreover, for all vertices u and
v, the value of f (u, v) is also an integer.

Sariel (UIUC) CS573 6 Fall 2014 6 / 18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gf .

Definition
For a flow f , let δf (v) be the length of the shortest path from the
source s to v in the residual graph Gf . Each edge is considered to be
of length 1.

Assume the following key lemma:

Lemma
∀v ∈ V \ {s, t} the function δf (v) increases.

Sariel (UIUC) CS573 7 Fall 2014 7 / 18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gf .

Definition
For a flow f , let δf (v) be the length of the shortest path from the
source s to v in the residual graph Gf . Each edge is considered to be
of length 1.

Assume the following key lemma:

Lemma
∀v ∈ V \ {s, t} the function δf (v) increases.

Sariel (UIUC) CS573 7 Fall 2014 7 / 18

Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the
shortest augmenting path in Gf .

Definition
For a flow f , let δf (v) be the length of the shortest path from the
source s to v in the residual graph Gf . Each edge is considered to be
of length 1.

Assume the following key lemma:

Lemma
∀v ∈ V \ {s, t} the function δf (v) increases.

Sariel (UIUC) CS573 7 Fall 2014 7 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

The disappearing/reappearing lemma

Lemma
During execution Edmonds-Karp, edge (u → v) might
disappear/reappear from Gf at most n/2 times, n = |V (G)|.

Proof.
1 iteration when edge (u → v) disappears.
2 (u → v) appeared in augmenting path π.
3 Fully utilized: cf (π) = cf (uv). f flow in beginning of iter.
4 till (u → v) “magically” reappears.
5 ... augmenting path σ that contained the edge (v → u).
6 g: flow used to compute σ.
7 We have: δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2
8 distance of s to u had increased by 2. QED.

Sariel (UIUC) CS573 8 Fall 2014 8 / 18

Comments...

1 δ?(u) might become infinity.
2 u is no longer reachable from s.
3 By monotonicity, the edge (u → v) would never appear again.

Observation
For every iteration/augmenting path of Edmonds-Karp algorithm,
at least one edge disappears from the residual graph G?.

Sariel (UIUC) CS573 9 Fall 2014 9 / 18

Edmonds-Karp # of iterations

Lemma
Edmonds-Karp handles O(nm) augmenting paths before it stops.
Its running time is O(nm2), where n = |V (G)| and m = |E(G)|.

Proof.
1 Every edge might disappear at most n/2 times.
2 At most nm/2 edge disappearances during execution

Edmonds-Karp.
3 In each iteration, by path augmentation, at least one edge

disappears.
4 Edmonds-Karp algorithm perform at most O(mn) iterations.
5 Computing augmenting path takes O(m) time.
6 Overall running time is O(nm2).

Sariel (UIUC) CS573 10 Fall 2014 10 / 18

Shortest distance increases during Edmonds-Karp
execution

Lemma
Edmonds-Karp run on G = (V , E), s, t, then ∀v ∈ V \ {s, t},
the distance δf (v) in Gf increases monotonically.

Proof
1 By Contradiction. f : flow before (first fatal) iteration.
2 g: flow after.
3 v: vertex s.t. δg(v) is minimal, among all counter example

vertices.
4 v: δg(v) is minimal and δg(v) < δf (v).

Sariel (UIUC) CS573 11 Fall 2014 11 / 18

Shortest distance increases during Edmonds-Karp
execution

Lemma
Edmonds-Karp run on G = (V , E), s, t, then ∀v ∈ V \ {s, t},
the distance δf (v) in Gf increases monotonically.

Proof
1 By Contradiction. f : flow before (first fatal) iteration.
2 g: flow after.
3 v: vertex s.t. δg(v) is minimal, among all counter example

vertices.
4 v: δg(v) is minimal and δg(v) < δf (v).

Sariel (UIUC) CS573 11 Fall 2014 11 / 18

Shortest distance increases during Edmonds-Karp
execution

Lemma
Edmonds-Karp run on G = (V , E), s, t, then ∀v ∈ V \ {s, t},
the distance δf (v) in Gf increases monotonically.

Proof
1 By Contradiction. f : flow before (first fatal) iteration.
2 g: flow after.
3 v: vertex s.t. δg(v) is minimal, among all counter example

vertices.
4 v: δg(v) is minimal and δg(v) < δf (v).

Sariel (UIUC) CS573 11 Fall 2014 11 / 18

Shortest distance increases during Edmonds-Karp
execution

Lemma
Edmonds-Karp run on G = (V , E), s, t, then ∀v ∈ V \ {s, t},
the distance δf (v) in Gf increases monotonically.

Proof
1 By Contradiction. f : flow before (first fatal) iteration.
2 g: flow after.
3 v: vertex s.t. δg(v) is minimal, among all counter example

vertices.
4 v: δg(v) is minimal and δg(v) < δf (v).

Sariel (UIUC) CS573 11 Fall 2014 11 / 18

Proof continued...

1 π = s → · · · → u → v: shortest path in Gg from s to v.
2 (u → v) ∈ E(Gg), and thus δg(u) = δg(v)− 1.
3 By choice of v: δg(u) ≥ δf (u).

(i) If (u → v) ∈ E(Gf) then

δf (v) ≤ δf (u) + 1 ≤ δg(u) + 1 = δg(v)− 1 + 1 = δg(v).

This contradicts our assumptions that δf (v) > δg(v).

Sariel (UIUC) CS573 12 Fall 2014 12 / 18

Proof continued II

(ii) f (u → v) /∈ E(Gf):
1 π used in computing g from f contains (v → u).
2 (u → v) reappeared in the residual graph Gg (while not being

present in Gf).
3 =⇒ π pushed a flow in the other direction on the edge

(u → v). Namely, (v → u) ∈ π.
4 Algorithm always augment along the shortest path. By

assumption δg(v) < δf (v), and definition of u:
δf (u) = δf (v) + 1 > δg(v) = δg(u) + 1,

5 =⇒ δf (u) > δg(u)
=⇒ monotonicity property fails for u.

But: δg(u) < δg(v). A contradiction.

Sariel (UIUC) CS573 13 Fall 2014 13 / 18

Bipartite Matching

Sariel (UIUC) CS573 14 Fall 2014 14 / 18

Bipartite Matching

Sariel (UIUC) CS573 14 Fall 2014 14 / 18

Bipartite Matching

Sariel (UIUC) CS573 14 Fall 2014 14 / 18

Bipartite Matching

s

1

t

1

1

Sariel (UIUC) CS573 14 Fall 2014 14 / 18

Bipartite matching

Definition
G = (V , E): undirected graph.
M ⊆ E: matching if all vertices v ∈ V , at most one edge of M
is incident on v.
M is maximum matching if for any matching M ′: |M | ≥ |M ′|.

M is perfect if it involves all vertices.

Sariel (UIUC) CS573 15 Fall 2014 15 / 18

Computing bipartite matching

Theorem
Compute maximum bipartite matching in O(nm) time.

Proof.
1 G: bipartite graph G. (n vertices and m edges)
2 Create new graph H with source on left and sink right.
3 Direct all edges from left to right. Set all capacities to one.
4 By Integrality theorem, flow in H is 0/1 on edges.
5 A flow of value k in H =⇒ a collection of k vertex disjoint

s − t paths =⇒ matching in G of size k.
6 M : matching of k edge in G, =⇒ flow of value k in H .
7 Running time of the algorithm is O(nm). Max flow is n, and

as such, at most n augmenting paths.
Sariel (UIUC) CS573 16 Fall 2014 16 / 18

Extension: Multiple Sources and Sinks

Question
Given a flow network with several sources and sinks, how can we
compute maximum flow on such a network?

Sariel (UIUC) CS573 17 Fall 2014 17 / 18

Extension: Multiple Sources and Sinks

Question
Given a flow network with several sources and sinks, how can we
compute maximum flow on such a network?

Solution
The idea is to create a super source, that send all its flow to the old
sources and similarly create a super sink that receives all the flow.
Clearly, computing flow in both networks in equivalent.

Sariel (UIUC) CS573 17 Fall 2014 17 / 18

Proof by figures

t1

t2

s1

s2

∞

∞

t1

t2

s1

s2
t∞

s
∞

Sariel (UIUC) CS573 18 Fall 2014 18 / 18

Notes

Sariel (UIUC) CS573 19 Fall 2014 19 / 18

Notes

Sariel (UIUC) CS573 20 Fall 2014 20 / 18

Notes

Sariel (UIUC) CS573 21 Fall 2014 21 / 18

Notes

Sariel (UIUC) CS573 22 Fall 2014 22 / 18

	Accountability
	The Ford-Fulkerson Method
	The Edmonds-Karp algorithm
	Applications and extensions for Network Flow
	Maximum Bipartite Matching

