CS 573: Algorithms, Fall 2014

Network Flow

Lecture 11 September 30, 2014

Part I

Network Flow

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- 3 Limited capacities.

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- Limited capacities.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ orall (u
 ightarrow v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star \ (u \to v) \notin G \implies c(u,v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form *flow network* or *network*.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ orall (u
 ightarrow v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star \ (u \to v) \notin G \implies c(u, v) = 0.$
- \star s: **source** vertex, t: target **sink** vertex.
- \star **G**, s, t and $c(\cdot)$: form *flow network* or *network*.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- 3 The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ orall \left(u
 ightarrow v
 ight) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u \rightarrow v) \notin G \implies c(u, v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form *flow network* or *network*.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ orall (u
 ightarrow v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u \to v) \notin G \implies c(u, v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form *flow network* or *network*.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ \forall (u \to v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u \to v) \notin G \implies c(u, v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form *flow network* or *network*.

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- **1** The flow is **splitable**.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $\star G = (V, E)$: a *directed* graph.
- $\star \ \forall (u \to v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\star (u \to v) \notin G \implies c(u, v) = 0.$
- ★ s: source vertex, t: target sink vertex.
- \star **G**, s, t and $c(\cdot)$: form **flow network** or **network**.

Network Example

- All flow from the source ends up in the sink.
- @ Flow on edge: non-negative quantity \le capacity of edge.

Network Example

- All flow from the source ends up in the sink.

Sariel (UIUC) CS573 Fall 2014 5 / 50

Network Example

- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity \leq capacity of edge.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) **Bounded by capacity**:

$$\forall \, (u \to v) \in \mathsf{E} \hspace{0.5cm} f(u,v) \leq c(u,v)$$

(B) Anti symmetry:

$$orall u,v \qquad f(u,v)=-f(v,u),$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) Conservation of flow (Kirchhoff's Current Law)

$$\forall u \in V \setminus \{s, t\}$$
 $\sum_{x} f(u, v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) **Bounded by capacity**:

$$\forall (u o v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

(B) Anti symmetry

$$orall u,v \qquad f(u,v)=-f(v,u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law)

$$\forall u \in V \setminus \{s, t\}$$
 $\sum_{v} f(u, v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) **Bounded by capacity**:

$$\forall (u \rightarrow v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

(B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law

$$\forall u \in V \setminus \{s, t\}$$
 $\sum_{v} f(u, v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- (A) **Bounded by capacity**:
 - $orall \left(u
 ightarrow v
 ight) \in \mathsf{E} \hspace{0.5cm} f(u,v) \leq c(u,v).$
- (B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law $\forall u \in V \setminus \{s, t\}$ $\sum f(u, v) = 0$.

$$orall u \in \mathbf{V} \setminus \{s,t\}$$
 $\sum\limits_v f(u,v) = 0$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) Bounded by capacity:

$$\forall (u \rightarrow v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

(B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) **Conservation of flow** (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\}$$
 $\sum_{v} f(u,v) = 0.$

$$extit{flow/value} ext{ of } f \colon |f| = \sum_{v \in V} f(s,v).$$

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

(A) **Bounded by capacity**:

$$orall \left(u
ightarrow v
ight) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$$

(B) Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- (C) Two special vertices: (i) the **source** s and the **sink** t.
- (D) Conservation of flow (Kirchhoff's Current Law):

$$\forall u \in \mathsf{V} \setminus \{s,t\}$$
 $\sum_{u} f(u,v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Problem: Max Flow

• Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow f such that |f| is maximized.

Part II

Some properties of flows and residual networks

Flow across sets of vertices

$$oldsymbol{0}$$
 $orall X,\ Y\subseteq oldsymbol{\mathsf{V}}$, let $f(X,\ Y)=\sum_{x\in X,y\in Y}f(x,y).$ $f(v,S)=f\Big(\{v\}\,,S\Big)$, where $v\in oldsymbol{\mathsf{V}}(oldsymbol{\mathsf{G}}).$

Observation

$$|f| = f(s, \mathbf{V}).$$

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:

(i) $\forall u \in V(G)$ we have f(u, u) = 0,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**.

(u
ightarrow u) capacity is zero,

Flow on (u o u) is zero.

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:

(i) $\forall u \in V(G)$ we have f(u, u) = 0,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**.

(u
ightarrow u) capacity is zero,

Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:

(i) $\forall u \in V(G)$ we have f(u, u) = 0,

Proof.

Holds since $(u \rightarrow u)$ it not an edge in **G**.

(u
ightarrow u) capacity is zero,

Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (ii)

Lemma

For a flow f, the following properties holds:

(ii)
$$\forall X \subseteq V$$
 we have $f(X, X) = 0$,

Proof.

$$egin{aligned} f(X,X) &= \sum_{\{u,v\}\subseteq X, u
eq v} (f(u,v) + f(v,u)) + \sum_{u \in X} f(u,u) \ &= \sum_{\{u,v\}\subseteq X, u
eq v} (f(u,v) - f(u,v)) + \sum_{u \in X} 0 = 0, \end{aligned}$$

by the anti-symmetry property of flow.

_

Basic properties of flows: (iii)

Lemma

For a flow f, the following properties holds:

(iii)
$$\forall X,\,Y\subseteq \mathsf{V}$$
 we have $f(X,\,Y)=-f(\,Y,\,X)$,

Proof.

By the anti-symmetry of flow, as

$$f(X,\,Y) = \sum_{x\in X,y\in\,Y} f(x,y) = -\sum_{x\in X,y\in\,Y} f(y,x) = -f(\,Y,X)$$
 .

Basic properties of flows: (iv)

Lemma

For a flow f, the following properties holds:

(iv)
$$\forall X, Y, Z \subseteq V$$
 such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.

Proof.

Follows from definition. (Check!)

Basic properties of flows: (v)

Lemma

For a flow f, the following properties holds:

(v)
$$\forall u \in V \setminus \{s, t\}$$
, we have $f(u, V) = f(V, u) = 0$.

Proof.

This is a restatement of the conservation of flow property.

Basic properties of flows: summary

Lemma

For a flow f, the following properties holds:

- (i) $\forall u \in \mathsf{V}(\mathsf{G})$ we have f(u,u)=0,
- (ii) $\forall X \subseteq V$ we have f(X,X) = 0,
- (iii) $\forall X, Y \subseteq \mathsf{V}$ we have f(X, Y) = -f(Y, X),
- (iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that $f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$ and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$.
- (v) For all $u \in \mathbf{V} \setminus \{s,t\}$, we have $f(u,\mathbf{V}) = f(\mathbf{V},u) = 0$.

Claim

$$|f| = f(V, t)$$
.

$$|f| =$$

Claim

$$|f| = f(V, t)$$
.

$$|f|=f(s,{\bf V})$$

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(s, \mathsf{V}) = f\Big(\mathsf{V} \setminus (\mathsf{V} \setminus \{s\})\,,\,V\Big)$$

Claim

$$|f| = f(V, t)$$
.

$$|f| = f\Big(\mathsf{V} \setminus (\mathsf{V} \setminus \{s\}) \,,\, V\Big)$$

Claim

$$|f| = f(V, t)$$
.

$$egin{aligned} |f| &= f\Big(\mathbf{V} \setminus (\mathbf{V} \setminus \{s\}) \,,\, V \Big) \ &= f(\mathbf{V},\, V) - f(\, V \setminus \{s\} \,, \mathbf{V}) \end{aligned}$$

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(\mathsf{V},\,V) - f(\,V\setminus\{s\}\,,\mathsf{V})$$

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(\mathbf{V}, V) - f(V \setminus \{s\}, \mathbf{V})$$

= $-f(V \setminus \{s\}, \mathbf{V})$

Since
$$f(\mathbf{V}, V) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$\begin{aligned} |f| &= f(\mathbf{V}, \, V) - f(\, V \setminus \{s\} \,, \mathbf{V}) \\ &= -f(\, V \setminus \{s\} \,, \mathbf{V}) = f(\mathbf{V}, \mathbf{V} \setminus \{s\}) \end{aligned}$$

Since
$$f(V, V) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(\mathbf{V}, V) - f(V \setminus \{s\}, \mathbf{V})$$

= $f(\mathbf{V}, \mathbf{V} \setminus \{s\})$

Since
$$f(\mathbf{V}, V) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$\begin{aligned} |f| &= f(\mathsf{V},\,V) - f(\,V \setminus \{s\}\,,\mathsf{V}) \\ &= f(\mathsf{V},\mathsf{V} \setminus \{s\}) \\ &= f(\mathsf{V},t) + f(\mathsf{V},\mathsf{V} \setminus \{s,t\}) \end{aligned}$$

Since
$$f(\mathbf{V}, \mathbf{V}) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(V, V) - f(V \setminus \{s\}, V)$$

= $f(V, t) + f(V, V \setminus \{s, t\})$

Since
$$f(\mathbf{V}, V) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$|f| = f(\mathbf{V},t) + f(\mathbf{V},\mathbf{V} \setminus \{s,t\})$$

Since
$$f(\mathbf{V}, \mathbf{V}) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

$$egin{aligned} |f| &= f(\mathsf{V},t) + f(\mathsf{V},\mathsf{V}\setminus\{s,t\}) \ &= f(\mathsf{V},t) + \sum_{u\in V\setminus\{s,t\}} f(\mathsf{V},u) \end{aligned}$$

Since
$$f(V, V) = 0$$
 by (i)

Claim

$$|f| = f(V, t)$$
.

Proof.

$$egin{aligned} |f| &= f(\mathsf{V},t) + f(\mathsf{V},\mathsf{V}\setminus\{s,t\}) \ &= f(\mathsf{V},t) + \sum\limits_{u\in V\setminus\{s,t\}} f(\mathsf{V},u) \ &= f(\mathsf{V},t) + \sum\limits_{u\in V\setminus\{s,t\}} 0 \end{aligned}$$

Since $f(\mathbf{V}, \mathbf{V}) = 0$ by (i) and $f(\mathbf{V}, \mathbf{u}) = 0$ by (iv).

Sariel (UIUC) CS573 16 / 50

Claim

$$|f| = f(V, t)$$
.

Proof.

$$egin{aligned} |f| &= f(\mathsf{V},t) + f(\mathsf{V},\mathsf{V}\setminus\{s,t\}) \ &= f(\mathsf{V},t) + \sum\limits_{u\in V\setminus\{s,t\}} f(\mathsf{V},u) \ &= f(\mathsf{V},t) + \sum\limits_{u\in V\setminus\{s,t\}} 0 \ &= f(\mathsf{V},t), \end{aligned}$$

Since $f(\mathbf{V}, \mathbf{V}) = 0$ by (i) and $f(\mathbf{V}, \mathbf{u}) = 0$ by (iv).

Fall 2014 16 / 50

Residual capacity

Definition

c: capacity, f: flow.

The **residual capacity** of an edge $(u \rightarrow v)$ is

$$c_f(u,v) = c(u,v) - f(u,v).$$

- lacksquare residual capacity $c_f(u,v)$ on (u o v)= amount of unused capacity on $(u \rightarrow v)$.
- \bigcirc ... next construct graph with all edges not being fully used by f.

Residual capacity

Definition

c: capacity, f: flow.

The *residual capacity* of an edge (u
ightarrow v) is

$$c_f(u,v) = c(u,v) - f(u,v).$$

- $lackbox{0}$ residual capacity $c_f(u,v)$ on (u o v)= amount of unused capacity on (u o v).
- $oldsymbol{0}$... next construct graph with all edges not being fully used by $oldsymbol{f}$.

Residual graph

Sariel (UIUC) CS573 18 Fall 2014 18 / 50

Residual graph

Sariel (UIUC) CS573 18 Fall 2014 18 / 50

Definition

$$\mathsf{E}_f = ig\{(u,v) \in V imes \mathsf{V} \ ig| \ c_f(u,v) > 0ig\}$$
 .

- $lackbox{0}\ (u o v)\in lackbox{E}$: might induce two edges in $lackbox{E}_f$
- ② If $(u
 ightarrow v) \in \mathsf{E}$, f(u,v) < c(u,v) and $(v
 ightarrow u)
 otin \mathsf{E}(\mathsf{G})$
- $lack {f 0}$... and $(u o v)\in {f E}_f$. Also,

$$c_f(v,u) = c(v,u) - f(v,u) = 0 - (-f(u,v)) = f(u,v)$$

- since c(v,u)=0 as (v o u) is not an edge of ${\sf G}$.
- lacksquare $(v o u)\in \mathsf{E}_f.$

Definition

$$\mathsf{E}_f = ig\{(u,v) \in V imes \mathsf{V} \ ig| \ c_f(u,v) > 0ig\}$$
 .

- $lackbox{0}\ (u o v)\in lackbox{E}$: might induce two edges in $lackbox{E}_f$
- $\textbf{ 1} \text{If } (u \to v) \in \mathsf{E} \text{, } f(u,v) < c(u,v) \text{ and } (v \to u) \notin \mathsf{E}(\mathsf{G})$
- $lack {f 0}$... and $(u o v)\in {f E}_f$. Also,

$$c_f(v,u) = c(v,u) - f(v,u) = 0 - (-f(u,v)) = f(u,v)$$

- since c(v,u)=0 as (v o u) is not an edge of **G**.
- $lacksquare 0 \implies (v o u) \in \mathsf{E}_f.$

Definition

$$\mathsf{E}_f = ig\{(u,v) \in V imes \mathsf{V} \ ig| \ c_f(u,v) > 0ig\}$$
 .

- $lackbox{0}\ (u o v)\in lackbox{E}$: might induce two edges in $lackbox{E}_f$
- $\textbf{ 9} \ \ \mathsf{If} \ (u \to v) \in \mathsf{E}, f(u,v) < c(u,v) \ \ \mathsf{and} \ \ (v \to u) \notin \mathsf{E}(\mathsf{G})$
- $lack {f 0}$... and $(u o v)\in {f E}_f$. Also,

$$c_f(v,u) = c(v,u) - f(v,u) = 0 - (-f(u,v)) = f(u,v)$$

- since c(v,u)=0 as (v o u) is not an edge of ${\sf G}$.
- $lacksquare \mathbf{b} \implies (v
 ightarrow u) \in \mathsf{E}_f.$

Definition

$$\mathsf{E}_f = ig\{(u,v) \in V imes \mathsf{V} \ ig| \ c_f(u,v) > 0ig\}$$
 .

- $oldsymbol{0} \ (u
 ightarrow v) \in oldsymbol{\mathsf{E}}$: might induce two edges in $oldsymbol{\mathsf{E}}_f$
- $\textbf{ 9} \ \ \mathsf{If} \ (u \to v) \in \mathsf{E}, f(u,v) < c(u,v) \ \ \mathsf{and} \ \ (v \to u) \notin \mathsf{E}(\mathsf{G})$
- lacktriangledown ... and $(u o v)\in \mathsf{E}_f$. Also,

$$c_f(v,u) = c(v,u) - f(v,u) = 0 - (-f(u,v)) = f(u,v),$$

- since c(v,u)=0 as (v o u) is not an edge of **G**.
- $lackbox{lack} \implies (v
 ightarrow u) \in \mathsf{E}_f.$

Definition

$$\mathsf{E}_f = ig\{(u,v) \in V imes \mathsf{V} \ ig| \ c_f(u,v) > 0ig\}$$
 .

- $oldsymbol{0} \ (u
 ightarrow v) \in oldsymbol{\mathsf{E}}$: might induce two edges in $oldsymbol{\mathsf{E}}_f$
- $\textbf{ 9} \ \ \mathsf{If} \ (u \to v) \in \mathsf{E}, f(u,v) < c(u,v) \ \ \mathsf{and} \ \ (v \to u) \notin \mathsf{E}(\mathsf{G})$
- lacktriangledown ... and $(u o v)\in \mathsf{E}_f$. Also,

$$c_f(v,u) = c(v,u) - f(v,u) = 0 - (-f(u,v)) = f(u,v),$$

- since c(v,u)=0 as (v o u) is not an edge of **G**.

Residual network properties

Since every edge of ${\bf G}$ induces at most two edges in ${\bf G}_f$, it follows that ${\bf G}_f$ has at most twice the number of edges of ${\bf G}$; formally, $|{\bf E}_f| \leq 2 \, |{\bf E}|$.

Lemma

Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_f .

Residual network properties

Since every edge of **G** induces at most two edges in \mathbf{G}_f , it follows that \mathbf{G}_f has at most twice the number of edges of **G**; formally, $|\mathbf{E}_f| \leq 2 |\mathbf{E}|$.

Lemma

Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_f .

Residual network properties

Since every edge of **G** induces at most two edges in \mathbf{G}_f , it follows that \mathbf{G}_f has at most twice the number of edges of **G**; formally, $|\mathbf{E}_f| \leq 2 |\mathbf{E}|$.

Lemma

Given a flow f defined over a network G, then the residual network G_f together with c_f form a flow network.

Proof.

One need to verify that $c_f(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_f .

Increasing the flow

Lemma

 ${f G}({f V},E)$, a flow f, and h a flow in ${f G}_f$. ${f G}_f$: residual network of f. Then f+h is a flow in ${f G}$ and its capacity is |f+h|=|f|+|h|.

proof

By definition: (f+h)(u,v)=f(u,v)+h(u,v) and thus (f+h)(X,Y)=f(X,Y)+h(X,Y). Verify legal...

- $oldsymbol{0}$ Anti symmetry: (f+h)(u,v)=f(u,v)+h(u,v)=-f(v,u)-h(v,u)=-(f+h)(v,u).
- ② Bounded by capacity:

$$(f+h)(u,v) \leq f(u,v) + h(u,v) \leq f(u,v) + c_f(u,v) \ = f(u,v) + (c(u,v) - f(u,v)) = c(u,v).$$

Increasing the flow

Lemma

 ${f G}({f V},E)$, a flow f, and h a flow in ${f G}_f$. ${f G}_f$: residual network of f. Then f+h is a flow in ${f G}$ and its capacity is |f+h|=|f|+|h|.

proof

By definition: (f+h)(u,v)=f(u,v)+h(u,v) and thus (f+h)(X,Y)=f(X,Y)+h(X,Y). Verify legal...

- $\textbf{ Anti symmetry: } (f+h)(u,v)=f(u,v)+h(u,v)=\\ -f(v,u)-h(v,u)=-(f+h)(v,u).$
- ② Bounded by capacity:

$$(f+h)(u,v) \leq f(u,v) + h(u,v) \leq f(u,v) + c_f(u,v) \ = f(u,v) + (c(u,v) - f(u,v)) = c(u,v).$$

Increasing the flow

Lemma

 ${f G}({f V},E)$, a flow f, and h a flow in ${f G}_f$. ${f G}_f$: residual network of f. Then f+h is a flow in ${f G}$ and its capacity is |f+h|=|f|+|h|.

proof

By definition: (f+h)(u,v)=f(u,v)+h(u,v) and thus (f+h)(X,Y)=f(X,Y)+h(X,Y). Verify legal...

- ① Anti symmetry: (f+h)(u,v) = f(u,v) + h(u,v) = -f(v,u) h(v,u) = -(f+h)(v,u).
- Bounded by capacity:

$$(f+h)(u,v) \leq f(u,v) + h(u,v) \leq f(u,v) + c_f(u,v) \ = f(u,v) + (c(u,v) - f(u,v)) = c(u,v).$$

Increasing the flow – proof continued

proof continued

- For $u \in V s t$ we have (f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0 and as such f + h comply with the conservation of flow requirement.
- 2 Total flow is

$$|f+h| = (f+h)(s, \mathbf{V}) = f(s, \mathbf{V}) + h(s, \mathbf{V}) = |f| + |h|$$
.

Sariel (UIUC) CS573 22 Fall 2014 22 / 50

Increasing the flow – proof continued

proof continued

- For $u \in V s t$ we have (f+h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0 and as such f+h comply with the conservation of flow requirement.
- Total flow is

$$|f+h| = (f+h)(s, \mathbf{V}) = f(s, \mathbf{V}) + h(s, \mathbf{V}) = |f| + |h|$$
 .

Sariel (UIUC) CS573 22 Fall 2014 22 / 50

Augmenting path

More on augmenting paths

- \bullet π : augmenting path.
- **②** All edges of π have positive capacity in \mathbf{G}_f .
- \odot ... otherwise not in \mathbf{E}_f .
- f, π : can improve f by pushing positive flow along π .

More on augmenting paths

- \bullet π : augmenting path.
- **2** All edges of π have positive capacity in G_f .
- \odot ... otherwise not in \mathbf{E}_f .
- ullet f, π : can improve f by pushing positive flow along π .

More on augmenting paths

- \bullet π : augmenting path.
- **②** All edges of π have positive capacity in G_f .
- \odot ... otherwise not in \mathbf{E}_f .
- ullet f, π : can improve f by pushing positive flow along π .

Sariel (UIUC) CS573 24 Fall 2014 24 / 50

Residual capacity

Definition

 π : augmenting path of f.

 $c_f(\pi)$: maximum amount of flow can push on π .

 $c_f(\pi)$ is **residual capacity** of π .

Formally,

$$c_f(\pi) = \min_{(u o v) \in \pi} c_f(u,v).$$

An example of an augmenting path

Sariel (UIUC) CS573 26 Fall 2014 26 / 50

Flow along augmenting path

$$f_\pi(u,v) = \left\{egin{array}{ll} c_f(\pi) & ext{if } (u o v) ext{ is in } \pi \ -c_f(\pi) & ext{if } (v o u) ext{ is in } \pi \ 0 & ext{otherwise.} \end{array}
ight.$$

Sariel (UIUC) CS573 27 Fall 2014 27 / 50

Increase flow by augmenting flow

Lemma

 π : augmenting path. f_π is flow in ${f G}_f$ and $|f_\pi|=c_f(\pi)>0$.

Get bigger flow...

Lemma

Let f be a flow, and let π be an augmenting path for f . Then $f+f_\pi$ is a "better" flow. Namely, $|f+f_\pi|=|f|+|f_\pi|>|f|$.

Increase flow by augmenting flow

Lemma

 π : augmenting path. f_{π} is flow in ${\sf G}_f$ and $|f_{\pi}|=c_f(\pi)>0$.

Get bigger flow...

Lemma

Let f be a flow, and let π be an augmenting path for f. Then $f+f_{\pi}$ is a "better" flow. Namely, $|f+f_{\pi}|=|f|+|f_{\pi}|>|f|$.

Flowing into the wall

- lacksquare Namely, $f+f_\pi$ is flow with larger value than f.
- Can this flow be improved?

- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

- lacksquare Namely, $f+f_\pi$ is flow with larger value than f .
- Can this flow be improved? Consider residual flow...

- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

- **1** Namely, $f + f_{\pi}$ is flow with larger value than f.
- Can this flow be improved? Consider residual flow...

- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

- lacksquare Namely, $f+f_\pi$ is flow with larger value than f .
- Can this flow be improved? Consider residual flow...

- $oldsymbol{\circ}$ is disconnected from t in this residual network.
- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

- lacksquare Namely, $f+f_\pi$ is flow with larger value than f .
- Can this flow be improved? Consider residual flow...

- $oldsymbol{\circ}$ is disconnected from t in this residual network.
- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

- lacksquare Namely, $f+f_\pi$ is flow with larger value than f .
- Can this flow be improved? Consider residual flow...

- $oldsymbol{\circ}$ is disconnected from t in this residual network.
- unable to push more flow.
- Found local maximum!
- Is that a global maximum?
- Is this the maximum flow?

The Ford-Fulkerson method

```
\begin{array}{c} \mathsf{algFordFulkerson}(\mathsf{G},c) \\ \mathsf{begin} \\ f \leftarrow \mathsf{Zero} \ \mathsf{flow} \ \mathsf{on} \ \mathsf{G} \\ \mathsf{while} \ (\mathsf{G}_f \ \mathsf{has} \ \mathsf{augmenting} \\ & \mathsf{path} \ p) \ \mathsf{do} \\ (* \ \mathsf{Recompute} \ \mathsf{G}_f \ \mathsf{for} \\ & \mathsf{this} \ \mathsf{check} \ *) \\ f \leftarrow f + f_p \\ \mathsf{return} \ f \\ \mathsf{end} \end{array}
```

Part III

On maximum flows

Definition

 $(S,\,T)$: directed cut in flow network ${\sf G}=({\sf V},E)$.

A partition of **V** into S and $T = V \setminus S$, such that $s \in S$ and $t \in T$.

Definition

(S,T): directed cut in flow network ${f G}=({f V},{f E}).$ A partition of ${f V}$ into S and $T=V\setminus S$, such that $s\in S$ and $t\in T.$

Definition

The net *flow of f across a cut* (S, T) is $f(S, T) = \sum_{s \in S, t \in T} f(s, t)$.

Definition

(S,T): directed cut in flow network ${\sf G}=({\sf V},E)$.

A partition of **V** into S and $T = V \setminus S$, such that $s \in S$ and $t \in T$.

Definition

The net *flow of f across a cut* (S, T) is $f(S, T) = \sum_{s \in S, t \in T} f(s, t)$.

Definition

The *capacity* of (S, T) is $c(S, T) = \sum_{s \in S, t \in T} c(s, t)$.

Definition

(S, T): **directed cut** in flow network G = (V, E).

A partition of **V** into S and $T=V\setminus S$, such that $s\in S$ and $t\in T$.

Definition

The net *flow of* f *across a cut* (S, T) is

$$f(S, T) = \sum_{s \in S, t \in T} f(s, t)$$
.

Definition

The *capacity* of (S,T) is $c(S,T) = \sum_{s \in S, t \in T} c(s,t)$.

Definition

The *minimum cut* is the cut in **G** with the minimum capacity.

Flow across cut is the whole flow

Lemma

G,f,s,t. (S,T): cut of G. Then f(S,T)=|f|.

Proof.

$$\begin{split} f(S,T) &= f(S,\mathbf{V}) - f(S,S) = f(S,\mathbf{V}) \\ &= f(s,\mathbf{V}) + f(S-s,\mathbf{V}) = f(s,\mathbf{V}) \\ &= |f|\,, \end{split}$$

since $T = \mathbf{V} \setminus S$, and $f(S - s, \mathbf{V}) = \sum_{u \in S - s} f(u, \mathbf{V}) = 0$ (note that u can not be t as $t \in T$).

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut (S, T) in G.

Proof.

Consider a cut
$$(S,T)$$
. We have $|f|=f(S,T)=\sum_{u\in S,v\in T}f(u,v)\leq \sum_{u\in S,v\in T}c(u,v)=c(S,T).$

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If f is a flow in a flow network $\mathbf{G}=(\mathbf{V},E)$ with source s and sink t, then the following conditions are equivalent:

- (A) f is a maximum flow in G.
- (B) The residual network G_f contains no augmenting paths.
- (C) |f| = c(S, T) for some cut (S, T) of G. And (S, T) is a minimum cut in G.

Proof.

(A) \Rightarrow (B): By contradiction. If there was an augmenting path p then $c_f(p)>0$, and we can generate a new flow $f+f_p$, such that $|f+f_p|=|f|+c_f(p)>|f|$. A contradiction as f is a maximum flow.

Proof.

s and t are disconnected in G_f .

```
S = \{v \mid \mathsf{Exists} \; \mathsf{a} \; \mathsf{path} \; \mathsf{between} \; s \; \mathsf{and} \; v \; \mathsf{in} \; \mathsf{G}_f \} \qquad T = \mathsf{V} \setminus S.
```

Proof.

```
s and t are disconnected in \mathbf{G}_f.
```

Set

$$S = \left\{ v \mid \text{Exists a path between } s \text{ and } v \text{ in } \mathbf{G}_f
ight\} \qquad T = \mathbf{V} \setminus S.$$
 Have: $s \in S$, $t \in T$, $\forall u \in S$ and $\forall v \in T$: $f(u,v) = c(u,v)$. By contradiction: $\exists u \in S$, $v \in T$ s.t. $f(u,v) < c(u,v) \Longrightarrow (u \Rightarrow v) \in \mathbb{F}_s \Longrightarrow v$ would be reachable from s in \mathbb{G}_s

$$\Longrightarrow |f| = f(S,T) = c(S,T).$$

$$(S,\,T)$$
 must be mincut. Otherwise $\exists (S',\,T')$:

$$c(S', T') < c(S, T) = f(S, T) = |f|,$$

But...
$$|f| = f(S', T') \le c(S', T')$$
. A contradiction

Proof.

```
s and t are disconnected in G_t.
Set
S = \{v \mid \mathsf{Exists} \; \mathsf{a} \; \mathsf{path} \; \mathsf{between} \; s \; \mathsf{and} \; v \; \mathsf{in} \; \mathsf{G}_f \} \qquad T = \mathsf{V} \setminus S.
Have: s \in S, t \in T, \forall u \in S and \forall v \in T: f(u, v) = c(u, v).
By contradiction: \exists u \in S, v \in T \text{ s.t. } f(u,v) < c(u,v) \implies
(u \to v) \in \mathsf{E}_f \implies v would be reachable from s in \mathsf{G}_f.
```

Proof.

```
s and t are disconnected in \mathbf{G}_f. Set S = \left\{v \mid \mathsf{Exists} \text{ a path between } s \text{ and } v \text{ in } \mathbf{G}_f \right\} T = \mathbf{V} \setminus S. Have: s \in S, t \in T, \forall u \in S and \forall v \in T: f(u,v) = c(u,v). By contradiction: \exists u \in S, \ v \in T \text{ s.t. } f(u,v) < c(u,v) \Longrightarrow (u \to v) \in \mathbf{E}_f \Longrightarrow v would be reachable from s in \mathbf{G}_f. Contradiction.
```

```
\Longrightarrow |f|=f(S,T)=c(S,T). \ (S,T) must be mincut. Otherwise \exists (S',T'): c(S',T')< c(S,T)=f(S,T)=|f|, \ But... |f|=f(S',T')\leq c(S',T'). A contradiction.
```

Proof.

s and t are disconnected in \mathbf{G}_f .

Set

$$S = ig\{ v \mid \mathsf{Exists} \; \mathsf{a} \; \mathsf{path} \; \mathsf{between} \; s \; \mathsf{and} \; v \; \mathsf{in} \; \mathbf{G}_f ig\} \qquad T = \mathbf{V} \setminus S.$$

Have: $s \in S$, $t \in T$, $\forall u \in S$ and $\forall v \in T$: f(u,v) = c(u,v).

By contradiction:
$$\exists u \in S, v \in T \text{ s.t. } f(u,v) < c(u,v) \implies (u \to v) \in \mathbf{E}_f \implies v \text{ would be reachable from } s \text{ in } \mathbf{G}_f.$$

Contradiction.

$$\implies |f| = f(S, T) = c(S, T).$$

$$(S,\,T)$$
 must be mincut. Otherwise $\exists (S',\,T')$:

$$c(S', T') < c(S, T) = f(S, T) = |f|,$$

But...
$$|f| = f(S', T') \le c(S', T')$$
. A contradiction.

Proof.

```
s and t are disconnected in G_t.
Set
S = ig\{v \mid \mathsf{Exists} \; \mathsf{a} \; \mathsf{path} \; \mathsf{between} \; s \; \mathsf{and} \; v \; \mathsf{in} \; \mathsf{G}_f ig\} \qquad T = \mathsf{V} \setminus S.
Have: s \in S, t \in T, \forall u \in S and \forall v \in T: f(u, v) = c(u, v).
By contradiction: \exists u \in S, v \in T \text{ s.t. } f(u,v) < c(u,v) \implies
(u \to v) \in \mathsf{E}_f \implies v would be reachable from s in \mathsf{G}_f.
Contradiction.
\implies |f| = f(S, T) = c(S, T).
(S, T) must be mincut. Otherwise \exists (S', T'):
c(S', T') < c(S, T) = f(S, T) = |f|,
```

Proof.

```
s and t are disconnected in G_t.
Set
S = ig\{v \mid \mathsf{Exists} \; \mathsf{a} \; \mathsf{path} \; \mathsf{between} \; s \; \mathsf{and} \; v \; \mathsf{in} \; \mathsf{G}_f ig\} \qquad T = \mathsf{V} \setminus S.
Have: s \in S, t \in T, \forall u \in S and \forall v \in T: f(u, v) = c(u, v).
By contradiction: \exists u \in S, v \in T \text{ s.t. } f(u,v) < c(u,v) \implies
(u \to v) \in \mathsf{E}_f \implies v would be reachable from s in \mathsf{G}_f.
Contradiction.
\implies |f| = f(S, T) = c(S, T).
(S, T) must be mincut. Otherwise \exists (S', T'):
c(S', T') < c(S, T) = f(S, T) = |f|,
But... |f| = f(S', T') < c(S', T'). A contradiction.
```

Proof.

Well, for any cut (U, V), we know that $|f| \leq c(U, V)$. This implies that if |f| = c(S, T) then the flow can not be any larger, and it is thus a maximum flow.

Implications

- The max-flow min-cut theorem ⇒ if algFordFulkerson terminates, then computed max flow.
- Does not imply algFordFulkerson always terminates.
- algFordFulkerson might not terminate.

Part IV

Non-termination of Ford-Fulkerson

Ford-Fulkerson runs in vain

- **1** M: large positive integer.
- $\alpha = (\sqrt{5} 1)/2 \approx 0.618.$
- $1-\alpha < \alpha.$
- Maximum flow in this network is: 2M+1

Ford-Fulkerson runs in vain

- **1** *M*: large positive integer.
- $\alpha = (\sqrt{5} 1)/2 \approx 0.618.$
- $1-\alpha < \alpha.$
- Maximum flow in this network is: 2M + 1.

Ford-Fulkerson runs in vain

- M: large positive integer.
- $\alpha = (\sqrt{5} 1)/2 \approx 0.618.$
- $\alpha < 1$,
- $1-\alpha < \alpha.$
- Maximum flow in this network is: 2M + 1.

For
$$lpha=rac{\sqrt{5}-1}{2}$$
:

 α^2

For
$$\alpha=rac{\sqrt{5}-1}{2}$$
:

$$lpha^2 = \left(rac{\sqrt{5}-1}{2}
ight)^2$$

For
$$lpha=rac{\sqrt{5}-1}{2}$$
:

$$lpha^2 = \left(rac{\sqrt{5}-1}{2}
ight)^2 \,= rac{1}{4} \left(\sqrt{5}-1
ight)^2$$

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$lpha^2 = \left(rac{\sqrt{5}-1}{2}
ight)^2 \, = rac{1}{4} \left(\sqrt{5}-1
ight)^2 \, = rac{1}{4} \left(5-2\sqrt{5}+1
ight)^2$$

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$lpha^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2 = \frac{1}{4} \left(\sqrt{5} - 1\right)^2 = \frac{1}{4} \left(5 - 2\sqrt{5} + 1\right)^2$$

$$= 1 + \frac{1}{4} \left(2 - 2\sqrt{5}\right)$$

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4} \left(\sqrt{5} - 1\right)^{2} = \frac{1}{4} \left(5 - 2\sqrt{5} + 1\right)$$
$$= 1 + \frac{1}{4} \left(2 - 2\sqrt{5}\right)$$
$$= 1 + \frac{1}{2} \left(1 - \sqrt{5}\right)$$

Some algebra...

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4} \left(\sqrt{5} - 1\right)^{2} = \frac{1}{4} \left(5 - 2\sqrt{5} + 1\right)$$

$$= 1 + \frac{1}{4} \left(2 - 2\sqrt{5}\right)$$

$$= 1 + \frac{1}{2} \left(1 - \sqrt{5}\right)$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

Sariel (UIUC) CS573 43 Fall 2014 43 / 50

Some algebra...

For
$$\alpha = \frac{\sqrt{5}-1}{2}$$
:

$$\alpha^{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^{2} = \frac{1}{4} \left(\sqrt{5} - 1\right)^{2} = \frac{1}{4} \left(5 - 2\sqrt{5} + 1\right)$$

$$= 1 + \frac{1}{4} \left(2 - 2\sqrt{5}\right)$$

$$= 1 + \frac{1}{2} \left(1 - \sqrt{5}\right)$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$

Sariel (UIUC) CS573 43 Fall 2014 43 / 50

Some algebra...

Claim

Given:
$$\alpha = (\sqrt{5} - 1)/2$$
 and $\alpha^2 = 1 - \alpha$.

$$\implies orall i \qquad lpha^i - lpha^{i+1} = lpha^{i+2}$$

Proof.

$$\alpha^i - \alpha^{i+1} = \alpha^i (1 - \alpha) = \alpha^i \alpha^2 = \alpha^{i+2}$$
.

The network

Sariel (UIUC) CS573 45 Fall 2014 45 / 50

#	Augment. path π	c_{π}	New residual network
0.			
1.	p_1 w 1 y α		

Sariel (UIUC) CS573 46 Fall 2014 46 / 50

#	Augment. path π	c_{π}	New residual network
0.		1	
1.	p_1 $y = \alpha$		

Sariel (UIUC) CS573 46 Fall 2014 46 / 50

#	Augment. path π	c_{π}	New residual network
0.		1	
1.	p_1 w 1 1 y α		

#	Augment. path π	c_{π}	New residual network
0.		1	
1.	p_1 p_1 p_1 p_2 p_3	α	

#	Augment. path π	c_{π}	New residual network
0.		1	
1.	p_1 p_1 p_1 p_2 p_3	α	$ \begin{array}{c c} \alpha^2 \\ \hline 1-\alpha \\ \hline \alpha \\ \hline \end{array} $

#	Augment. path π	c_{π}	New residual network
1.	p_1 w 1 1 y α	α	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.		α	

moves	Residual network after
0	
moves $0, (1,2,3,4)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
moves $0, (1, 2, 3, 4)^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$0.(1,2,3,4)^i$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Namely, the algorithm never terminates.

Sariel (UIUC) CS573 51 Fall 2014 51 / 50

Sariel (UIUC) CS573 52 Fall 2014 52 / 50

Sariel (UIUC) CS573 53 Fall 2014 53 / 50

Sariel (UIUC) CS573 54 Fall 2014 54 / 50