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Part I

Network Flow
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Network flow

1 Transfer as much “merchandise” as possible from one point to
another.

2 Wireless network, transfer a large file from s to t.
3 Limited capacities.
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Network: Definition

1 Given a network with capacities on each connection.
2 Q: How much “flow” can transfer from source s to a sink t?
3 The flow is splitable.
4 Network examples: water pipes moving water. Electricity

network.
5 Internet is packet base, so not quite splitable.

Definition
? G = (V, E): a directed graph.
? ∀ (u → v) ∈ E(G): capacity c(u, v) ≥ 0,
? (u → v) /∈ G =⇒ c(u, v) = 0.
? s: source vertex, t: target sink vertex.
? G, s, t and c(·): form flow network or network.
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Network Example

t0/10 1/4

4/
9 7/7

15/20

12/12

4/
4

11/14

u v

w x

s

11/16

8/13

1 All flow from the source ends up in the sink.
2 Flow on edge: non-negative quantity ≤ capacity of edge.
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Flow definition

Definition (flow)
flow in network is a function f (·, ·) : E(G)→ R:

(A) Bounded by capacity:
∀ (u → v) ∈ E f (u, v) ≤ c(u, v).

(B) Anti symmetry:
∀u, v f (u, v) = −f (v, u).

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff’s Current Law):
∀u ∈ V \ {s, t}

∑
v

f (u, v) = 0.

flow/value of f : |f | =
∑
v∈V

f (s, v).
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Problem: Max Flow

1 Flow on edge can be negative (i.e., positive flow on edge in
other direction).

Problem (Maximum flow)
Given a network G find the maximum flow in G. Namely, compute
a legal flow f such that |f | is maximized.
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Part II

Some properties of flows and residual
networks
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Flow across sets of vertices

1 ∀X, Y ⊆ V, let f (X, Y ) = ∑
x∈X,y∈Y f (x, y).

f (v, S) = f
(
{v} , S

)
, where v ∈ V(G).

Observation
|f | = f (s, V).
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Basic properties of flows: (i)

Lemma
For a flow f , the following properties holds:

(i) ∀u ∈ V(G) we have f (u, u) = 0,

Proof.
Holds since (u → u) it not an edge in G.
(u → u) capacity is zero,
Flow on (u → u) is zero.

Sariel (UIUC) CS573 10 Fall 2014 10 / 50



Basic properties of flows: (i)

Lemma
For a flow f , the following properties holds:

(i) ∀u ∈ V(G) we have f (u, u) = 0,

Proof.
Holds since (u → u) it not an edge in G.
(u → u) capacity is zero,
Flow on (u → u) is zero.

Sariel (UIUC) CS573 10 Fall 2014 10 / 50



Basic properties of flows: (i)

Lemma
For a flow f , the following properties holds:

(i) ∀u ∈ V(G) we have f (u, u) = 0,

Proof.
Holds since (u → u) it not an edge in G.
(u → u) capacity is zero,
Flow on (u → u) is zero.

Sariel (UIUC) CS573 10 Fall 2014 10 / 50



Basic properties of flows: (ii)

Lemma
For a flow f , the following properties holds:
(ii) ∀X ⊆ V we have f (X, X) = 0,

Proof.

f (X, X) =
∑

{u,v}⊆X,u 6=v
(f (u, v) + f (v, u)) +

∑
u∈X

f (u, u)

=
∑

{u,v}⊆X,u 6=v
(f (u, v)− f (u, v)) +

∑
u∈X

0 = 0,

by the anti-symmetry property of flow.

Sariel (UIUC) CS573 11 Fall 2014 11 / 50



Basic properties of flows: (iii)

Lemma
For a flow f , the following properties holds:
(iii) ∀X, Y ⊆ V we have f (X, Y ) = −f (Y , X),

Proof.
By the anti-symmetry of flow, as

f (X, Y ) =
∑

x∈X,y∈Y
f (x, y) = −

∑
x∈X,y∈Y

f (y, x) = −f (Y , X) .
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Basic properties of flows: (iv)

Lemma
For a flow f , the following properties holds:
(iv) ∀X, Y , Z ⊆ V such that X ∩Y = ∅ we have that

f (X ∪Y , Z) = f (X, Z) + f (Y , Z) and
f (Z , X ∪Y ) = f (Z , X) + f (Z , Y ).

Proof.
Follows from definition. (Check!)
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Basic properties of flows: (v)

Lemma
For a flow f , the following properties holds:
(v) ∀u ∈ V \ {s, t}, we have f (u, V) = f (V, u) = 0.

Proof.
This is a restatement of the conservation of flow property.
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Basic properties of flows: summary

Lemma
For a flow f , the following properties holds:

(i) ∀u ∈ V(G) we have f (u, u) = 0,
(ii) ∀X ⊆ V we have f (X, X) = 0,
(iii) ∀X, Y ⊆ V we have f (X, Y ) = −f (Y , X),
(iv) ∀X, Y , Z ⊆ V such that X ∩Y = ∅ we have that

f (X ∪Y , Z) = f (X, Z) + f (Y , Z) and
f (Z , X ∪Y ) = f (Z , X) + f (Z , Y ).

(v) For all u ∈ V \ {s, t}, we have f (u, V) = f (V, u) = 0.
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All flow gets to the sink

Claim
|f | = f (V, t).

Proof.

|f | =
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All flow gets to the sink

Claim
|f | = f (V, t).

Proof.

|f | = f (s, V) = f
(

V \(V \ {s}) , V
)
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All flow gets to the sink
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All flow gets to the sink
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Residual capacity

Definition
c: capacity, f : flow.
The residual capacity of an edge (u → v) is

cf (u, v) = c(u, v)− f (u, v).

1 residual capacity cf (u, v) on (u → v) = amount of unused
capacity on (u → v).

2 ... next construct graph with all edges not being fully used by f .
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Residual graph

t0/10 1/4

4/
9 7/7

15/20
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5

Graph Residual graph
f (u, w) = −f (w, u) = −1 =⇒ cf (u, w) = 10− (−1) = 11.
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Residual graph: Definition

Definition
Given f , G = (V, E) and c, as above, the residual graph (or
residual network) of G and f is the graph Gf =(V, Ef ) where

Ef =
{
(u, v) ∈ V × V

∣∣∣ cf (u, v) > 0
}

.

1 (u → v) ∈ E: might induce two edges in Ef
2 If (u → v) ∈ E, f (u, v) < c(u, v) and (v → u) /∈ E(G)
3 =⇒ cf (u, v) = c(u, v)− f (u, v) > 0
4 ... and (u → v) ∈ Ef . Also,

cf (v, u) = c(v, u)− f (v, u) = 0− (−f (u, v)) = f (u, v),

since c(v, u) = 0 as (v → u) is not an edge of G.
5 =⇒ (v → u) ∈ Ef .
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Residual network properties

Since every edge of G induces at most two edges in Gf , it follows
that Gf has at most twice the number of edges of G; formally,
|Ef | ≤ 2 |E|.

Lemma
Given a flow f defined over a network G, then the residual network
Gf together with cf form a flow network.

Proof.
One need to verify that cf (·) is always a non-negative function,
which is true by the definition of Ef .
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Increasing the flow

Lemma
G(V, E), a flow f , and h a flow in Gf . Gf : residual network of f .
Then f + h is a flow in G and its capacity is |f + h| = |f |+ |h|.

proof
By definition: (f + h)(u, v) = f (u, v) + h(u, v) and thus
(f + h)(X, Y ) = f (X, Y ) + h(X, Y ). Verify legal...

1 Anti symmetry: (f + h)(u, v) = f (u, v) + h(u, v) =
−f (v, u)− h(v, u) = −(f + h)(v, u).

2 Bounded by capacity:

(f + h)(u, v) ≤ f (u, v) + h(u, v) ≤ f (u, v) + cf (u, v)
= f (u, v) + (c(u, v)− f (u, v)) = c(u, v).
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Increasing the flow – proof continued

proof continued
1 For u ∈ V − s − t we have

(f + h)(u, V) = f (u, V) + h(u, V) = 0 + 0 = 0 and as
such f + h comply with the conservation of flow requirement.

2 Total flow is

|f + h| = (f + h)(s, V) = f (s, V) + h(s, V) = |f |+ |h| .
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Augmenting path
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Definition
For G and a flow f , a path π
in Gf between s and t is an
augmenting path.
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More on augmenting paths

1 π: augmenting path.
2 All edges of π have positive capacity in Gf .
3 ... otherwise not in Ef .
4 f , π: can improve f by pushing positive flow along π.
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Residual capacity

Definition
π: augmenting path of f .
cf (π): maximum amount of flow can push on π.
cf (π) is residual capacity of π.
Formally,

cf (π) = min
(u→v)∈π

cf (u, v).
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An example of an augmenting path
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Flow along augmenting path

fπ(u, v) =


cf (π) if (u → v) is in π
−cf (π) if (v → u) is in π

0 otherwise.
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Increase flow by augmenting flow

Lemma
π: augmenting path. fπ is flow in Gf and |fπ| = cf (π) > 0.

Get bigger flow...

Lemma
Let f be a flow, and let π be an augmenting path for f . Then
f + fπ is a “better” flow. Namely, |f + fπ| = |f |+ |fπ| > |f |.
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Flowing into the wall

1 Namely, f + fπ is flow with larger value than f .
2 Can this flow be improved?
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3 s is disconnected from t in this residual network.
4 unable to push more flow.
5 Found local maximum!
6 Is that a global maximum?
7 Is this the maximum flow?
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The Ford-Fulkerson method

algFordFulkerson(G, c)
begin

f ← Zero flow on G
while (Gf has augmenting

path p) do
(* Recompute Gf for

this check *)
f ← f + fp

return f
end
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Part III

On maximum flows
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Some definitions

Definition
(S, T): directed cut in flow network G = (V, E).
A partition of V into S and T = V \ S, such that s ∈ S and
t ∈ T .
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Flow across cut is the whole flow

Lemma
G,f ,s,t. (S, T): cut of G.
Then f (S, T) = |f |.

Proof.

f (S, T) = f (S, V)− f (S, S) = f (S, V)
= f (s, V) + f (S − s, V) = f (s, V)
= |f | ,

since T = V \ S, and f (S − s, V) = ∑
u∈S−s f (u, V) = 0 (note

that u can not be t as t ∈ T).
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Flow bounded by cut capacity

Claim
The flow in a network is upper bounded by the capacity of any cut
(S, T) in G.

Proof.
Consider a cut (S, T). We have |f | = f (S, T) =∑

u∈S,v∈T f (u, v) ≤ ∑
u∈S,v∈T c(u, v) = c(S, T).
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THE POINT

Key observation
Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...
Maximum flow is exactly the value of the minimum cut.
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The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)
If f is a flow in a flow network G = (V, E) with source s and sink t,
then the following conditions are equivalent:

(A) f is a maximum flow in G.
(B) The residual network Gf contains no augmenting paths.
(C) |f | = c(S, T) for some cut (S, T) of G. And (S, T) is a

minimum cut in G.
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Proof: (A)⇒ (B):

Proof.
(A)⇒ (B): By contradiction. If there was an augmenting path p
then cf (p) > 0, and we can generate a new flow f + fp, such that
|f + fp| = |f |+ cf (p) > |f | . A contradiction as f is a maximum
flow.
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Proof: (B)⇒ (C):

Proof.
s and t are disconnected in Gf .
Set
S =

{
v

∣∣∣ Exists a path between s and v in Gf
}

T = V \ S.

Have: s ∈ S, t ∈ T , ∀u ∈ S and ∀v ∈ T : f (u, v) = c(u, v).
By contradiction: ∃u ∈ S, v ∈ T s.t. f (u, v) < c(u, v) =⇒
(u → v) ∈ Ef =⇒ v would be reachable from s in Gf .
Contradiction.
=⇒ |f | = f (S, T) = c(S, T).

(S, T) must be mincut. Otherwise ∃(S ′, T ′):
c(S ′, T ′) < c(S, T) = f (S, T) = |f |,
But... |f | = f (S ′, T ′) ≤ c(S ′, T ′). A contradiction.
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Proof: (C)⇒ (A):

Proof.
Well, for any cut (U , V), we know that |f | ≤ c(U , V). This
implies that if |f | = c(S, T) then the flow can not be any larger,
and it is thus a maximum flow.
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Implications

1 The max-flow min-cut theorem =⇒ if algFordFulkerson
terminates, then computed max flow.

2 Does not imply algFordFulkerson always terminates.
3 algFordFulkerson might not terminate.
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Part IV

Non-termination of Ford-Fulkerson
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Ford-Fulkerson runs in vain
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1 M : large positive integer.
2 α = (

√
5− 1)/2 ≈ 0.618.

3 α < 1,
4 1− α < α.
5 Maximum flow in this

network is: 2M + 1.
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Some algebra...

For α =
√

5− 1
2

:

α2
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√

5− 1
2

:

α2 =

√5− 1
2

2

=
1
4

(√
5− 1

)2
=

1
4

(
5− 2

√
5 + 1

)

= 1 +
1
4

(
2− 2

√
5

)
= 1 +

1
2

(
1−
√

5
)

= 1−
√

5− 1
2

= 1− α.

Sariel (UIUC) CS573 43 Fall 2014 43 / 50



Some algebra...

Claim
Given: α = (

√
5− 1)/2 and α2 = 1− α.

=⇒ ∀i αi − αi+1 = αi+2

Proof.

αi − αi+1 = αi(1− α) = αiα2 = αi+2.
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The network

z y x
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Let it flow...
# Augment. path π cπ New residual network
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Let it flow II
# Augment. path π cπ New residual network
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Let it flow II
# Augment. path π cπ New residual network

1. z y x
α11

t

s

p1

w
α

x
1− α α

αα

α2︷ ︸︸ ︷
1− α

zw y

2. z y x
α11

t

s

p2

w
α x

1α2 α

1− α2
zw y

Sariel (UIUC) CS573 47 Fall 2014 47 / 50



Let it flow II

2. z y x
α11

t

s

p2

w
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x
1α2 α
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3. z y x
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w
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Let it flow III

3. z y x
α11
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Let it flow III
moves Residual network after

0
x

1 1 α
zw y

moves 0, (1, 2, 3, 4) x
1α2 α3

α2
1− α2

zw y

moves 0, (1, 2, 3, 4)2
x

1α4 α5

α(1− α4)1− α4

zw y

0.(1, 2, 3, 4)i
x1α2i α2i+1α2i

1− α2i
zw

α− α2i+1

y

Namely, the algorithm never terminates.
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