CS 573: Algorithms, Fall 2014

Network Flow

Lecture 11
September 30, 2014

Part I

Network Flow

Network flow

(1) Transfer as much "merchandise" as possible from one point to another.
(2) Wireless network, transfer a large file from s to t.
(3) Limited capacities.

Network flow

(1) Transfer as much "merchandise" as possible from one point to another.
(2) Wireless network, transfer a large file from s to t.
(3) Limited capacities.

Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

```
Definition
\star \mathbf{G}=(\mathbf{V,E}: a directed graph
\star }\forall(u->v)\in\textrm{E}(\textrm{G}): capacity c(u,v)\geq0
\star (u->v)\not\inG\Longrightarrowc(u,v)=0.
\star s: source vertex, t: target sink vertex.
\star G, s,t and c(\cdot): form flow network or network.
```


Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

Definition

$\star \mathbf{G}=(\mathbf{V}, \mathbf{E})$: a directed graph.

Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

Definition

$\star \mathbf{G}=(\mathbf{V}, \mathbf{E})$: a directed graph.
$\star \forall(u \rightarrow v) \in \mathbf{E}(\mathbf{G})$: capacity $c(u, v) \geq 0$,

form flow network or network.

Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

Definition

$\star \mathbf{G}=(\mathbf{V}, \mathbf{E})$: a directed graph.
$\star \forall(u \rightarrow v) \in \mathbf{E}(\mathbf{G})$: capacity $c(u, v) \geq 0$,
$\star(u \rightarrow v) \notin G \Longrightarrow c(u, v)=0$.

* s : source vertex, t : target sink vertex.
form flow network or network.

Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

Definition

$\star \mathbf{G}=(\mathbf{V}, \mathbf{E})$: a directed graph.
$\star \forall(u \rightarrow v) \in E(G):$ capacity $c(u, v) \geq 0$,
$\star(u \rightarrow v) \notin G \Longrightarrow c(u, v)=0$.
$\star \boldsymbol{s}$: source vertex, \boldsymbol{t} : target sink vertex.

Network: Definition

(1) Given a network with capacities on each connection.
(2) Q: How much "flow" can transfer from source s to a sink t ?
(3) The flow is splitable.
(9) Network examples: water pipes moving water. Electricity network.
(5) Internet is packet base, so not quite splitable.

Definition

$\star \mathbf{G}=(\mathbf{V}, \mathbf{E})$: a directed graph.
$\star \forall(u \rightarrow v) \in \mathbf{E}(\mathbf{G})$: capacity $c(u, v) \geq 0$,
$\star(u \rightarrow v) \notin G \Longrightarrow c(u, v)=0$.
$\star s$: source vertex, t : target sink vertex.
\star G, s, t and $c(\cdot)$: form flow network or network.

Network Example

(1) All flow from the source ends up in the sink.
(2) Flow on edge: non-negative quantity \leq capacity of edge.

Network Example

(1) All flow from the source ends up in the sink.
(2) Flow on edge: non-negative quantity \leq capacity of edge.

Network Example

(1) All flow from the source ends up in the sink.
(2) Flow on edge: non-negative quantity \leq capacity of edge.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

(B) Anti symmetry:

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law):

flow/value of $f:|f|=\sum_{v \in V} f(s, v)$

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

$$
\forall(u \rightarrow v) \in E \quad f(u, v) \leq c(u, v)
$$

(B) Anti symmetry:

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law)

flow /value of $f:|f|=\sum_{v \in V} f(s, v)$

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

$$
\forall(u \rightarrow v) \in \mathrm{E} \quad f(u, v) \leq c(u, v)
$$

(B) Anti symmetry:

$$
\forall u, v \quad f(u, v)=-f(v, u)
$$

(C) Two special vertices: (i) the source s and the sink t
(D) Conservation of flow (Kirchhoff's Current Law)

flow/value of $f:|f|=\sum_{v \in V} f(s, v)$.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

$$
\forall(u \rightarrow v) \in \mathrm{E} \quad f(u, v) \leq c(u, v)
$$

(B) Anti symmetry:

$$
\forall u, v \quad f(u, v)=-f(v, u)
$$

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law)

flow/value of $f:|f|=\sum_{v \in V} f(s, v)$.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

$$
\forall(u \rightarrow v) \in \mathrm{E} \quad f(u, v) \leq c(u, v)
$$

(B) Anti symmetry:

$$
\forall u, v \quad f(u, v)=-f(v, u)
$$

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law):

$$
\forall u \in \mathbf{V} \backslash\{s, t\}
$$

$$
\sum_{v} f(u, v)=0
$$

flow/value of $f:|f|=$

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot): \mathbf{E}(\mathbf{G}) \rightarrow \mathbb{R}$:
(A) Bounded by capacity:

$$
\forall(u \rightarrow v) \in \mathrm{E} \quad f(u, v) \leq c(u, v)
$$

(B) Anti symmetry:

$$
\forall u, v \quad f(u, v)=-f(v, u)
$$

(C) Two special vertices: (i) the source s and the sink t.
(D) Conservation of flow (Kirchhoff's Current Law):

$$
\forall u \in \mathbf{V} \backslash\{s, t\}
$$

$$
\sum_{v} f(u, v)=0
$$

flow/value of $f:|f|=\sum_{v \in V} f(s, v)$.

Problem: Max Flow

(1) Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute a legal flow f such that $|f|$ is maximized.

Part II

Some properties of flows and residual networks

Flow across sets of vertices

- $\forall X, Y \subseteq \mathrm{~V}$, let $f(X, Y)=\sum_{x \in X, y \in Y} f(x, y)$.

$$
f(v, S)=f(\{v\}, S), \text { where } v \in \mathbf{V}(\mathbf{G}) .
$$

Observation

$$
|f|=f(s, \mathbf{V}) .
$$

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:
(i) $\forall u \in \mathbf{V}(\mathbf{G})$ we have $f(u, u)=0$,

Proof.

Holds since $(\boldsymbol{u} \rightarrow \boldsymbol{u})$ it not an edge in \mathbf{G}.
$(u \rightarrow u)$ capacity is zero,
Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:
(i) $\forall u \in \mathrm{~V}(\mathbf{G})$ we have $f(u, u)=0$,

Proof.

Holds since $(\boldsymbol{u} \rightarrow \boldsymbol{u})$ it not an edge in \mathbf{G}.
$(u \rightarrow u)$ capacity is zero,

Basic properties of flows: (i)

Lemma

For a flow f, the following properties holds:
(i) $\forall u \in \mathrm{~V}(\mathbf{G})$ we have $f(u, u)=0$,

Proof.

Holds since $(\boldsymbol{u} \rightarrow \boldsymbol{u})$ it not an edge in \mathbf{G}.
$(u \rightarrow u)$ capacity is zero, Flow on $(u \rightarrow u)$ is zero.

Basic properties of flows: (ii)

Lemma

For a flow f, the following properties holds:
(ii) $\forall \boldsymbol{X} \subseteq \mathrm{V}$ we have $f(X, X)=0$,

Proof.

$$
\begin{aligned}
f(X, X) & =\sum_{\{u, v\} \subseteq X, u \neq v}(f(u, v)+f(v, u))+\sum_{u \in X} f(u, u) \\
& =\sum_{\{u, v\} \subseteq X, u \neq v}(f(u, v)-f(u, v))+\sum_{u \in X} 0=0
\end{aligned}
$$

by the anti-symmetry property of flow.

Basic properties of flows: (iii)

Lemma

For a flow f, the following properties holds:
(iii) $\forall \boldsymbol{X}, \boldsymbol{Y} \subseteq \mathrm{V}$ we have $f(\boldsymbol{X}, \boldsymbol{Y})=-\boldsymbol{f}(\boldsymbol{Y}, \boldsymbol{X})$,

Proof.

By the anti-symmetry of flow, as

$$
f(X, Y)=\sum_{x \in X, y \in Y} f(x, y)=-\sum_{x \in X, y \in Y} f(y, x)=-f(Y, X)
$$

Basic properties of flows: (iv)

Lemma

For a flow f, the following properties holds:
(iv) $\forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \subseteq \mathbf{V}$ such that $\boldsymbol{X} \cap \boldsymbol{Y}=\emptyset$ we have that

$$
\begin{aligned}
& f(X \cup Y, \bar{Z})=f(X, Z)+f(Y, Z) \text { and } \\
& f(Z, X \cup Y)=f(Z, X)+f(Z, Y)
\end{aligned}
$$

Proof.

Follows from definition. (Check!)

Basic properties of flows: (v)

Lemma

For a flow f, the following properties holds:
(v) $\forall u \in \mathrm{~V} \backslash\{s, t\}$, we have $f(u, \mathrm{~V})=f(\mathrm{~V}, u)=0$.

Proof.

This is a restatement of the conservation of flow property.

Basic properties of flows: summary

Lemma

For a flow f, the following properties holds:
(i) $\forall u \in \mathbf{V}(\mathbf{G})$ we have $f(u, u)=0$,
(ii) $\forall \boldsymbol{X} \subseteq \mathrm{V}$ we have $f(\boldsymbol{X}, \boldsymbol{X})=0$,
(iii) $\forall \boldsymbol{X}, \boldsymbol{Y} \subseteq \mathrm{V}$ we have $f(X, Y)=-f(\boldsymbol{Y}, \boldsymbol{X})$,
(iv) $\forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \subseteq \mathbf{V}$ such that $\boldsymbol{X} \cap \boldsymbol{Y}=\emptyset$ we have that $f(X \cup Y, Z)=f(X, Z)+f(Y, Z)$ and $f(Z, X \cup Y)=f(Z, X)+f(Z, Y)$.
(v) For all $u \in \mathrm{~V} \backslash\{s, t\}$, we have $f(u, \mathrm{~V})=f(\mathrm{~V}, u)=0$.

All flow gets to the sink

Claim

$$
|f|=f(\mathbf{V}, t) .
$$

Proof.

$$
|f|=
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
|f|=f(s, \mathbf{V})
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
|f|=f(s, \mathbf{V})=f(\mathbf{V} \backslash(\mathbf{V} \backslash\{s\}), V)
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
|f|=f(\mathbf{V} \backslash(\mathbf{V} \backslash\{s\}), V)
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V} \backslash(\mathbf{V} \backslash\{s\}), V) \\
& =f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V})
\end{aligned}
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
|f|=f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V})
$$

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V}) \\
& =-f(V \backslash\{s\}, \mathbf{V})
\end{aligned}
$$

Since $f(\mathbf{V}, \boldsymbol{V})=\mathbf{0}$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V}) \\
& =-f(V \backslash\{s\}, \mathbf{V})=f(\mathbf{V}, \mathbf{V} \backslash\{s\})
\end{aligned}
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V}) \\
& =f(\mathbf{V}, \mathbf{V} \backslash\{s\})
\end{aligned}
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, V)-f(V \backslash\{s\}, \mathbf{V}) \\
& =f(\mathbf{V}, \mathbf{V} \backslash\{s\}) \\
& =f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\})
\end{aligned}
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, \boldsymbol{V})-f(\boldsymbol{V} \backslash\{s\}, \mathbf{V}) \\
& =f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\})
\end{aligned}
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
|f|=f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\})
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\}) \\
& =f(\mathbf{V}, t)+\sum_{u \in V \backslash\{s, t\}} f(\mathbf{V}, u)
\end{aligned}
$$

Since $f(\mathbf{V}, V)=0$ by (i)

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\}) \\
& =f(\mathbf{V}, t)+\sum_{u \in V \backslash\{s, t\}} f(\mathbf{V}, u) \\
& =f(\mathbf{V}, t)+\sum_{u \in V \backslash\{s, t\}} 0
\end{aligned}
$$

Since $f(\mathbf{V}, \boldsymbol{V})=0$ by (i) and $f(\mathbf{V}, \boldsymbol{u})=\mathbf{0}$ by (iv).

All flow gets to the sink

Claim

$|f|=f(\mathbf{V}, t)$.

Proof.

$$
\begin{aligned}
|f| & =f(\mathbf{V}, t)+f(\mathbf{V}, \mathbf{V} \backslash\{s, t\}) \\
& =f(\mathbf{V}, t)+\sum_{u \in V \backslash\{s, t\}} f(\mathbf{V}, u) \\
& =f(\mathbf{V}, t)+\sum_{u \in V \backslash\{s, t\}} 0 \\
& =f(\mathbf{V}, t)
\end{aligned}
$$

Since $f(\mathbf{V}, V)=\mathbf{0}$ by (i) and $f(\mathbf{V}, u)=\mathbf{0}$ by (iv).

Residual capacity

Definition

c : capacity, f : flow.
The residual capacity of an edge $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is

$$
c_{f}(u, v)=c(u, v)-f(u, v)
$$

(1) residual capacity $c_{f}(u, v)$ on $(u \rightarrow v)=$ amount of unused capacity on $(u \rightarrow v)$.
next construct graph with all edges not being fully used by f

Residual capacity

Definition

c : capacity, f : flow.
The residual capacity of an edge $(\boldsymbol{u} \rightarrow \boldsymbol{v})$ is

$$
c_{f}(u, v)=c(u, v)-f(u, v)
$$

(1) residual capacity $c_{f}(u, v)$ on $(u \rightarrow v)=$ amount of unused capacity on $(\boldsymbol{u} \rightarrow \boldsymbol{v})$.
(2) \ldots next construct graph with all edges not being fully used by f.

Residual graph

Residual graph

Residual graph: Definition

Definition

Given $\boldsymbol{f}, \mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ and \boldsymbol{c}, as above, the residual graph (or residual network) of \mathbf{G} and f is the graph $\mathbf{G}_{f}=\left(\mathbf{V}, \mathbf{E}_{f}\right)$ where

$$
\mathbf{E}_{f}=\left\{(u, v) \in V \times \mathbf{V} \mid c_{f}(u, v)>0\right\}
$$

(1) $(u \rightarrow v) \in E:$ might induce two edges in \mathbf{E}_{f}

$$
\begin{aligned}
& \text { If }(u \rightarrow v) \in \mathbb{E}, f(u, v)<c(u, v) \text { and }(v \rightarrow u) \notin \mathbb{E}(\mathrm{G}) \\
& \Longrightarrow c_{f}(u, v)=c(u, v)-f(u, v)>0 \\
& \ldots \text { and }(u \rightarrow v) \in \mathbb{E}_{f} \text {. Also, } \\
& c_{f}(v, u)=c(v, u)-f(v, u)=0-(-f(u, v))=f(u, v),
\end{aligned}
$$

$$
\text { since } c(v, u)=0 \text { as }(v \rightarrow u) \text { is not an edge of } \mathbf{G} .
$$

\square

Residual graph: Definition

Definition

Given $\boldsymbol{f}, \mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ and \boldsymbol{c}, as above, the residual graph (or residual network) of \mathbf{G} and f is the graph $\mathbf{G}_{f}=\left(\mathbf{V}, \mathbf{E}_{f}\right)$ where

$$
\mathbf{E}_{f}=\left\{(u, v) \in V \times \mathbf{V} \mid c_{f}(u, v)>0\right\}
$$

(1) $(u \rightarrow v) \in \mathrm{E}$: might induce two edges in E_{f}
(2) If $(u \rightarrow v) \in \mathrm{E}, f(u, v)<c(u, v)$ and $(v \rightarrow u) \notin \mathrm{E}(\mathbf{G})$
(3) \ldots and $(u \rightarrow v) \in \mathbf{E}_{f}$. Also,
$c_{f}(v, u)=c(v, u)-\boldsymbol{f}(\boldsymbol{v}, \boldsymbol{u})=0-(-f(u, v))=f(u, v)$,
since $c(v, u)=0$ as $(v \rightarrow u)$ is not an edge of G .
\square

Residual graph: Definition

Definition

Given $\boldsymbol{f}, \mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ and \boldsymbol{c}, as above, the residual graph (or residual network) of \mathbf{G} and f is the graph $\mathbf{G}_{f}=\left(\mathbf{V}, \mathbf{E}_{f}\right)$ where

$$
\mathbf{E}_{f}=\left\{(u, v) \in V \times \mathbf{V} \mid c_{f}(u, v)>0\right\}
$$

(1) $(u \rightarrow v) \in \mathrm{E}$: might induce two edges in E_{f}
(2) If $(u \rightarrow v) \in \mathrm{E}, f(u, v)<c(u, v)$ and $(v \rightarrow u) \notin \mathrm{E}(\mathbf{G})$
(3) $\Longrightarrow c_{f}(u, v)=c(u, v)-f(u, v)>0$
© \ldots and $(u \rightarrow v) \in \mathrm{E}_{f}$. Also,
$c_{f}(v, u)=c(v, u)-f(v, u)=0-(-f(u, v))=f(u, v)$,
since $c(v, u)=0$ as $(\boldsymbol{v} \rightarrow \boldsymbol{u})$ is not an edge of \mathbf{G}
\square

Residual graph: Definition

Definition

Given $\boldsymbol{f}, \mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ and \boldsymbol{c}, as above, the residual graph (or residual network) of \mathbf{G} and f is the graph $\mathbf{G}_{f}=\left(\mathbf{V}, \mathbf{E}_{f}\right)$ where

$$
\mathbf{E}_{f}=\left\{(u, v) \in V \times \mathbf{V} \mid c_{f}(u, v)>0\right\}
$$

(1) $(u \rightarrow v) \in \mathrm{E}$: might induce two edges in E_{f}
(2) If $(u \rightarrow v) \in \mathrm{E}, f(u, v)<c(u, v)$ and $(v \rightarrow u) \notin \mathrm{E}(\mathbf{G})$
(3) $\Longrightarrow c_{f}(u, v)=c(u, v)-f(u, v)>0$
(9) \ldots and $(u \rightarrow v) \in E_{f}$. Also,
$c_{f}(v, u)=c(v, u)-f(v, u)=0-(-f(u, v))=f(u, v)$,
since $\boldsymbol{c}(\boldsymbol{v}, \boldsymbol{u})=\mathbf{0}$ as $(\boldsymbol{v} \rightarrow \boldsymbol{u})$ is not an edge of \mathbf{G}.

Residual graph: Definition

Definition

Given $\boldsymbol{f}, \mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ and \boldsymbol{c}, as above, the residual graph (or residual network) of \mathbf{G} and f is the graph $\mathbf{G}_{f}=\left(\mathbf{V}, \mathbf{E}_{f}\right)$ where

$$
\mathbf{E}_{f}=\left\{(u, v) \in V \times \mathbf{V} \mid c_{f}(u, v)>0\right\}
$$

(1) $(u \rightarrow v) \in \mathrm{E}$: might induce two edges in E_{f}
(2) If $(u \rightarrow v) \in \mathrm{E}, f(u, v)<c(u, v)$ and $(v \rightarrow u) \notin \mathrm{E}(\mathbf{G})$
(3) $\Longrightarrow c_{f}(u, v)=c(u, v)-f(u, v)>0$
(9) \ldots and $(u \rightarrow v) \in E_{f}$. Also,
$c_{f}(v, u)=c(v, u)-f(v, u)=0-(-f(u, v))=f(u, v)$,
since $\boldsymbol{c}(\boldsymbol{v}, \boldsymbol{u})=\mathbf{0}$ as $(\boldsymbol{v} \rightarrow \boldsymbol{u})$ is not an edge of \mathbf{G}.
(5) $\Longrightarrow(v \rightarrow u) \in \mathrm{E}_{f}$.

Residual network properties

Since every edge of \mathbf{G} induces at most two edges in \mathbf{G}_{f}, it follows that \mathbf{G}_{f} has at most twice the number of edges of \mathbf{G}; formally, $\left|\mathrm{E}_{f}\right| \leq 2|\mathrm{E}|$.

Lemma
 Given a flow f defined over a network \mathbf{G}, then the residual network G_{f} together with c_{f} form a flow network.

Proof.

One need to verify that $c_{f}(\cdot)$ is always a non-negative function which is true by the definition of E_{f}

Residual network properties

Since every edge of \mathbf{G} induces at most two edges in \mathbf{G}_{f}, it follows that \mathbf{G}_{f} has at most twice the number of edges of \mathbf{G}; formally, $\left|\mathrm{E}_{f}\right| \leq 2|\mathrm{E}|$.

Lemma

Given a flow f defined over a network \mathbf{G}, then the residual network \mathbf{G}_{f} together with \boldsymbol{c}_{f} form a flow network.
\square
One need to verify that $c_{f}(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_{f}

Residual network properties

Since every edge of \mathbf{G} induces at most two edges in \mathbf{G}_{f}, it follows that \mathbf{G}_{f} has at most twice the number of edges of \mathbf{G}; formally, $\left|\mathrm{E}_{f}\right| \leq 2|\mathrm{E}|$.

Lemma

Given a flow f defined over a network \mathbf{G}, then the residual network \mathbf{G}_{f} together with \boldsymbol{c}_{f} form a flow network.

Proof.

One need to verify that $c_{f}(\cdot)$ is always a non-negative function, which is true by the definition of \mathbf{E}_{f}.

Increasing the flow

Lemma

$\mathbf{G}(\mathbf{V}, \boldsymbol{E})$, a flow \boldsymbol{f}, and \boldsymbol{h} a flow in \mathbf{G}_{f}. \mathbf{G}_{f} : residual network of \boldsymbol{f}. Then $f+h$ is a flow in \mathbf{G} and its capacity is $|f+h|=|f|+|h|$.

proof

By definition: $(f+h)(u, v)=f(u, v)+h(u, v)$ and thus $(f+h)(X, Y)=f(X, Y)+\boldsymbol{X}(\boldsymbol{X}, \boldsymbol{Y})$. Verify legal...
Anti symmetry: $(f+$
$-f(v, u)-h(v, u)$
(2) Bounded by capacity:

$$
\begin{aligned}
(f+h)(u, v) & \leq f(u, v)+h(u, v) \leq f(u, v)+c_{f}(u, v) \\
& =f(u, v)+(c(u, v)-f(u, v))=c(u, v)
\end{aligned}
$$

Increasing the flow

Lemma

$\mathbf{G}(\mathbf{V}, \boldsymbol{E})$, a flow \boldsymbol{f}, and \boldsymbol{h} a flow in \mathbf{G}_{f}. \mathbf{G}_{f} : residual network of \boldsymbol{f}. Then $f+h$ is a flow in \mathbf{G} and its capacity is $|f+h|=|f|+|h|$.

proof

By definition: $(f+h)(u, v)=f(u, v)+h(u, v)$ and thus $(f+h)(X, Y)=f(X, Y)+h(X, Y)$. Verify legal...
(1) Anti symmetry: $(f+h)(u, v)=f(u, v)+h(u, v)=$ $-f(v, u)-h(v, u)=-(f+h)(v, u)$.
(2) Bounded by capacity:
$(f+h)(u, v) \leq f(u, v)+h(u, v) \leq f(u, v)+c_{f}(u, v)$

$$
=f(u, v)+(c(u, v)-f(u, v))=c(u, v)
$$

Increasing the flow

Lemma

$\mathbf{G}(\mathbf{V}, \boldsymbol{E})$, a flow \boldsymbol{f}, and h a flow in \mathbf{G}_{f}. \mathbf{G}_{f} : residual network of \boldsymbol{f}. Then $f+h$ is a flow in \mathbf{G} and its capacity is $|f+h|=|f|+|h|$.

proof

By definition: $(f+h)(u, v)=f(u, v)+h(u, v)$ and thus $(f+h)(X, Y)=f(X, Y)+h(X, Y)$. Verify legal...
(1) Anti symmetry: $(f+h)(u, v)=f(u, v)+h(u, v)=$

$$
-f(v, u)-h(v, u)=-(f+h)(v, u)
$$

(2) Bounded by capacity:

$$
\begin{aligned}
(f+h)(u, v) & \leq f(u, v)+h(u, v) \leq f(u, v)+c_{f}(u, v) \\
& =f(u, v)+(c(u, v)-f(u, v))=c(u, v) .
\end{aligned}
$$

Increasing the flow - proof continued

proof continued

(1) For $u \in V-s-t$ we have

$$
(f+h)(u, \mathrm{~V})=f(u, \mathrm{~V})+h(u, \mathrm{~V})=0+0=0 \text { and as }
$$ such $f+h$ comply with the conservation of flow requirement.

(2) Total flow is

$$
|f+h|=(f+h)(s, \mathbf{V})=f(s, \mathbf{V})+h(s, \mathbf{V})=|f|+|h|
$$

Increasing the flow - proof continued

proof continued

(1) For $u \in V-s-t$ we have

$$
(f+h)(u, \mathrm{~V})=f(u, \mathrm{~V})+h(u, \mathrm{~V})=0+0=0 \text { and as }
$$ such $f+h$ comply with the conservation of flow requirement.

(2) Total flow is

$$
|f+h|=(f+h)(s, \mathbf{V})=f(s, \mathbf{V})+h(s, \mathbf{V})=|f|+|h|
$$

Augmenting path

Graph

Residual graph

Definition

For \mathbf{G} and a flow \boldsymbol{f}, a path $\boldsymbol{\pi}$ in \mathbf{G}_{f} between s and t is an augmenting path.

More on augmenting paths

(1) π : augmenting path.
(2) All edges of $\boldsymbol{\pi}$ have positive capacity in \mathbf{G}_{f}.

- ... otherwise not in E_{f}.
- f, π : can improve f by pushing positive flow along π.

More on augmenting paths

(1) π : augmenting path.
(2) All edges of $\boldsymbol{\pi}$ have positive capacity in \mathbf{G}_{f}.
(3) ... otherwise not in \mathbf{E}_{f}.

- f, π : can improve f by pushing positive flow along π.

More on augmenting paths

(1) π : augmenting path.
(2) All edges of $\boldsymbol{\pi}$ have positive capacity in \mathbf{G}_{f}.
(3)... otherwise not in \mathbf{E}_{f}.
(f, π : can improve f by pushing positive flow along π.

Residual capacity

Definition

$\boldsymbol{\pi}$: augmenting path of f.
$c_{f}(\pi)$: maximum amount of flow can push on π.
$c_{f}(\pi)$ is residual capacity of π.
Formally,

$$
c_{f}(\pi)=\min _{(u \rightarrow v) \in \pi} c_{f}(u, v)
$$

An example of an augmenting path

(C) Augmenting path

(B) Residual network

Flow along augmenting path

$$
f_{\pi}(u, v)=\left\{\begin{array}{cl}
c_{f}(\pi) & \text { if }(u \rightarrow v) \\
\text { is in } \pi \\
-c_{f}(\pi) & \text { if }(v \rightarrow u) \text { is in } \pi \\
0 & \text { otherwise }
\end{array}\right.
$$

Increase flow by augmenting flow

Lemma

$\boldsymbol{\pi}$: augmenting path. \boldsymbol{f}_{π} is flow in \mathbf{G}_{f} and $\left|f_{\pi}\right|=c_{f}(\boldsymbol{\pi})>\mathbf{0}$.

Get bigger flow.

Lemma
 Let \boldsymbol{f} be a flow, and let π be an augmenting path for f. Then $f+f_{\pi}$ is a "better" flow. Namely, $\left|f+f_{\pi}\right|=|f|+\left|f_{\pi}\right|>|f|$

Increase flow by augmenting flow

Lemma

$\boldsymbol{\pi}$: augmenting path. \boldsymbol{f}_{π} is flow in \mathbf{G}_{f} and $\left|f_{\pi}\right|=c_{f}(\boldsymbol{\pi})>\mathbf{0}$.
Get bigger flow...

Lemma

Let \boldsymbol{f} be a flow, and let $\boldsymbol{\pi}$ be an augmenting path for \boldsymbol{f}. Then $f+f_{\pi}$ is a "better" flow. Namely, $\left|f+f_{\pi}\right|=|f|+\left|f_{\pi}\right|>|f|$.

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved?

(3) s is disconnected from t in this residual network.
(3) unable to push more flow.
(6) Found local maximum!
(0) Is that a global maximum?
(1 l this the maximum flow?

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved? Consider residual flow...

(3) s is disconnected from t in this residual network.
(9) unable to push more flow.
(6) Found local maximum!
© Is that a global maximum?
(1) Is this the maximum flow?

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved? Consider residual flow...

(3) s is disconnected from t in this residual network.
(4) unable to push more flow.
(3) Found local maximum!
(6) Is that a global maximum?
(1) Is this the maximum flow?

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved? Consider residual flow...

(3) s is disconnected from t in this residual network.
(4) unable to push more flow.
(5) Found local maximum!
(© Is that a global maximum?
(1) Is this the maximum flow?

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved? Consider residual flow...

(3) s is disconnected from t in this residual network.
(4) unable to push more flow.
(5) Found local maximum!
(6) Is that a global maximum?
(7) Is this the maximum flow?

Flowing into the wall

(1) Namely, $f+f_{\pi}$ is flow with larger value than f.
(2) Can this flow be improved? Consider residual flow...

(3) s is disconnected from t in this residual network.
(4) unable to push more flow.
(5) Found local maximum!
(c) Is that a global maximum?
(1) Is this the maximum flow?

The Ford-Fulkerson method

```
algFordFulkerson(G, c)
    begin
        f}\leftarrow\mathrm{ Zero flow on G
        while (Gf has augmenting
                        path p) do
        (* Recompute G}\mp@subsup{\mathbf{G}}{f}{}\mathrm{ for
                        this check *)
                f\leftarrowf+f
        return f
    end
```


Part III

On maximum flows

Some definitions

Definition

($\boldsymbol{S}, \mathbf{T}$): directed cut in flow network $\mathbf{G}=(\mathbf{V}, \boldsymbol{E})$.
A partition of \mathbf{V} into S and $T=V \backslash S$, such that $s \in S$ and $t \in T$.

Some definitions

Definition

($\boldsymbol{S}, \mathbf{T}$): directed cut in flow network $\mathbf{G}=(\mathbf{V}, \boldsymbol{E})$.
A partition of \mathbf{V} into S and $T=V \backslash S$, such that $s \in S$ and $t \in T$.

Definition

The net flow of f across a cut (S, T) is $f(S, T)=\sum_{s \in S, t \in T} f(s, t)$.

Some definitions

Definition

(S, T) : directed cut in flow network $\mathbf{G}=(\mathbf{V}, \boldsymbol{E})$.
A partition of \mathbf{V} into S and $T=V \backslash S$, such that $s \in S$ and $t \in T$.

Definition

The net flow of f across a cut (S, T) is $f(S, T)=\sum_{s \in S, t \in T} f(s, t)$.

Definition

The capacity of (S, T) is $c(S, T)=\sum_{s \in S, t \in T} c(s, t)$.

Some definitions

Definition

(S, T) : directed cut in flow network $\mathbf{G}=(\mathbf{V}, \boldsymbol{E})$.
A partition of \mathbf{V} into S and $T=V \backslash S$, such that $s \in S$ and $t \in T$.

Definition

The net flow of f across a cut (S, T) is $f(S, T)=\sum_{s \in S, t \in T} f(s, t)$.

Definition

The capacity of (S, T) is $c(S, T)=\sum_{s \in S, t \in T} c(s, t)$.

Definition

The minimum cut is the cut in \mathbf{G} with the minimum capacity.

Flow across cut is the whole flow

Lemma

$$
\mathbf{G}, f, s, t . \quad(S, T): \text { cut of } \mathbf{G} .
$$

Then $f(S, T)=|f|$.

Proof.

$$
\begin{aligned}
f(S, T) & =f(S, \mathbf{V})-f(S, S)=f(S, \mathbf{V}) \\
& =f(s, \mathbf{V})+f(S-s, \mathbf{V})=f(s, \mathbf{V}) \\
& =|f|
\end{aligned}
$$

since $T=\mathrm{V} \backslash S$, and $f(S-s, \mathbf{V})=\sum_{u \in S-s} f(u, \mathrm{~V})=0$ (note that \boldsymbol{u} can not be \boldsymbol{t} as $\boldsymbol{t} \in \boldsymbol{T}$).

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut (S, T) in \mathbf{G}.

Proof.

Consider a cut (S, T). We have $|f|=f(S, T)=$ $\sum_{u \in S, v \in T} f(u, v) \leq \sum_{u \in S, v \in T} c(u, v)=c(S, T)$.

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly.

Maximum flow is exactly the value of the minimum cut.

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If \boldsymbol{f} is a flow in a flow network $\mathbf{G}=(\mathbf{V}, \boldsymbol{E})$ with source \boldsymbol{s} and $\operatorname{sink} \boldsymbol{t}$, then the following conditions are equivalent:
(A) f is a maximum flow in \mathbf{G}.
(B) The residual network \mathbf{G}_{f} contains no augmenting paths.
(C) $|f|=c(S, T)$ for some cut (S, T) of \mathbf{G}. And (S, T) is a minimum cut in \mathbf{G}.

Proof: $(A) \Rightarrow(B)$:

Proof.

$(A) \Rightarrow(B)$: By contradiction. If there was an augmenting path p then $c_{f}(p)>0$, and we can generate a new flow $f+f_{p}$, such that $\left|f+f_{p}\right|=|f|+c_{f}(p)>|f|$. A contradiction as f is a maximum flow.

Proof: $(\mathrm{B}) \Rightarrow(\mathrm{C})$:

Proof.

s and t are disconnected in \mathbf{G}_{f}. Set
$S=\left\{v \mid\right.$ Exists a path between s and v in $\left.\mathbf{G}_{f}\right\} \quad T=\mathbf{V} \backslash S$. Have: $s \in S, t \in T, \forall u \in S$ and $\forall v \in T: f(u, v)=c(u, v)$ By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(u \rightarrow v) \in \mathrm{E}_{f} \Longrightarrow v$ would be reachable from s in G_{f}
Contradiction.
$\Longrightarrow|\boldsymbol{f}|=\boldsymbol{f}(S, T)=c(S, T)$.
(S, T) must be mincut. Otherwise $\exists\left(S^{\prime}, T^{\prime}\right)$:
$c\left(S^{\prime}, T^{\prime}\right)<c(S, T)=f(S, T)=|f|$,
But... $|f|=f\left(S^{\prime}, T^{\prime}\right) \leq c\left(S^{\prime}, T^{\prime}\right)$. A contradiction.

Proof: $(\mathrm{B}) \Rightarrow(\mathrm{C})$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.

Set

$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, t \in T, \forall u \in S$ and $\forall v \in T: f(u, v)=c(u, v)$ By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(u \rightarrow v) \in E_{f} \Longrightarrow v$ would be reachable from s in G_{f}
Contradiction.
$\Longrightarrow|f|=f(S, T)=c(S, T)$
(S, T) must be mincut. Otherwise $\exists\left(S^{\prime}, T^{\prime}\right)$
$c\left(S^{\prime}, T^{\prime}\right)<c(S, T)=f(S, T)=|f|$,
But... $|f|=f\left(S^{\prime}, T^{\prime}\right) \leq c\left(S^{\prime}, T^{\prime}\right)$. A contradiction.

Proof: $(B) \Rightarrow(C)$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.
Set
$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, \boldsymbol{t} \in \boldsymbol{T}, \forall \boldsymbol{u} \in S$ and $\forall v \in \boldsymbol{T}: f(u, v)=c(u, v)$. By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(u \rightarrow v) \in \mathbf{E}_{f}$ $\Longrightarrow v$ would be reachable from s in G_{f}

Proof: $(B) \Rightarrow(C)$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.
Set
$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, \boldsymbol{t} \in \boldsymbol{T}, \forall \boldsymbol{u} \in S$ and $\forall v \in \boldsymbol{T}: f(u, v)=c(u, v)$. By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathbf{E}_{f} \Longrightarrow \boldsymbol{v}$ would be reachable from s in \mathbf{G}_{f}. Contradiction.

Proof: $(B) \Rightarrow(C)$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.
Set
$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, \boldsymbol{t} \in \boldsymbol{T}, \forall \boldsymbol{u} \in S$ and $\forall v \in \boldsymbol{T}: f(u, v)=c(u, v)$. By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathbf{E}_{f} \Longrightarrow \boldsymbol{v}$ would be reachable from s in \mathbf{G}_{f}. Contradiction.

$$
\Longrightarrow|f|=f(S, T)=c(S, T) .
$$

Proof: $(B) \Rightarrow(C)$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.
Set
$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, \boldsymbol{t} \in \boldsymbol{T}, \forall \boldsymbol{u} \in S$ and $\forall v \in \boldsymbol{T}: f(u, v)=c(u, v)$. By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(u \rightarrow v) \in \mathbf{E}_{f} \Longrightarrow v$ would be reachable from s in \mathbf{G}_{f}.
Contradiction.
$\Longrightarrow|f|=f(S, T)=c(S, T)$.
(S, T) must be mincut. Otherwise $\exists\left(S^{\prime}, T^{\prime}\right)$: $c\left(S^{\prime}, T^{\prime}\right)<c(S, T)=f(S, T)=|f|$,

Proof: $(B) \Rightarrow(C)$:

Proof.

s and t are disconnected in \mathbf{G}_{f}.
Set
$\boldsymbol{S}=\left\{\boldsymbol{v} \mid\right.$ Exists a path between s and \boldsymbol{v} in $\left.\mathbf{G}_{f}\right\} \quad \boldsymbol{T}=\mathbf{V} \backslash \boldsymbol{S}$. Have: $s \in S, t \in T, \forall u \in S$ and $\forall v \in T: f(u, v)=c(u, v)$. By contradiction: $\exists u \in S, v \in T$ s.t. $f(u, v)<c(u, v) \Longrightarrow$ $(\boldsymbol{u} \rightarrow \boldsymbol{v}) \in \mathbf{E}_{f} \Longrightarrow \boldsymbol{v}$ would be reachable from s in \mathbf{G}_{f}.
Contradiction.
$\Longrightarrow|f|=f(S, T)=c(S, T)$.
(S, T) must be mincut. Otherwise $\exists\left(S^{\prime}, T^{\prime}\right)$:
$c\left(S^{\prime}, T^{\prime}\right)<c(S, T)=f(S, T)=|f|$, But... $|f|=f\left(S^{\prime}, T^{\prime}\right) \leq c\left(S^{\prime}, T^{\prime}\right)$. A contradiction.

Proof: $(C) \Rightarrow(A)$:

Proof.

Well, for any cut $(\boldsymbol{U}, \mathbf{V})$, we know that $|\boldsymbol{f}| \leq \boldsymbol{c}(\boldsymbol{U}, \mathbf{V})$. This implies that if $|f|=c(S, T)$ then the flow can not be any larger, and it is thus a maximum flow.

Implications

(1) The max-flow min-cut theorem \Longrightarrow if algFordFulkerson terminates, then computed max flow.
(2) Does not imply algFordFulkerson always terminates.
(3) algFordFulkerson might not terminate.

Part IV

Non-termination of Ford-Fulkerson

Ford-Fulkerson runs in vain

(1) M : large positive integer.
(2) $\alpha=(\sqrt{5}-1) / 2 \approx 0.618$.
(3) Maximum flow in this network is: $2 M+1$.

Ford-Fulkerson runs in vain

(1) M : large positive integer.
(2) $\alpha=(\sqrt{5}-1) / 2 \approx 0.618$.
(3) $\alpha<1$,
(4) $1-\alpha<\alpha$.
(3) Maximum flow in this network is: $2 M+1$.

Ford-Fulkerson runs in vain

(1) M : large positive integer.
(2) $\alpha=(\sqrt{5}-1) / 2 \approx 0.618$.
(3) $\alpha<1$,
(4) $1-\alpha<\alpha$.
(5) Maximum flow in this network is: $2 M+1$.

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\alpha^{2}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\alpha^{2}=\left(\frac{\sqrt{5}-1}{2}\right)^{2}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\alpha^{2}=\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\alpha^{2}=\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}=\frac{1}{4}(5-2 \sqrt{5}+1)
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\begin{aligned}
\alpha^{2} & =\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}=\frac{1}{4}(5-2 \sqrt{5}+1) \\
& =1+\frac{1}{4}(2-2 \sqrt{5})
\end{aligned}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\begin{aligned}
\alpha^{2} & =\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}=\frac{1}{4}(5-2 \sqrt{5}+1) \\
& =1+\frac{1}{4}(2-2 \sqrt{5}) \\
& =1+\frac{1}{2}(1-\sqrt{5})
\end{aligned}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\begin{aligned}
\alpha^{2} & =\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}=\frac{1}{4}(5-2 \sqrt{5}+1) \\
& =1+\frac{1}{4}(2-2 \sqrt{5}) \\
& =1+\frac{1}{2}(1-\sqrt{5}) \\
& =1-\frac{\sqrt{5}-1}{2}
\end{aligned}
$$

Some algebra...

For $\alpha=\frac{\sqrt{5}-1}{2}$:

$$
\begin{aligned}
\alpha^{2} & =\left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{1}{4}(\sqrt{5}-1)^{2}=\frac{1}{4}(5-2 \sqrt{5}+1) \\
& =1+\frac{1}{4}(2-2 \sqrt{5}) \\
& =1+\frac{1}{2}(1-\sqrt{5}) \\
& =1-\frac{\sqrt{5}-1}{2} \\
& =1-\alpha .
\end{aligned}
$$

Some algebra...

Claim

Given: $\alpha=(\sqrt{5}-1) / 2$ and $\alpha^{2}=1-\alpha$.

$$
\Longrightarrow \forall i \quad \alpha^{i}-\alpha^{i+1}=\alpha^{i+2}
$$

Proof.

$$
\alpha^{i}-\alpha^{i+1}=\alpha^{i}(1-\alpha)=\alpha^{i} \alpha^{2}=\alpha^{i+2}
$$

The network

Let it flow...

\#	Augment. path π	c_{π}	New residual network
0.			
1.			

Let it flow...

\#	Augment. path π	c_{π}	New residual network
0.		1	
1.			

Let it flow...

\#	Augment. path π	c_{π}	New residual network
0.		1	(1) ${ }^{1}$ (2) $\underbrace{1}$ (2) 4^{α} (\times
1.			

Let it flow...

\#	Augment. path π	c_{π}	New residual network
0.		1	(1) ${ }^{1}$ (2) $\underbrace{1}$ (2) 4^{α} (\times
1.		α	

Let it flow...

$\#$	Augment. path π	c_{π}	New residual network
0.			

Let it flow II

\#	Augment. path π	c_{π}	New residual network
1.		α	
2.			

Let it flow II

\#	Augment. path π	c_{π}	New residual network
1.		α	$(\underset{\sim}{\overbrace{1-\alpha}^{\alpha}} \underset{\alpha}{\alpha^{2}}(2) \stackrel{1-\alpha}{\alpha}(3) \xrightarrow{\alpha}(x)$
2.		α	

Let it flow II

$\#$	Augment. path π	c_{π}	New residual network
1.	α		

Let it flow II

Let it flow III

Let it flow III

moves	Residual network after
0	
moves $0,(1,2,3,4)$	
moves $0,(1,2,3,4)^{2}$	
$0 .(1,2,3,4)^{i}$	

Namely, the algorithm never terminates.

Notes

Notes

Notes

Notes

