
CS 573: Algorithms, Fall 2014

Approximation Algorithms
Lecture 7
September 16, 2014
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Today’s Lecture

Don’t give up on NP-Hard problems:
(A) Faster exponential time algorithms: nO(n), 3n , 2n , etc.
(B) Fixed parameter tractable.
(C) Find an approximate solution.
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Part I

Greedy algorithms and approximation
algorithms
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Greedy algorithms

1 greedy algorithms: do locally the right thing...
2 ...and they suck.

VertexCoverMin
Instance: A graph G.
Question: Return the smallest subset S ⊆ V (G), s.t. S
touches all the edges of G.

3 GreedyVertexCover:
pick vertex with highest
degree, remove, repeat.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37



Greedy algorithms

1 greedy algorithms: do locally the right thing...
2 ...and they suck.

VertexCoverMin
Instance: A graph G.
Question: Return the smallest subset S ⊆ V (G), s.t. S
touches all the edges of G.

3 GreedyVertexCover:
pick vertex with highest
degree, remove, repeat.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37



Greedy algorithms

1 greedy algorithms: do locally the right thing...
2 ...and they suck.

VertexCoverMin
Instance: A graph G.
Question: Return the smallest subset S ⊆ V (G), s.t. S
touches all the edges of G.

3 GreedyVertexCover:
pick vertex with highest
degree, remove, repeat.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37



Greedy algorithms

1 greedy algorithms: do locally the right thing...
2 ...and they suck.

VertexCoverMin
Instance: A graph G.
Question: Return the smallest subset S ⊆ V (G), s.t. S
touches all the edges of G.

3 GreedyVertexCover:
pick vertex with highest
degree, remove, repeat.

Sariel (UIUC) CS573 4 Fall 2014 4 / 37



Greedy algorithms
GreedyVertexCover in action...
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Greedy algorithms
GreedyVertexCover in action...

Observation
GreedyVertexCover returns 4 vertices, but opt is 3 vertices.
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Good enough...

Definition
In a minimization optimization problem, one looks for a valid
solution that minimizes a certain target function.

1 VertexCoverMin: Opt(G) = minS⊆V (G),S cover of G |S|.
2 VertexCover(G): set realizing sol.
3 Opt(G): value of the target function for the optimal solution.
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Good enough...

Definition
In a minimization optimization problem, one looks for a valid
solution that minimizes a certain target function.

1 VertexCoverMin: Opt(G) = minS⊆V (G),S cover of G |S|.
2 VertexCover(G): set realizing sol.
3 Opt(G): value of the target function for the optimal solution.

Definition
Alg is α-approximation algorithm for problem Min, achieving an
approximation α ≥ 1, if for all inputs G, we have:

Alg(G)
Opt(G)

≤ α.
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Back to GreedyVertexCover

1 GreedyVertexCover:
pick vertex with highest
degree, remove, repeat.

2 Returns 4, but opt is 3!

3 Can not be better than a 4/3-approximation algorithm.
4 Actually it is much worse!
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How bad is GreedyVertexCover?

Build a bipartite graph.

Let the top partite set be of size n.
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How bad is GreedyVertexCover?

Build a bipartite graph.

In the bottom set add bn/2c vertices of degree 2, such that each
edge goes to a different vertex above.
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How bad is GreedyVertexCover?

Build a bipartite graph.

Repeatedly add bn/ic bottom vertices of degree i, for
i = 2, . . . , n.
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How bad is GreedyVertexCover?

Build a bipartite graph.

Bottom row has ∑n
i=2bn/ic = Θ(n log n) vertices.
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How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

Sariel (UIUC) CS573 9 Fall 2014 9 / 37



How bad is GreedyVertexCover?

1 Bottom row taken by Greedy.
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How bad is GreedyVertexCover?

1 Bottom row taken by Greedy.
2 Top row was a smaller

solution.
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How bad is GreedyVertexCover?

1 Bottom row taken by Greedy.
2 Top row was a smaller

solution.

Lemma
The algorithm
GreedyVertexCover is Ω(log n)
approximation to the optimal
solution to VertexCoverMin.

See notes for details!
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Greedy Vertex Cover

Theorem
The greedy algorithm for VertexCover achieves Θ(log n)
approximation, where n (resp. m) is the number of vertices (resp.,
edges) in the graph. Running time is O(mn2).

Proof
Lower bound follows from lemma.
Upper bound follows from analysis of greedy algorithm for Set
Cover, which will be done shortly.
As for the running time, each iteration of the algorithm takes
O(mn) time, and there are at most n iterations.
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Two for the price of one

ApproxVertexCover(G):
S ← ∅
while E(G) 6= ∅ do

uv ← any edge of G
S ← S ∪ {u, v}
Remove u, v from V(G)
Remove all edges involving u or v from E(G)

return S

Theorem
ApproxVertexCover is a 2-approximation algorithm for
VertexCoverMin that runs in O(n2) time.

Proof...
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Two for the price of one - example
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Part II

Fixed parameter tractability,
approximation, and fast exponential

time algorithms (to say nothing of the
dog)
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What if the vertex cover is small?

1 G = (V, E) with n vertices
2 K ← Approximate VertexCoverMin up to a factor of two.
3 Any vertex cover of G is of size ≥ K/2.
4 Naively compute optimal in O

(
nK+2

)
time.
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Induced subgraph

Definition
NG(v): Neighborhood of v
– set of vertices of G adjacent
to v.

v

NG(v)
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NG(v)

Definition
Let G = (V, E) be a graph.
For a subset S ⊆ V, let GS be
the induced subgraph over
S.
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Exact fixed parameter tractable algorithm
Fixed parameter tractable algorithm for VertexCoverMin.

Computes minimum vertex cover for the induced graph GX :
fpVCI (X, β)

// β: size of VC computed so far.
if X = ∅ or GX has no edges then return β
e← any edge uv of GX .
β1 = fpVCI

(
X \ {u, v} , β + 2

)
β2 = fpVCI

(
X \

(
{u} ∪NGX (v)

)
, β + |NGX (v)|

)
β3 = fpVCI

(
X \

(
{v} ∪NGX (u)

)
, β + |NGX (u)|

)
return min(β1, β2, β3).

algFPVertexCover (G =(V, E))
return fpVCI(V, 0)
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Depth of recursion

Lemma
The algorithm algFPVertexCover returns the optimal solution to
the given instance of VertexCoverMin.

Proof...

u v
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Depth of recursion II

Lemma
The depth of the recursion of algFPVertexCover(G) is at most α,
where α is the minimum size vertex cover in G.

Proof.
1 When the algorithm takes both u and v - one of them in opt.

Can happen at most α times.
2 Algorithm picks NGX (v) (i.e., β2). Conceptually add v to the

vertex cover being computed.
3 Do the same thing for the case of β3.
4 Every such call add one element of the opt to conceptual set

cover. Depth of recursion is ≤ α.
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Vertex Cover
Exact fixed parameter tractable algorithm

Theorem
G: graph with n vertices. Min vertex cover of size α. Then,
algFPVertexCover returns opt. vertex cover.
Running time is O(3αn2).

Proof:
1 By lemma, recursion tree has depth α.
2 Rec-tree contains ≤ 2 · 3α nodes.
3 Each node requires O(n2) work.

Algorithms with running time O(ncf (α)), where α is some
parameter that depends on the problem are fixed parameter
tractable.

Sariel (UIUC) CS573 19 Fall 2014 19 / 37



Vertex Cover
Exact fixed parameter tractable algorithm

Theorem
G: graph with n vertices. Min vertex cover of size α. Then,
algFPVertexCover returns opt. vertex cover.
Running time is O(3αn2).

Proof:
1 By lemma, recursion tree has depth α.
2 Rec-tree contains ≤ 2 · 3α nodes.
3 Each node requires O(n2) work.

Algorithms with running time O(ncf (α)), where α is some
parameter that depends on the problem are fixed parameter
tractable.

Sariel (UIUC) CS573 19 Fall 2014 19 / 37



Part III

Traveling Salesperson Problem
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TSP

TSP-Min
Instance: G = (V , E) a complete graph, and ω(e) a cost
function on edges of G.
Question: The cheapest tour that visits all the vertices of G
exactly once.

Solved exactly naively in ≈ n! time.
Using DP, solvable in O(n22n) time.
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TSP Hardness

Theorem
TSP-Min can not be approximated within any factor unless
NP = P.

Proof.
1 Reduction from Hamiltonian Cycle into TSP.
2 G = (V, E): instance of Hamiltonian cycle.
3 H: Complete graph over V.

∀u, v ∈ V wH(uv) =

1 uv ∈ E
2 otherwise.

4 ∃ tour of price n in H ⇐⇒ ∃ Hamiltonian cycle in G.
5 No Hamiltonian cycle =⇒ TSP price at least n + 1.
6 But... replace 2 by cn, for c an arbitrary number
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TSP Hardness - proof continued

Proof.
1 Price of all tours are either:

(i) n (only if ∃ Hamiltonian cycle in G),
(ii) larger than cn + 1 (actually, ≥ cn + (n − 1)).

2 Suppose you had a poly time c-approximation to TSP-Min.
3 Run it on H:

(i) If returned value ≥ cn + 1 =⇒ no Ham Cycle
since (cn + 1)/c > n

(ii) If returned value ≤ cn =⇒ Ham Cycle since
OPT ≤ cn < cn + 1

4 c-approximation algorithm to TSP =⇒ poly-time algorithm
for NP-Complete problem. Possible only if P = NP.
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TSP with the triangle inequality
Because it is not that bad after all.

TSP46=-Min
Instance: G = (V , E) is a complete graph. There is also a
cost function ω(·) defined over the edges of G, that complies
with the triangle inequality.
Question: The cheapest tour that visits all the vertices of G
exactly once.

triangle inequality : ω(·) if

∀u, v, w ∈ V(G) , ω(u, v) ≤ ω(u, w) + ω(w, v) .

Shortcutting
σ: a path from s to t in G =⇒ ω(st) ≤ ω(σ).
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TSP with the triangle inequality
Continued...

Definition
Cycle in G is Eulerian if it visits every edge of G exactly once.

Assume you already seen the following:

Lemma
A graph G has a cycle that visits every edge of G exactly once (i.e.,
an Eulerian cycle) if and only if G is connected, and all the vertices
have even degree. Such a cycle can be computed in O(n + m)
time, where n and m are the number of vertices and edges of G,
respectively.
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TSP with the triangle inequality
Continued...

1 Copt optimal TSP tour in G.
2 Observation:

ω(Copt) ≥ weight
(

cheapest spanning graph of G
)

.
3 MST: cheapest spanning graph of G.

ω(Copt) ≥ ω(MST(G))
4 O(n log n + m) = O(n2): time to compute MST.

n = |V(G)|, m =
(

n
2

)
.
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TSP with the triangle inequality
2-approximation

1 T ← MST(G)
2 H← duplicate very edge of T .
3 H has an Eulerian tour.
4 C: Eulerian cycle in H .
5 ω(C) = ω(H ) = 2ω(T) = 2ω(MST(G)) ≤ 2ω(Copt).
6 π: Shortcut C so visit every vertex once.
7 ω(π) ≤ ω(C)
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TSP with the triangle inequality
2-approximation algorithm in figures

(a) (b) (c) (d)
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TSP with the triangle inequality
2-approximation algorithm in figures

s

w

u

vC

(a) (b) (c) (d)
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TSP with the triangle inequality
2-approximation algorithm in figures

s

w

u

vC

s

w

u

vC

D

(a) (b) (c) (d)

Euler Tour: vuvwvsv
First occurrences: vuvwvsv
Shortcut String: vuwsv
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TSP with the triangle inequality
2-approximation - result

Theorem
G: Instance of TSP46=-Min.
Copt: min cost TSP tour of G.
=⇒ Compute a tour of G of length ≤ 2ω(Copt).

Running time of the algorithm is O(n2).

G: n vertices, cost function ω(·) on the edges that comply with the
triangle inequality.
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TSP with the triangle inequality
3/2-approximation

Definition
G = (V , E), a subset M ⊆ E is a matching if no pair of edges of
M share endpoints.
A perfect matching is a matching that covers all the vertices of G.
w: weight function on the edges. Min-weight perfect matching ,
is the minimum weight matching among all perfect matching, where

ω(M ) =
∑

e∈M
ω(e) .
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TSP with the triangle inequality
3/2-approximation

The following is known:

Theorem
Given a graph G and weights on the edges, one can compute the
min-weight perfect matching of G in polynomial time.
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Min weight perfect matching vs. TSP

Lemma
G = (V, E): complete graph.
S ⊆ V: even size.
ω(·): a weight function over E.
=⇒ min-weight perfect matching in GS is ≤ ω(TSP(G))/2.
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A more perfect tree?

1 How to make the tree Eulerian?
4

1

3
5

6

7

2

2 Pesky odd degree vertices must die!
3 Number of odd degree vertices in a graph is even!
4 Compute min-weight matching on odd vertices, and add to

MST.
5 H = MST + min− weight−matching is Eulerian.
6 Weight of resulting cycle in H ≤ (3/2)ω(TSP).
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Even number of odd degree vertices

Lemma
The number of odd degree vertices in any graph G′ is even.

Proof:
µ = ∑

v∈V (G′) d(v) = 2|E(G′)| and thus even.
U = ∑

v∈V (G′),d(v) is even d(v) even too.
Thus,

α =
∑

v∈V ,d(v) is odd
d(v) = µ−U = even number,

since µ and U are both even.
Number of elements in sum of all odd numbers must be even, since
the total sum is even.
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3/2-approximation algorithm for TSP
Animated!
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3/2-approximation algorithm for TSP
The result

Theorem
Given an instance of TSP with the triangle inequality, one can
compute in polynomial time, a (3/2)-approximation to the optimal
TSP.
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Biographical Notes

The 3/2-approximation for TSP with the triangle inequality is due to
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