CS 573: Algorithms, Fall 2014

Approximation Algorithms

Lecture 7 September 16, 2014

Today's Lecture

Don't give up on **NP-Hard** problems:

- (A) Faster exponential time algorithms: $n^{O(n)}$, 3^n , 2^n , etc.
- (B) Fixed parameter tractable.
- (C) Find an approximate solution.

Part I

Greedy algorithms and approximation algorithms

greedy algorithms: do locally the right thing...

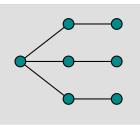
2 ...and they suck.

VertexCoverMin

Instance: A graph **G**. **Question:** Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of **G**.

GreedyVertexCover:

pick vertex with highest degree, remove, repeat.



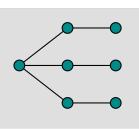
greedy algorithms: do locally the right thing...

…and they suck.

VertexCoverMin

Instance: A graph **G**. **Question**: Return the smallest subset $S \subseteq V(\mathbf{G})$, s.t. S touches all the edges of **G**.

GreedyVertexCover: pick vertex with highes degree remove repeat



greedy algorithms: do locally the right thing...

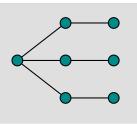
…and they suck.

VertexCoverMin

Instance: A graph **G**. **Question**: Return the smallest subset $S \subseteq V(\mathbf{G})$, s.t. S touches all the edges of **G**.

GreedyVertexCover:

pick vertex with highest degree, remove, repeat.



greedy algorithms: do locally the right thing...

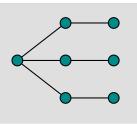
…and they suck.

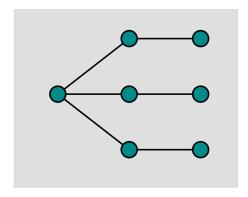
VertexCoverMin

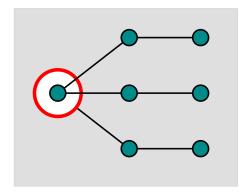
Instance: A graph **G**. **Question**: Return the smallest subset $S \subseteq V(\mathbf{G})$, s.t. S touches all the edges of **G**.

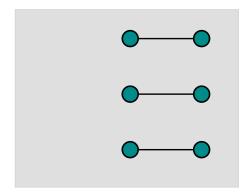
GreedyVertexCover:

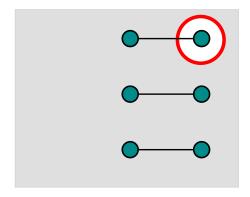
pick vertex with highest degree, remove, repeat.

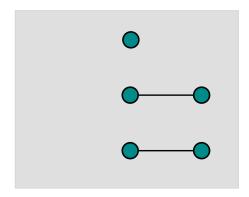


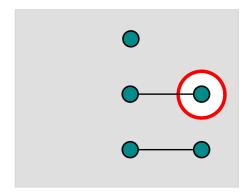


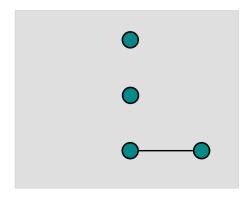


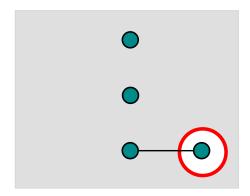


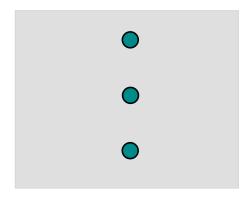


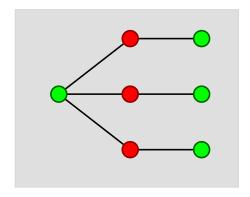


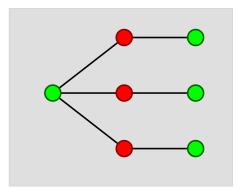












Observation

GreedyVertexCover returns 4 vertices, but opt is 3 vertices.

Good enough...

Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

- VertexCoverMin: $Opt(\mathbf{G}) = \min_{S \subseteq V(\mathbf{G}), S \text{ cover of } G} |S|.$
- VertexCover(G): set realizing sol.
- \bigcirc **Opt**(**G**): value of the target function for the optimal solution.

Good enough...

Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

- VertexCoverMin: $Opt(\mathbf{G}) = \min_{S \subseteq V(\mathbf{G}), S \text{ cover of } G} |S|.$
- VertexCover(G): set realizing sol.
- **3** Opt(G): value of the target function for the optimal solution.

Good enough...

Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

- VertexCoverMin: $Opt(\mathbf{G}) = \min_{S \subseteq V(\mathbf{G}), S \text{ cover of } G} |S|.$
- VertexCover(G): set realizing sol.
- **Opt(G)**: value of the target function for the optimal solution.

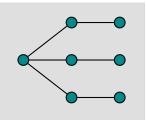
Definition

Alg is α -approximation algorithm for problem Min, achieving an approximation $\alpha \ge 1$, if for all inputs **G**, we have:

 $\frac{\mathsf{Alg}(\mathsf{G})}{\mathrm{Opt}(\mathsf{G})} \leq \alpha.$

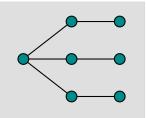
 GreedyVertexCover: pick vertex with highest degree, remove, repeat.

Returns 4, but opt is 3!



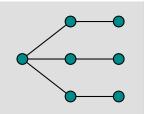
- 3 Can **not** be better than a 4/3-approximation algorithm.
- Actually it is much worse!

- GreedyVertexCover: pick vertex with highest degree, remove, repeat.
- Returns 4, but opt is 3!



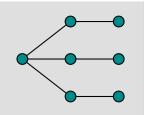
Can **not** be better than a 4/3-approximation algorithm.
Actually it is much worse!

- GreedyVertexCover: pick vertex with highest degree, remove, repeat.
- Returns 4, but opt is 3!



- Can **not** be better than a 4/3-approximation algorithm.
- Actually it is much worse!

- GreedyVertexCover: pick vertex with highest degree, remove, repeat.
- Returns 4, but opt is 3!



- San not be better than a 4/3-approximation algorithm.
- Actually it is much worse!

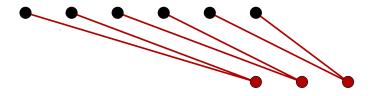
Build a bipartite graph.

Let the top partite set be of size n.

$\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$

Build a bipartite graph.

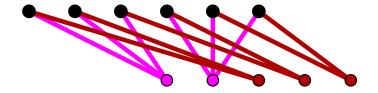
In the bottom set add $\lfloor n/2 \rfloor$ vertices of degree 2, such that each edge goes to a different vertex above.



8

Build a bipartite graph.

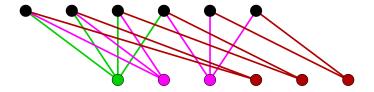
Repeatedly add $\lfloor n/i \rfloor$ bottom vertices of degree i, for $i=2,\ldots,n.$



Sariel (UIUC)

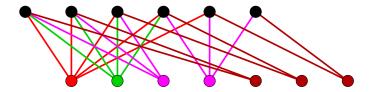
Build a bipartite graph.

Repeatedly add $\lfloor n/i \rfloor$ bottom vertices of degree i, for $i=2,\ldots,n.$



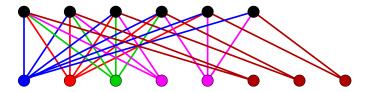
Build a bipartite graph.

Repeatedly add $\lfloor n/i \rfloor$ bottom vertices of degree i, for $i=2,\ldots,n.$



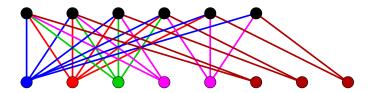
Build a bipartite graph.

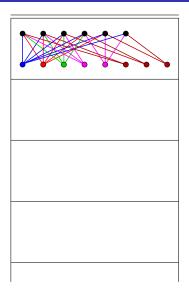
Repeatedly add $\lfloor n/i \rfloor$ bottom vertices of degree i, for $i=2,\ldots,n.$

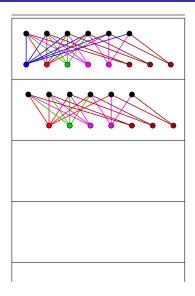


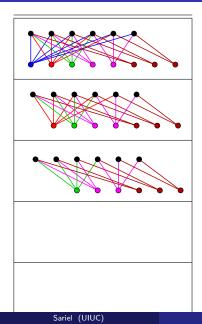
Build a bipartite graph.

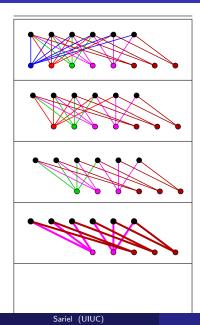
Bottom row has $\sum_{i=2}^n \lfloor n/i \rfloor = \Theta(n \log n)$ vertices.



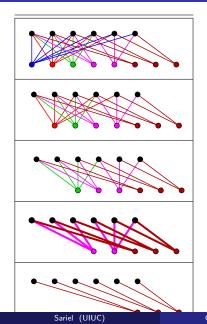


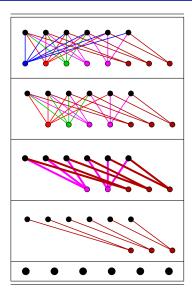


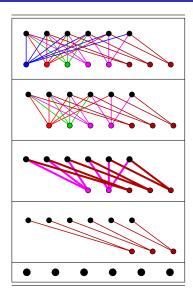




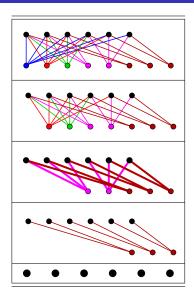
CS573



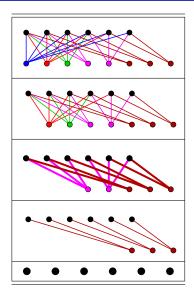




Bottom row taken by Greedy.



- Bottom row taken by Greedy.
- Top row was a smaller solution.



- Bottom row taken by Greedy.
- Top row was a smaller solution.

Lemma

The algorithm **GreedyVertexCover** is $\Omega(\log n)$ approximation to the optimal solution to VertexCoverMin.

See notes for details!

Greedy Vertex Cover

Theorem

The greedy algorithm for **VertexCover** achieves $\Theta(\log n)$ approximation, where n (resp. m) is the number of vertices (resp., edges) in the graph. Running time is $O(mn^2)$.

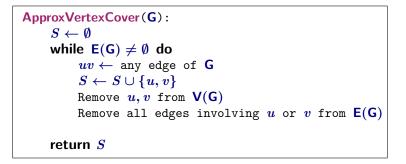
Proof

Lower bound follows from lemma.

Upper bound follows from analysis of greedy algorithm for **Set Cover**, which will be done shortly.

As for the running time, each iteration of the algorithm takes O(mn) time, and there are at most n iterations.

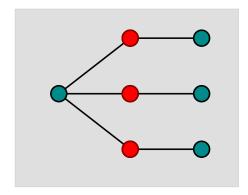
Two for the price of one

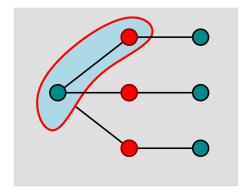


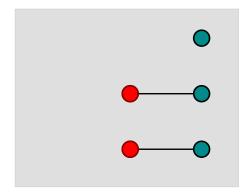
Theorem

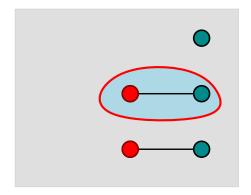
ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin that runs in $O(n^2)$ time.

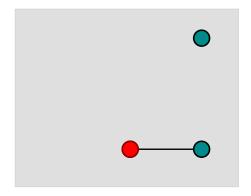
Proof...

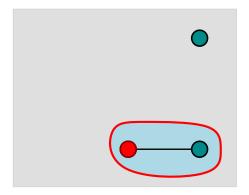


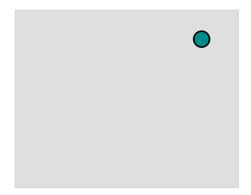


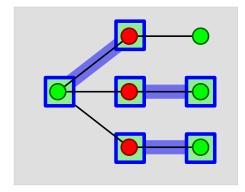












Part II

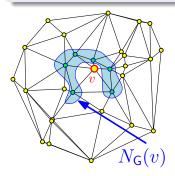
Fixed parameter tractability, approximation, and fast exponential time algorithms (to say nothing of the dog)

What if the vertex cover is small?

- G = (V, E) with n vertices
- **2** $K \leftarrow \text{Approximate VertexCoverMin up to a factor of two.$
- Any vertex cover of G is of size $\geq K/2$.
- Naively compute optimal in $O(n^{K+2})$ time.

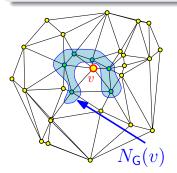
Definition

 $N_{G}(v)$: **Neighborhood** of v- set of vertices of **G** adjacent to v.



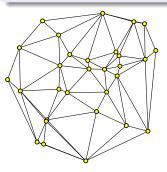
Definition

 $N_{\sf G}(v)$: **Neighborhood** of v- set of vertices of **G** adjacent to v.



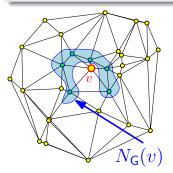
Definition

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph. For a subset $S \subseteq \mathbf{V}$, let \mathbf{G}_S be the *induced subgraph* over S.



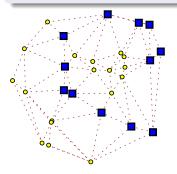
Definition

 $N_{\sf G}(v)$: **Neighborhood** of v- set of vertices of **G** adjacent to v.



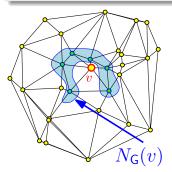
Definition

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph. For a subset $S \subseteq \mathbf{V}$, let \mathbf{G}_S be the *induced subgraph* over S.



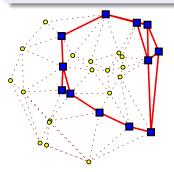
Definition

 $N_{G}(v)$: **Neighborhood** of v- set of vertices of **G** adjacent to v.



Definition

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a graph. For a subset $S \subseteq \mathbf{V}$, let \mathbf{G}_S be the *induced subgraph* over S.



Exact fixed parameter tractable algorithm Fixed parameter tractable algorithm for VertexCoverMin.

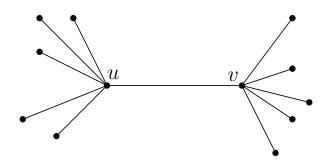
Computes minimum vertex cover for the induced graph G_X : fpVCI (X, β) $//\beta$: size of VC computed so far. if $X = \emptyset$ or G_X has no edges then return β $\mathbf{e} \leftarrow \text{any edge } \boldsymbol{uv} \text{ of } \mathbf{G}_{\boldsymbol{x}}.$
$$\begin{split} \beta_1 &= \mathsf{fpVCI}\left(X \setminus \{u, v\}, \beta + 2\right) \\ \beta_2 &= \mathsf{fpVCI}\left(X \setminus \left(\{u\} \cup N_{\mathsf{G}_X}(v)\right), \beta + |N_{\mathsf{G}_X}(v)|\right) \\ \beta_3 &= \mathsf{fpVCI}\left(X \setminus \left(\{v\} \cup N_{\mathsf{G}_X}(u)\right), \beta + |N_{\mathsf{G}_X}(u)|\right) \end{split}$$
return $\min(\beta_1, \beta_2, \beta_3)$. algFPVertexCover(G = (V, E))return fpVCI(V, 0)

Depth of recursion

Lemma

The algorithm **algFPVertexCover** returns the optimal solution to the given instance of VertexCoverMin.

Proof...



Depth of recursion II

Lemma

The depth of the recursion of algFPVertexCover(G) is at most α , where α is the minimum size vertex cover in G.

Proof.

- When the algorithm takes both u and v one of them in opt. Can happen at most α times.
- 2 Algorithm picks $N_{G_X}(v)$ (i.e., β_2). Conceptually add v to the vertex cover being computed.
- **③** Do the same thing for the case of β_3 .
- Every such call add one element of the opt to conceptual set cover. Depth of recursion is ≤ α.

Vertex Cover Exact fixed parameter tractable algorithm

Theorem

G: graph with n vertices. Min vertex cover of size α . Then, algFPVertexCover returns opt. vertex cover. Running time is $O(3^{\alpha}n^2)$.

Proof:

- By lemma, recursion tree has depth α .
- 2 Rec-tree contains $\leq 2 \cdot 3^{\alpha}$ nodes.
- Solution Each node requires $O(n^2)$ work.

Algorithms with running time $O(n^c f(\alpha))$, where α is some parameter that depends on the problem are *fixed parameter tractable*.

Sariel (UIUC)

Vertex Cover Exact fixed parameter tractable algorithm

Theorem

G: graph with n vertices. Min vertex cover of size α . Then, algFPVertexCover returns opt. vertex cover. Running time is $O(3^{\alpha}n^2)$.

Proof:

- By lemma, recursion tree has depth α .
- 2 Rec-tree contains $\leq 2 \cdot 3^{\alpha}$ nodes.
- Solution Each node requires $O(n^2)$ work.

Algorithms with running time $O(n^c f(\alpha))$, where α is some parameter that depends on the problem are *fixed parameter tractable*.

Sariel (UIUC)

Part III

Traveling Salesperson Problem

TSP-Min

Instance: $\mathbf{G} = (V, E)$ a complete graph, and $\omega(e)$ a cost function on edges of \mathbf{G} . **Question**: The cheapest tour that visits all the vertices of \mathbf{G} exactly once.

Solved exactly naively in pprox n! time. Using DP, solvable in $O(n^2 2^n)$ time.

TSP-Min

Instance: $\mathbf{G} = (V, E)$ a complete graph, and $\omega(e)$ a cost function on edges of \mathbf{G} . **Question**: The cheapest tour that visits all the vertices of \mathbf{G} exactly once.

Solved exactly naively in $\approx n!$ time. Using DP, solvable in $O(n^2 2^n)$ time.

Theorem

TSP-Min can not be approximated within **any** factor unless NP = P.

Proof.

- Reduction from Hamiltonian Cycle into TSP.
- **2** G = (V, E): instance of Hamiltonian cycle.
- H: Complete graph over V.

 $orall u, v \in \mathsf{V} \quad w_{\mathsf{H}}(uv) = egin{cases} 1 & uv \in \mathsf{E} \ 2 & ext{otherwise.} \end{cases}$

- **)** \exists tour of price n in $H \iff \exists$ Hamiltonian cycle in G.
- No Hamiltonian cycle \implies TSP price at least n + 1.
 -) But... replace ${f 2}$ by ${f cn}$, for ${f c}$ an arbitrary number

Sariel (UIUC)

Theorem

TSP-Min can not be approximated within **any** factor unless NP = P.

Proof.

- Reduction from Hamiltonian Cycle into TSP.
- **2** $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: instance of Hamiltonian cycle.
- H: Complete graph over V.

 $orall u, v \in \mathsf{V} \quad w_{\mathsf{H}}(uv) = egin{cases} 1 & uv \in \mathsf{E} \ 2 & ext{otherwise.} \end{cases}$

- **3** \exists tour of price n in $H \iff \exists$ Hamiltonian cycle in G.
- No Hamiltonian cycle \implies TSP price at least n + 1.

) But... replace 2 by cn, for c an arbitrary number

Sariel (UIUC)

Theorem

TSP-Min can not be approximated within **any** factor unless NP = P.

Proof.

- Reduction from Hamiltonian Cycle into TSP.
- **2** $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: instance of Hamiltonian cycle.
- H: Complete graph over V.

 $orall u,v\in \mathsf{V} \quad w_{\mathsf{H}}(uv)=egin{cases} 1 & uv\in \mathsf{E} \ 2 & ext{otherwise.} \end{cases}$

- **9** \exists tour of price n in $H \iff \exists$ Hamiltonian cycle in G.
- **(a)** No Hamiltonian cycle \implies TSP price at least n + 1.

But... replace 2 by cn, for c an arbitrary number

Theorem

TSP-Min can not be approximated within **any** factor unless NP = P.

Proof.

- Reduction from Hamiltonian Cycle into TSP.
- **2** $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: instance of Hamiltonian cycle.
- H: Complete graph over V.

 $orall u,v\in {\sf V} \quad w_{\sf H}(uv)=egin{cases} 1 & uv\in {\sf E}\ 2 & ext{otherwise.} \end{cases}$

- **3** \exists tour of price n in $H \iff \exists$ Hamiltonian cycle in **G**.
- **(a)** No Hamiltonian cycle \implies TSP price at least n + 1.
 - But... replace $\mathbf{2}$ by \boldsymbol{cn} , for \boldsymbol{c} an arbitrary number

TSP Hardness - proof continued

Proof.

Price of all tours are either: (i) n (only if \exists Hamiltonian cycle in **G**), (ii) larger than cn + 1 (actually, > cn + (n - 1)).

TSP Hardness - proof continued

Proof. Price of all tours are either: (i) n (only if \exists Hamiltonian cycle in **G**), (ii) larger than cn + 1 (actually, > cn + (n - 1)). 2 Suppose you had a poly time c-approximation to TSP-Min.

TSP Hardness - proof continued

Proof.

Price of all tours are either:

(i) n (only if ∃ Hamiltonian cycle in G),
(ii) larger than cn + 1 (actually, ≥ cn + (n - 1)).

Suppose you had a poly time c-approximation to TSP-Min.
Run it on H:

(i) If returned value ≥ cn + 1 ⇒ no Ham Cycle since (cn + 1)/c > n

(ii) If returned value $\leq cn \implies$ Ham Cycle since $OPT \leq cn < cn + 1$

• *c*-approximation algorithm to $TSP \implies$ poly-time algorithm for **NP-Complete** problem. Possible only if **P** = **NP**.

TSP Hardness - proof continued

Proof.

Price of all tours are either: (i) n (only if \exists Hamiltonian cycle in **G**), (ii) larger than cn + 1 (actually, > cn + (n - 1)). 2 Suppose you had a poly time c-approximation to TSP-Min. Run it on H: (i) If returned value $> cn + 1 \implies$ no Ham Cycle since (cn+1)/c > n(ii) If returned value $\langle cn \implies$ Ham Cycle since $OPT \le cn \le cn+1$

• *c*-approximation algorithm to $TSP \implies$ poly-time algorithm for **NP-Complete** problem. Possible only if **P** = **NP**.

TSP with the triangle inequality Because it is not that bad after all.

TSP_{∆≠}-Min

Instance: $\mathbf{G} = (V, E)$ is a complete graph. There is also a cost function $\omega(\cdot)$ defined over the edges of \mathbf{G} , that complies with the triangle inequality. **Question:** The cheapest tour that visits all the vertices of \mathbf{G} exactly once.

triangle inequality: $\omega(\cdot)$ if

 $orall u,v,w\in {f V}({f G})\,,\qquad \omega(u,v)\leq \omega(u,w)+\omega(w,v)\,.$

Shortcutting

 $\pmb{\sigma}$: a path from s to t in $\pmb{\mathsf{G}} \implies \pmb{\omega}(st) \leq \pmb{\omega}(\pmb{\sigma}).$

TSP with the triangle inequality Because it is not that bad after all.

TSP_{∆≠}-Min

Instance: $\mathbf{G} = (V, E)$ is a complete graph. There is also a cost function $\omega(\cdot)$ defined over the edges of \mathbf{G} , that complies with the triangle inequality. **Question:** The cheapest tour that visits all the vertices of \mathbf{G} exactly once.

triangle inequality: $\omega(\cdot)$ if

 $\forall u,v,w \in \mathsf{V}(\mathsf{G})\,, \quad \ \omega(u,v) \leq \omega(u,w) + \omega(w,v)\,.$

Shortcutting

$\pmb{\sigma}$: a path from s to t in $\mathbf{G} \implies \pmb{\omega}(st) \leq \pmb{\omega}(\pmb{\sigma}).$

TSP with the triangle inequality Because it is not that bad after all.

TSP_{∆≠}-Min

Instance: $\mathbf{G} = (V, E)$ is a complete graph. There is also a cost function $\omega(\cdot)$ defined over the edges of \mathbf{G} , that complies with the triangle inequality. **Question:** The cheapest tour that visits all the vertices of \mathbf{G} exactly once.

triangle inequality: $\omega(\cdot)$ if

 $orall u,v,w\in {\sf V}({\sf G})\,,\qquad \omega(u,v)\leq \omega(u,w)+\omega(w,v)\,.$

Shortcutting

 σ : a path from s to t in ${f G} \implies \omega(st) \leq \omega(\sigma).$

Definition

Cycle in G is *Eulerian* if it visits every edge of G exactly once.

Assume you already seen the following:

Lemma

A graph **G** has a cycle that visits every edge of **G** exactly once (i.e., an Eulerian cycle) if and only if **G** is connected, and all the vertices have even degree. Such a cycle can be computed in O(n + m)time, where n and m are the number of vertices and edges of **G**, respectively.

• C_{opt} optimal **TSP** tour in **G**.

Observation:

 $\omega(\mathit{C}_{\mathrm{opt}}) \geq \mathrm{weight}ig(ext{cheapest spanning graph of } \mathsf{G}ig).$

- MST: cheapest spanning graph of **G**. $\omega(C_{opt}) \ge \omega(MST(\mathbf{G}))$
- $O(n \log n + m) = O(n^2)$: time to compute MST. $n = |\mathsf{V}(\mathsf{G})|, \ m = \binom{n}{2}.$

- C_{opt} optimal **TSP** tour in **G**.
- Observation:

 $\omega(C_{\text{opt}}) \geq \text{weight} (\text{cheapest spanning graph of } \mathbf{G}).$

- MST: cheapest spanning graph of **G**. $\omega(C_{opt}) \ge \omega(MST(\mathbf{G}))$
- $O(n \log n + m) = O(n^2)$: time to compute MST. $n = |\mathsf{V}(\mathsf{G})|, \ m = \binom{n}{2}.$

- Optimal TSP tour in G.
- Observation:

 $\omega(C_{\text{opt}}) \geq \text{weight} (\text{cheapest spanning graph of } \mathbf{G}).$

- MST: cheapest spanning graph of G. $\omega(C_{opt}) \ge \omega(MST(G))$
- $O(n \log n + m) = O(n^2)$: time to compute MST. $n = |V(\mathbf{G})|, \ m = {n \choose 2}.$

- C_{opt} optimal **TSP** tour in **G**.
- Observation:

 $\omega(C_{\text{opt}}) \geq \text{weight} (\text{cheapest spanning graph of } \mathbf{G}).$

- MST: cheapest spanning graph of **G**. $\omega(C_{\text{opt}}) \ge \omega(\text{MST}(\mathbf{G}))$
- $O(n \log n + m) = O(n^2)$: time to compute MST. $n = |V(G)|, m = {n \choose 2}.$

$T \leftarrow MST(\mathbf{G})$

- **I** \leftarrow duplicate very edge of T.
- It has an Eulerian tour.
- C: Eulerian cycle in H.
- π : Shortcut **C** so visit every vertex once.

 $\mathbf{O} \ \boldsymbol{\omega}(\boldsymbol{\pi}) \leq \boldsymbol{\omega}(\mathbf{C})$

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- It has an Eulerian tour.
- C: Eulerian cycle in H.
- π : Shortcut **C** so visit every vertex once.
- $\mathbf{O} \ \boldsymbol{\omega}(\boldsymbol{\pi}) \leq \boldsymbol{\omega}(\mathbf{C})$

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- I has an Eulerian tour.
- C: Eulerian cycle in H.
- π : Shortcut **C** so visit every vertex once.
- $\bigcirc \omega(\pi) \leq \omega(\mathsf{C})$

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- It has an Eulerian tour.
- C: Eulerian cycle in *H*.
- π : Shortcut **C** so visit every vertex once.
- $\mathbf{O} \ \boldsymbol{\omega}(\boldsymbol{\pi}) \leq \boldsymbol{\omega}(\mathbf{C})$

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- I has an Eulerian tour.
- C: Eulerian cycle in *H*.
- $\textbf{ o } \omega(\mathsf{C}) = \omega(H) = 2\omega(T) = 2\omega(MST(\mathsf{G})) \leq 2\omega(C_{\mathrm{opt}}).$

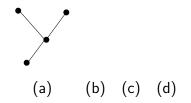
• π : Shortcut **C** so visit every vertex once.

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- It has an Eulerian tour.
- C: Eulerian cycle in *H*.
- π : Shortcut **C** so visit every vertex once.

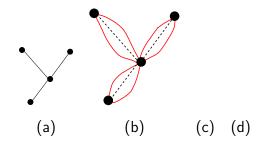
Sariel (UIUC)

- $T \leftarrow MST(\mathbf{G})$
- **2** $H \leftarrow$ duplicate very edge of T.
- It has an Eulerian tour.
- C: Eulerian cycle in *H*.
- π : Shortcut **C** so visit every vertex once.
- $\omega(\pi) \leq \omega(\mathbf{C})$

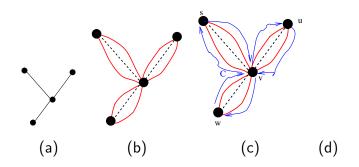
2-approximation algorithm in figures



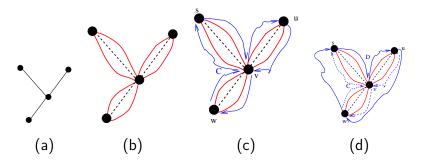
2-approximation algorithm in figures



2-approximation algorithm in figures



TSP with the triangle inequality 2-approximation algorithm in figures



Euler Tour: VUVWVSV First occurrences: VUVWVSV Shortcut String: VUWSV

2-approximation - result

Theorem

G: Instance of $TSP_{\Delta \neq}$ -Min. C_{opt} : min cost TSP tour of **G**.

 \implies Compute a tour of **G** of length $\leq 2\omega(C_{\text{opt}})$ Running time of the algorithm is $O(n^2)$.

2-approximation - result

Theorem

G: Instance of $TSP_{\Delta \neq}$ -Min. C_{opt} : min cost TSP tour of **G**. \implies Compute a tour of **G** of length $\leq 2\omega(C_{opt})$. Running time of the algorithm is $O(n^2)$.

2-approximation - result

Theorem

G: Instance of $TSP_{\Delta \neq}$ -Min. C_{opt} : min cost TSP tour of **G**. \implies Compute a tour of **G** of length $\leq 2\omega(C_{opt})$. Running time of the algorithm is $O(n^2)$.

2-approximation - result

Theorem

G: Instance of $TSP_{\triangle \neq}$ -Min. C_{opt} : min cost TSP tour of **G**. \implies Compute a tour of **G** of length $\leq 2\omega(C_{opt})$. Running time of the algorithm is $O(n^2)$.

Definition

 $\mathbf{G} = (V, E)$, a subset $M \subseteq E$ is a *matching* if no pair of edges of M share endpoints.

A *perfect matching* is a matching that covers all the vertices of **G**. w: weight function on the edges. *Min-weight perfect matching*, is the minimum weight matching among all perfect matching, where

$$\omega(M) = \sum_{e \in M} \omega(e)$$
 .

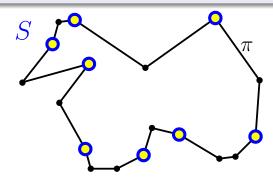
The following is known:

Theorem

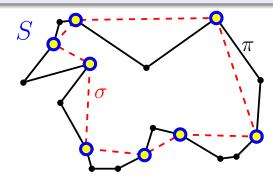
Given a graph G and weights on the edges, one can compute the min-weight perfect matching of G in polynomial time.

- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: complete graph.
- $S \subseteq V$: even size.
- $\omega(\cdot)$: a weight function over **E**.
 - \implies min-weight perfect matching in \mathbf{G}_S is $\leq \omega(\mathrm{TSP}(\mathbf{G}))/2$.

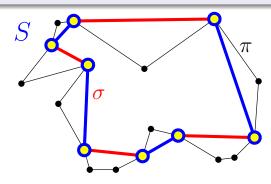
- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: complete graph.
- $S \subseteq V$: even size.
- $\omega(\cdot)$: a weight function over **E**.
 - \implies min-weight perfect matching in \mathbf{G}_S is $\leq \omega(\mathrm{TSP}(\mathbf{G}))/2$.

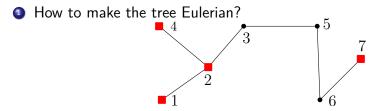


- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: complete graph.
- $S \subseteq V$: even size.
- $\omega(\cdot)$: a weight function over **E**.
 - \implies min-weight perfect matching in \mathbf{G}_S is $\leq \omega(\mathrm{TSP}(\mathbf{G}))/2$.

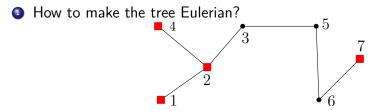


- $\mathbf{G} = (\mathbf{V}, \mathbf{E})$: complete graph.
- $S \subseteq V$: even size.
- $\omega(\cdot)$: a weight function over **E**.
 - \implies min-weight perfect matching in \mathbf{G}_S is $\leq \omega(\mathrm{TSP}(\mathbf{G}))/2$.

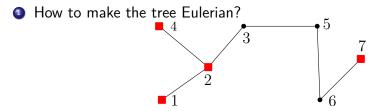




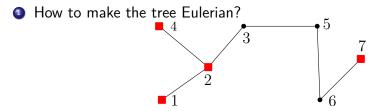
- Pesky odd degree vertices must die!
- In Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- **()** H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $\mathsf{H} \leq (3/2)\omega(\mathrm{TSP})$.



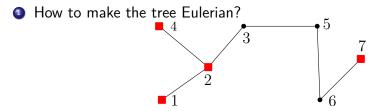
- Pesky odd degree vertices must die!
- In Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- **()** H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $\mathsf{H} \leq (3/2)\omega(\mathrm{TSP})$.



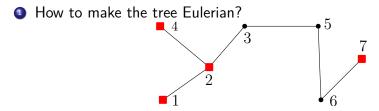
- Pesky odd degree vertices must die!
- Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- **()** H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $\mathsf{H} \leq (3/2)\omega(\mathrm{TSP})$.



- Pesky odd degree vertices must die!
- In Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- **()** H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $\mathsf{H} \leq (3/2)\omega(\mathrm{TSP})$.



- Pesky odd degree vertices must die!
- In Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $\mathsf{H} \leq (3/2)\omega(\mathrm{TSP})$.



- Pesky odd degree vertices must die!
- In Number of odd degree vertices in a graph is even!
- Compute min-weight matching on odd vertices, and add to MST.
- **(a)** H = MST + min weight matching is Eulerian.
- Weight of resulting cycle in $H \leq (3/2)\omega(TSP)$.

Even number of odd degree vertices

Lemma

The number of odd degree vertices in any graph G' is even.

Proof:

 $\mu = \sum_{v \in V(G')} d(v) = 2|E(G')|$ and thus even. $U = \sum_{v \in V(G'), d(v) \text{ is even }} d(v)$ even too. Thus,

 $lpha = \sum\limits_{v \in V, d(v) ext{ is odd}} d(v) = oldsymbol{\mu} - oldsymbol{U} =$ even number,

since μ and U are both even. Number of elements in sum of all odd numbers must be even, since the total sum is even.

Even number of odd degree vertices

Lemma

The number of odd degree vertices in any graph G' is even.

Proof:

$$\mu = \sum_{v \in V(G')} d(v) = 2|E(G')|$$
 and thus even.
 $U = \sum_{v \in V(G'), d(v) ext{ is even }} d(v)$ even too.
Thus,

 $lpha = \sum\limits_{v \in V, d(v) ext{ is odd}} d(v) = oldsymbol{\mu} - oldsymbol{U} =$ even number,

since μ and U are both even. Number of elements in sum of all odd numbers must be even, since the total sum is even.

Even number of odd degree vertices

Lemma

The number of odd degree vertices in any graph G' is even.

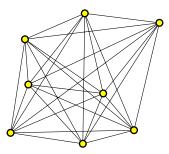
Proof:

$$\mu = \sum_{v \in V(G')} d(v) = 2|E(G')|$$
 and thus even.
 $U = \sum_{v \in V(G'), d(v) ext{ is even }} d(v)$ even too.
Thus,

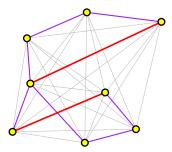
$$lpha = \sum\limits_{v \in V, d(v) ext{ is odd}} d(v) = \mu - U =$$
 even number,

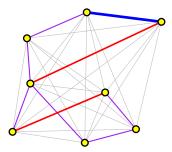
since μ and U are both even.

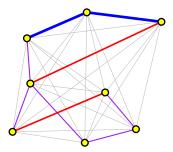
Number of elements in sum of all odd numbers must be even, since the total sum is even.

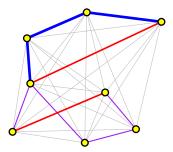


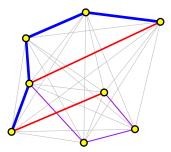


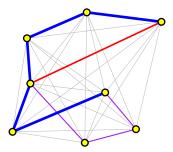


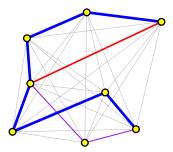


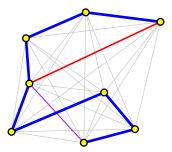


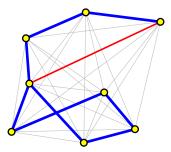


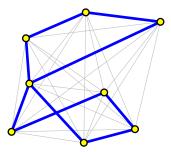


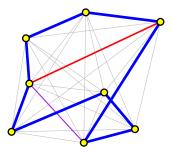












3/2-approximation algorithm for TSP The result

Theorem

Given an instance of TSP with the triangle inequality, one can compute in polynomial time, a (3/2)-approximation to the optimal TSP.

Biographical Notes

The 3/2-approximation for TSP with the triangle inequality is due to ?.