
CS 573: Algorithms, Fall 2014

NP Completeness
Lecture 3
September 3, 2014

1/34

Part I

NP Completeness

2/34

Certifiers
Definition
An algorithm C(·, ·) is a certifier for problem X if for every
s ∈ X there is some string t such that C(s, t) = ”yes”, and
conversely, if for some s and t, C(s, t) = ”yes” then s ∈ X .
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is
a polynomial p(·) such that for every string s, we have that

? s ∈ X if and only if
? there is a string t:

1. |t| ≤ p(|s|),
2. C(s, t) = ”yes”,
3. and C runs in polynomial time.

3/34

NP-Complete Problems
Definition
A problem X is said to be NP-Complete if

1. X ∈ NP, and
2. (Hardness) For any Y ∈ NP, Y ≤P X.

4/34

Solving NP-Complete Problems
Proposition
Suppose X is NP-Complete. Then X can be solved in
polynomial time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

0.1 Let Y ∈ NP. We know Y ≤P X.
0.2 We showed that if Y ≤P X and X can be solved in

polynomial time, then Y can be solved in polynomial
time.

0.3 Thus, every problem Y ∈ NP is such that Y ∈ P;
NP ⊆ P.

0.4 Since P ⊆ NP, we have P = NP.
⇐ Since P = NP, and X ∈ NP, we have a polynomial

time algorithm for X .
5/34

NP-Hard Problems
1. Formal definition:

Definition
A problem X is said to be NP-Hard if

1.1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2. An NP-Hard problem need not be in NP!
3. Example: Halting problem is NP-Hard (why?) but not

NP-Complete.

6/34

Consequences of proving NP-Completeness
1. If X is NP-Complete

1.1 Since we believe P 6= NP,
1.2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.
2. At the very least, many smart people before you have

failed to find an efficient algorithm for X .
3. (This is proof by mob opinion — take with a grain of

salt.)

7/34

NP-Complete Problems
Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

8/34

Circuits
Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧
1. Input vertices

(without incoming
edges) labelled with
0, 1 or a distinct
variable.

2. Every other vertex is
labelled ∨, ∧ or ¬.

3. Single node output
vertex with no
outgoing edges.

9/34

Cook-Levin Theorem
Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input
variables that causes the output to get value 1?

Theorem (Cook-Levin)
CSAT is NP-Complete.
Need to show

1. CSAT is in NP.
2. every NP problem X reduces to CSAT.

10/34

CSAT: Circuit Satisfaction
Claim
CSAT is in NP.

1. Certificate: Assignment to input variables.
2. Certifier: Evaluate the value of each gate in a topological

sort of DAG and check the output gate value.

11/34

CSAT is NP-hard: Idea
1. Need to show that every NP problem X reduces to

CSAT.
2. What does it mean that X ∈ NP?
3. X ∈ NP implies that there are polynomials p() and q()

and certifier/verifier program C such that for every string
s the following is true:
3.1 If s is a YES instance (s ∈ X) then there is a proof t

of length p(|s|) such that C(s, t) says YES.
3.2 If s is a NO instance (s 6∈ X) then for every string t of

length at p(|s|), C(s, t) says NO.
3.3 C(s, t) runs in time q(|s|+ |t|) time (hence

polynomial time).

12/34

Reducing X to CSAT
1. X is in NP means we have access to p(), q(), C(·, ·).
2. What is C(·, ·)? It is a program or equivalently a Turing

Machine!
3. How are p() and q() given?

As numbers.
4. Example: if 3 is given then p(n) = n3.
5. Thus an NP problem is essentially a three tuple
〈p, q, C〉 where C is either a program or a TM.

13/34

Reducing X to CSAT
1. NP problem: a three tuple 〈p, q, C〉.

C : program or TM, p(·), q(·): polynomials.
2. Problem X: Given string s, is s ∈ X?
3. Equivalent:
∃ proof t of length p

(
|s|

)
& C(s, t) returns YES.

...C(s, t) runs in q
(
|s|

)
time.

4. Reduce from X to CSAT...
Need an algorithm alg that
4.1 takes s (and 〈p, q, C〉).

Creates circuit G in poly time in |s|.
(〈p, q, C〉 is fixed so |〈p, q, C〉| = O(1).)

4.2 G is satisfiable
⇐⇒ ∃ proof t s.t. C(s, t) returns YES.

14/34

Reducing X to CSAT
1. Q: How do we reduce X to CSAT?
2. Need algorithm alg that:

2.1 Input: s (and 〈p, q, C〉).
2.2 creates circuit G in poly-time in |s| (〈p, q, C〉 fixed).
2.3 G satisfiable ⇐⇒ ∃ proof t: C(s, t) returns YES.

3. Simple but Big Idea: Programs are the same as Circuits!
3.1 Convert C(s, t) into a circuit G with t as unknown

inputs (rest is known including s)
3.2 Known: |t| ≤ p

(
|s|

)
so express boolean string t as

p(|s|) variables t1, t2, . . . , tk where k = p(|s|).
3.3 Asking if there is a proof t that makes C(s, t) say YES

is same as whether there is an assignment of values to
“unknown” variables t1, t2, . . . , tk that will make G
evaluate to true/YES.

15/34

Example: Independent Set
1. Formal definition:

Independent Set
Instance: G = (V , E), k
Question: Does G = (V , E) have an Indepen-
dent Set of size ≥ k

2. Certificate: Set S ⊆ V .
3. Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
4. Q: Formally, why is Independent Set in NP?

16/34

Example: Independent Set
Formally why is Independent Set in NP?

1. Input is a “binary” vector:

〈n, y1,1, y1,2, . . ., y1,n, y2,1, . . . , y2,n, . . . , yn,1,

. . . , yn,n, k〉

encodes 〈G, k〉.
1.1 n is number of vertices in G
1.2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0

otherwise (adjacency matrix representation)
1.3 k: size of independent set.

2. Certificate: t = t1t2 . . . tn.
Interpretation: ti = 1 if vertex i is in independent set.

... 0 otherwise.

17/34

Certifier for Independent Set
Certifier C(s, t) for Independent Set:

if (t1 + t2 + . . . + tn < k) then
return NO

else
for each (i , j) do

if (ti ∧ tj ∧ yi,j) then
return NO

return YES

18/34

Example: Independent Set
A certifier circuit for Independent Set

v w

u

Figure:
Graph G
with k = 2

1 0 1

u, v u, w v,w u v w

∧

two nodes?

∧∧∧

∨

Both ends
of an edge?

∨

¬

∧ ∧

∨

¬

∧

19/34

Programs, Turing Machines and Circuits
1. alg: “program” that takes f (|s|) steps on input string s.
2. Questions: What computer is used?

What does step mean?
3. “Real” computers difficult to reason with mathematically:

3.1 instruction set is too rich
3.2 pointers and control flow jumps in one step
3.3 assumption that pointer to code fits in one word

4. Turing Machines:
4.1 simpler model of computation to reason with
4.2 can simulate real computers with polynomial slow down
4.3 all moves are local (head moves only one cell)

20/34

Certifiers that at TMs
1. Assume C(·, ·) is a (deterministic) Turing Machine M
2. Problem: Given M, input s, p, q decide if:

2.1 ∃ proof t of length ≤ p(|s|)
2.2 M executed on the input s, t halts in q(|s|) time and

returns YES.

3. ConvCSAT reduces above problem to CSAT:
1. computes p(|s|) and q(|s|).
2. As such, M:

3.2.1 Uses at most q(|s|) memory/tape cells.
3.2.2 M can run for at most q(|s|) time.

3. Simulates evolution of the states of M and memory
over time, using a big circuit.

21/34

Simulation of Computation via Circuit
1. M state at time `: A string x` = x1x2 . . . xk where each

xi ∈ {0, 1, B} × Q ∪ {q−1}.
2. Time 0: State of M = input string s, a guess t of p(|s|)

“unknowns”, and rest q(|s|) blank symbols.
3. Time q(|s|)? Does M stops in qaccept with blank tape.
4. Build circuit C`: Evaluates to YES
⇐⇒ transition of M from time ` to time ` + 1 valid.

(Circuit of size O
(
q(|s|)

)
.

5. C: C0 ∧ C1 ∧ · · · ∧ Cq(|s|).
Polynomial size!

6. Output of C true ⇐⇒ sequence of states of M is legal
and leads to an accept state.

22/34

NP-Hardness of Circuit Satisfaction
Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity
2. Since p() and q() are known to A, it can set up all

required memory and time steps in advance
3. Simulate computation of the TM from one time to the

next as a circuit that only looks at three adjacent cells at
a time

Note: Above reduction can be done to SAT as well.
Reduction to SAT was the original proof of Steve Cook.

23/34

	NP Completeness
	NP Completeness
	Preliminaries
	Cook-Levin Theorem
	Example: Independent Set
	Example: Independent Set

