CS 573: Algorithms, Fall 2014

NP Completeness

Lecture 3 September 3, 2014

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a *certifier* for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$. The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier **C** is an *efficient certifier* for problem **X** if there is a polynomial $p(\cdot)$ such that for every string **s**, we have that

- $\star \ s \in X$ if and only if
- \star there is a string **t**:
 - 1. $|t| \le p(|s|)$,
 - 2. C(s, t) = "yes",
 - 3. and **C** runs in polynomial time.

NP-Complete Problems

Definition

A problem **X** is said to be **NP-Complete** if

- 1. $\boldsymbol{X} \in \boldsymbol{\mathsf{NP}}$, and
- 2. (Hardness) For any $\mathbf{Y} \in \mathbf{NP}$, $\mathbf{Y} \leq_{P} \mathbf{X}$.

Solving NP-Complete Problems

Proposition

Suppose X is **NP-Complete**. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose **X** can be solved in polynomial time
 - 0.1 Let $\mathbf{Y} \in \mathbf{NP}$. We know $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
 - 0.2 We showed that if $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$ and \mathbf{X} can be solved in polynomial time, then \mathbf{Y} can be solved in polynomial time.
 - 0.3 Thus, every problem $Y \in \mathbb{NP}$ is such that $Y \in P$; $NP \subseteq P$.
 - 0.4 Since $\mathbf{P} \subseteq \mathbf{NP}$, we have $\mathbf{P} = \mathbf{NP}$.
- $\leftarrow \text{ Since } \mathbf{P} = \mathbf{NP}, \text{ and } \mathbf{X} \in \mathbf{NP}, \text{ we have a polynomial time algorithm for } \mathbf{X}.$

NP-Hard Problems

1. Formal definition:

Definition

A problem **X** is said to be **NP-Hard** if

- 1.1 (Hardness) For any $\mathbf{Y} \in \mathbf{NP}$, we have that $\mathbf{Y} \leq_{\mathbf{P}} \mathbf{X}$.
- 2. An NP-Hard problem need not be in NP!
- 3. Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

- 1. If X is NP-Complete
 - 1.1 Since we believe $\mathbf{P} \neq \mathbf{NP}$,
 - 1.2 and solving **X** implies $\mathbf{P} = \mathbf{NP}$.

X is unlikely to be efficiently solvable.

- 2. At the very least, many smart people before you have failed to find an efficient algorithm for **X**.
- 3. (This is proof by mob opinion take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Circuits

Definition

A circuit is a directed *acyclic* graph with

- n 1. Input vertices
 - (without incoming edges) labelled with **0**, **1** or a distinct variable.
- 2. Every other vertex is labelled \lor , \land or \neg .
- 3. Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

- 1. CSAT is in NP.
- 2. every NP problem X reduces to CSAT.

10/34

CSAT: Circuit Satisfaction

Claim CSAT is in NP.

- 1. Certificate: Assignment to input variables.
- 2. Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT is NP-hard: Idea

- 1. Need to show that *every* **NP** problem **X** reduces to **CSAT**.
- 2. What does it mean that $X \in \mathbb{NP}$?
- X ∈ NP implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - 3.1 If s is a YES instance $(s \in X)$ then there is a proof t of length p(|s|) such that C(s, t) says YES.
 - 3.2 If s is a NO instance $(s \notin X)$ then for every string t of length at p(|s|), C(s, t) says NO.
 - 3.3 C(s, t) runs in time q(|s| + |t|) time (hence polynomial time).

Reducing X to CSAT

- 1. **X** is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- 2. What is **C**(·, ·)? It is a program or equivalently a Turing Machine!
- 3. How are **p()** and **q()** given? As numbers.
- 4. Example: if **3** is given then $p(n) = n^3$.
- 5. Thus an **NP** problem is essentially a three tuple $\langle \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C} \rangle$ where \boldsymbol{C} is either a program or a TM.

Reducing \boldsymbol{X} to \boldsymbol{CSAT}

- 1. **Q:** How do we reduce **X** to **CSAT**?
- 2. Need algorithm alg that:
 - 2.1 Input: \boldsymbol{s} (and $\langle \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C} \rangle$).
 - 2.2 creates circuit **G** in poly-time in |s| ($\langle p, q, C \rangle$ fixed).
 - 2.3 **G** satisfiable $\iff \exists$ proof **t**: **C**(**s**, **t**) returns YES.
- 3. Simple but Big Idea: Programs are the same as Circuits!
 - 3.1 Convert **C**(**s**, **t**) into a circuit **G** with **t** as unknown inputs (rest is known including **s**)
 - 3.2 Known: $|t| \le p(|s|)$ so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - 3.3 Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

Reducing X to CSAT

 NP problem: a three tuple ⟨p, q, C⟩. C: program or TM, p(·), q(·): polynomials.
Problem X: Given string s, is s ∈ X?
Equivalent: ∃ proof t of length p(|s|) & C(s, t) returns YES. ...C(s, t) runs in q(|s|) time.
Reduce from X to CSAT... Need an algorithm alg that 4.1 takes s (and ⟨p, q, C⟩). Creates circuit G in poly time in |s|. (⟨p, q, C⟩ is fixed so |⟨p, q, C⟩| = O(1).)
G is satisfiable ⇔ ∃ proof t s.t. C(s, t) returns YES.

Example: Independent Set

1. Formal definition:

Independent Set

Instance: G = (V, E), k**Question**: Does G = (V, E) have an **Independent Set** of size $\geq k$

- 2. Certificate: Set $S \subseteq V$.
- 3. Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.
- 4. **Q:** Formally, why is **Independent Set** in **NP**?

15/34

13/34

Example: Independent Set

Formally why is **Independent Set** in **NP**?

1. Input is a "binary" vector:

 $\langle n, y_{1,1}, y_{1,2}, \dots, y_{1,n}, y_{2,1}, \dots, y_{2,n}, \dots, y_{n,1}, \dots, y_{n,n}, k \rangle$

encodes $\langle \boldsymbol{G}, \boldsymbol{k} \rangle$.

- 1.1 \boldsymbol{n} is number of vertices in \boldsymbol{G}
- 1.2 $y_{i,j}$ is a bit which is 1 if edge (i, j) is in G and 0 otherwise (adjacency matrix representation)
- 1.3 k: size of independent set.
- 2. Certificate: $t = t_1 t_2 \dots t_n$. Interpretation: $t_i = 1$ if vertex *i* is in independent set. $\dots 0$ otherwise.

17/34

Certifier for Independent Set

Certifier C(s, t) for **Independent Set**:

if $(t_1 + t_2 + \ldots + t_n < k)$ then return NO else for each (i, j) do if $(t_i \land t_j \land y_{i,j})$ then return NO

return YES

Programs, Turing Machines and Circuits

- 1. alg: "program" that takes f(|s|) steps on input string s.
- 2. Questions: What computer is used? What does *step* mean?
- 3. "Real" computers difficult to reason with mathematically:
 - $3.1\,$ instruction set is too rich
 - 3.2 pointers and control flow jumps in one step
 - $3.3\,$ assumption that pointer to code fits in one word
- 4. Turing Machines:
 - $4.1\,$ simpler model of computation to reason with
 - 4.2 can simulate real computers with *polynomial* slow down
 - 4.3 all moves are *local* (head moves only one cell)

Certifiers that at TMs

- 1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M
- 2. Problem: Given *M*, input *s*, *p*, *q* decide if:
 - 2.1 \exists proof **t** of length $\leq p(|s|)$
 - 2.2 **M** executed on the input s, t halts in q(|s|) time and returns YES.
- 3. ConvCSAT reduces above problem to CSAT:
 - 1. computes p(|s|) and q(|s|).
 - 2. As such, *M*:
 - 3.2.1 Uses at most q(|s|) memory/tape cells.
 - 3.2.2 **M** can run for at most q(|s|) time.
 - 3. Simulates evolution of the states of **M** and memory over time, using a big circuit.

Simulation of Computation via Circuit

- 1. **M** state at time ℓ : A string $x^{\ell} = x_1 x_2 \dots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
- 2. Time 0: State of M = input string s, a guess t of p(|s|) "unknowns", and rest q(|s|) blank symbols.
- 3. Time q(|s|)? Does **M** stops in q_{accept} with blank tape.
- 4. Build circuit C_{ℓ} : Evaluates to YES \iff transition of M from time ℓ to time $\ell + 1$ valid. (Circuit of size O(q(|s|)).
- 5. $C: C_0 \wedge C_1 \wedge \cdots \wedge C_{q(|s|)}$. Polynomial size!
- 6. Output of C true \iff sequence of states of M is legal and leads to an accept state.

22/34

21/34

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

- $1. \ \mbox{Use } TMs$ as the code for certifier for simplicity
- 2. Since **p()** and **q()** are known to *A*, it can set up all required memory and time steps in advance
- 3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.

