CS 573: Algorithms, Fall 2014

NP Completeness

Lecture 3
September 3, 2014

Certifiers

Definition

An algorithm $\boldsymbol{C}(\cdot, \cdot)$ is a certifier for problem \boldsymbol{X} if for every $\boldsymbol{s} \in \boldsymbol{X}$ there is some string \boldsymbol{t} such that $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "yes", and conversely, if for some \boldsymbol{s} and $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "yes" then $\boldsymbol{s} \in \boldsymbol{X}$. The string \boldsymbol{t} is called a certificate or proof for \boldsymbol{s}

Definition (Efficient Certifier.)
A certifier \boldsymbol{C} is an efficient certifier for problem \boldsymbol{X} if there is a polynomial $\boldsymbol{p}(\cdot)$ such that for every string \boldsymbol{s}, we have that
$\star \boldsymbol{s} \in \boldsymbol{X}$ if and only if
\star there is a string t :

1. $|\boldsymbol{t}| \leq \boldsymbol{p}(|\boldsymbol{s}|)$,
2. $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "yes",
3. and \boldsymbol{C} runs in polynomial time.

Part I

NP Completeness

NP-Complete Problems

Definition
A problem \boldsymbol{X} is said to be NP-Complete if

1. $\boldsymbol{X} \in \mathbf{N P}$, and
2. (Hardness) For any $\boldsymbol{Y} \in \mathbf{N P}, \mathbf{Y} \leq_{P} \mathbf{X}$.

Solving NP-Complete Problems

Proposition
Suppose \boldsymbol{X} is NP-Complete. Then \boldsymbol{X} can be solved in polynomial time if and only if $\mathrm{P}=\mathrm{NP}$.
Proof.
\Rightarrow Suppose \boldsymbol{X} can be solved in polynomial time
0.1 Let $\boldsymbol{Y} \in \mathbf{N P}$. We know $Y \leq_{P} \mathbf{X}$.
0.2 We showed that if $Y \leq_{P} X$ and \boldsymbol{X} can be solved in polynomial time, then \boldsymbol{Y} can be solved in polynomial time.
0.3 Thus, every problem $\boldsymbol{Y} \in \mathbf{N P}$ is such that $\boldsymbol{Y} \in \boldsymbol{P}$; $N P \subseteq P$
0.4 Since $\mathbf{P} \subseteq \mathbf{N P}$, we have $\mathbf{P}=\mathbf{N P}$.
\Leftarrow Since $\mathbf{P}=\mathbf{N P}$, and $\boldsymbol{X} \in \mathbf{N P}$, we have a polynomial time algorithm for \boldsymbol{X}.

NP-Hard Problems

1. Formal definition:

Definition

A problem \boldsymbol{X} is said to be NP-Hard if
1.1 (Hardness) For any $\boldsymbol{Y} \in \mathbf{N P}$, we have that $\mathbf{Y} \leq_{P} \mathbf{X}$.
2. An NP-Hard problem need not be in NP!
3. Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

1. If \boldsymbol{X} is NP-Complete
1.1 Since we believe $\mathbf{P} \neq \mathbf{N P}$,
1.2 and solving \boldsymbol{X} implies $\mathbf{P}=\mathbf{N P}$.
\boldsymbol{X} is unlikely to be efficiently solvable.
2. At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X}.
3. (This is proof by mob opinion - take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?
Answer
Yes! Many, many problems are NP-Complete.

Circuits

Definition
A circuit is a directed acyclic graph with

1. Input vertices
 (without incoming edges) labelled with $\mathbf{0}, \mathbf{1}$ or a distinct variable.
2. Every other vertex is labelled \vee, \wedge or \neg.
3. Single node output vertex with no outgoing edges.

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?
Theorem (Cook-Levin)
CSAT is NP-Complete.
Need to show

1. CSAT is in NP.
2. every NP problem \boldsymbol{X} reduces to CSAT.

CSAT: Circuit Satisfaction

Claim
CSAT is in NP.

1. Certificate: Assignment to input variables.
2. Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

CSAT is NP-hard: Idea

1. Need to show that every NP problem \boldsymbol{X} reduces to CSAT.
2. What does it mean that $\boldsymbol{X} \in \mathbf{N P}$?
3. $\boldsymbol{X} \in \mathrm{NP}$ implies that there are polynomials $\boldsymbol{p}()$ and $\boldsymbol{q}()$ and certifier/verifier program \boldsymbol{C} such that for every string \boldsymbol{s} the following is true:
3.1 If \boldsymbol{s} is a YES instance $(\boldsymbol{s} \in \boldsymbol{X})$ then there is a proof \boldsymbol{t} of length $\boldsymbol{p}(|\boldsymbol{s}|)$ such that $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ says YES.
3.2 If \boldsymbol{s} is a NO instance ($\boldsymbol{s} \notin \boldsymbol{X}$) then for every string \boldsymbol{t} of length at $\boldsymbol{p}(|\boldsymbol{s}|), \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ says NO.
$3.3 \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ runs in time $\boldsymbol{q}(|\boldsymbol{s}|+|\boldsymbol{t}|)$ time (hence polynomial time).

Reducing \mathbf{X} to CSAT

1. \boldsymbol{X} is in NP means we have access to $\boldsymbol{p}(), \boldsymbol{q}(), \boldsymbol{C}(\cdot, \cdot)$.
2. What is $\boldsymbol{C}(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
3. How are $\boldsymbol{p}()$ and $\boldsymbol{q}()$ given?

As numbers.
4. Example: if $\mathbf{3}$ is given then $\boldsymbol{p}(\boldsymbol{n})=\boldsymbol{n}^{\mathbf{3}}$.
5. Thus an NP problem is essentially a three tuple $\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$ where \boldsymbol{C} is either a program or a TM.

Reducing \mathbf{X} to CSAT

1. \mathbf{Q} : How do we reduce \boldsymbol{X} to CSAT?
2. Need algorithm alg that:
2.1 Input: \boldsymbol{s} (and $\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$).
2.2 creates circuit \boldsymbol{G} in poly-time in $|\boldsymbol{s}|(\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$ fixed $)$.
$2.3 \boldsymbol{G}$ satisfiable $\Longleftrightarrow \exists$ proof $\boldsymbol{t}: \quad \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ returns YES.
3. Simple but Big Idea: Programs are the same as Circuits!
3.1 Convert $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ into a circuit \boldsymbol{G} with \boldsymbol{t} as unknown inputs (rest is known including s)
3.2 Known: $|\boldsymbol{t}| \leq \boldsymbol{p}(|\boldsymbol{s}|)$ so express boolean string \boldsymbol{t} as $p(|s|)$ variables $t_{1}, t_{2}, \ldots, t_{k}$ where $k=p(|s|)$.
3.3 Asking if there is a proof \boldsymbol{t} that makes $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ say YES is same as whether there is an assignment of values to "unknown" variables $\boldsymbol{t}_{1}, t_{2}, \ldots, t_{k}$ that will make \boldsymbol{G} evaluate to true/YES.

Reducing \mathbf{X} to CSAT

1. NP problem: a three tuple $\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$. \boldsymbol{C} : program or TM, $\boldsymbol{p}(\cdot), \boldsymbol{q}(\cdot)$: polynomials.
2. Problem X : Given string \boldsymbol{s}, is $\boldsymbol{s} \in \boldsymbol{X}$?
3. Equivalent:
\exists proof \boldsymbol{t} of length $\boldsymbol{p}(|\boldsymbol{s}|) \& \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ returns YES.
$\ldots \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ runs in $\boldsymbol{q}(|\boldsymbol{s}|)$ time.
4. Reduce from \boldsymbol{X} to CSAT...

Need an algorithm alg that
4.1 takes \boldsymbol{s} (and $\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$).

Creates circuit \boldsymbol{G} in poly time in $|\boldsymbol{s}|$.
$(\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle$ is fixed so $|\langle\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{C}\rangle|=\boldsymbol{O}(\mathbf{1})$.
4.2 \boldsymbol{G} is satisfiable
$\Longleftrightarrow \exists$ proof \boldsymbol{t} s.t. $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ returns YES.

Example: Independent Set

1. Formal definition:

Independent Set
Instance: $G=(V, E), k$
Question: Does $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ have an Indepen-
dent Set of size $\geq \boldsymbol{k}$
2. Certificate: Set $\boldsymbol{S} \subseteq \boldsymbol{V}$.
3. Certifier: Check $|\boldsymbol{S}| \geq \boldsymbol{k}$ and no pair of vertices in \boldsymbol{S} is connected by an edge.
4. Q: Formally, why is Independent Set in NP?

Example: Independent Set

Formally why is Independent Set in NP?

1. Input is a "binary" vector:

$$
\begin{aligned}
& \left\langle n, y_{1,1}, y_{1,2}, \ldots, y_{1, n}, y_{2,1}, \ldots, y_{2, n}, \ldots, y_{n, 1},\right. \\
& \left.\quad \ldots, y_{n, n}, k\right\rangle
\end{aligned}
$$

encodes $\langle\boldsymbol{G}, \boldsymbol{k}\rangle$.
$1.1 \boldsymbol{n}$ is number of vertices in \boldsymbol{G}
$1.2 \boldsymbol{y}_{\boldsymbol{i}, \boldsymbol{j}}$ is a bit which is $\mathbf{1}$ if edge $(\boldsymbol{i}, \boldsymbol{j})$ is in \boldsymbol{G} and $\mathbf{0}$ otherwise (adjacency matrix representation)
$1.3 \boldsymbol{k}$: size of independent set.
2. Certificate: $t=\boldsymbol{t}_{1} \boldsymbol{t}_{2} \ldots \boldsymbol{t}_{n}$

Interpretation: $\boldsymbol{t}_{\boldsymbol{i}}=\mathbf{1}$ if vertex \boldsymbol{i} is in independent set.

$$
\mathbf{0} \text { otherwise. }
$$

Example: Independent Set

A certifier circuit for Independent Set

Certifier for Independent Set

Certifier $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$ for Independent Set:

```
if (t
    return NO
else
        for each (i,j) do
```



```
                return NO
```

return YES

Programs, Turing Machines and Circuits

1. alg: "program" that takes $\boldsymbol{f}(|\boldsymbol{s}|)$ steps on input string \boldsymbol{s}.
2. Questions: What computer is used?

What does step mean?
3. "Real" computers difficult to reason with mathematically:
3.1 instruction set is too rich
3.2 pointers and control flow jumps in one step
3.3 assumption that pointer to code fits in one word
4. Turing Machines:
4.1 simpler model of computation to reason with
4.2 can simulate real computers with polynomial slow down
4.3 all moves are local (head moves only one cell)

Certifiers that at TMs

1. Assume $\boldsymbol{C}(\cdot, \cdot)$ is a (deterministic) Turing Machine \boldsymbol{M}
2. Problem: Given \boldsymbol{M}, input $\boldsymbol{s}, \boldsymbol{p}, \boldsymbol{q}$ decide if:
$2.1 \exists$ proof \boldsymbol{t} of length $\leq \boldsymbol{p}(|\boldsymbol{s}|)$
2.2 \boldsymbol{M} executed on the input $\boldsymbol{s}, \boldsymbol{t}$ halts in $\boldsymbol{q}(|\boldsymbol{s}|)$ time and returns YES.
3. ConvCSAT reduces above problem to CSAT:
4. computes $\boldsymbol{p}(|\boldsymbol{s}|)$ and $\boldsymbol{q}(|\boldsymbol{s}|)$.
5. As such, \boldsymbol{M} :
3.2.1 Uses at most $\boldsymbol{q}(|\boldsymbol{s}|)$ memory/tape cells.
3.2.2 \boldsymbol{M} can run for at most $\boldsymbol{q}(|\boldsymbol{s}|)$ time.
6. Simulates evolution of the states of \boldsymbol{M} and memory over time, using a big circuit.

Simulation of Computation via Circuit

1. \boldsymbol{M} state at time ℓ : A string $\boldsymbol{x}^{\ell}=x_{1} x_{2} \ldots x_{k}$ where each $x_{i} \in\{0,1, B\} \times Q \cup\left\{q_{-1}\right\}$.
2. Time $\mathbf{0}$: State of $\boldsymbol{M}=$ input string \boldsymbol{s}, a guess \boldsymbol{t} of $\boldsymbol{p}(|\boldsymbol{s}|)$ "unknowns", and rest $\boldsymbol{q}(|\boldsymbol{s}|)$ blank symbols.
3. Time $\boldsymbol{q}(|\boldsymbol{s}|)$? Does \boldsymbol{M} stops in $\boldsymbol{q}_{\text {accept }}$ with blank tape.
4. Build circuit \boldsymbol{C}_{ℓ} : Evaluates to YES
\Longleftrightarrow transition of \boldsymbol{M} from time $\boldsymbol{\ell}$ to time $\boldsymbol{\ell}+\mathbf{1}$ valid.
(Circuit of size $\boldsymbol{O}(\boldsymbol{q}(|\boldsymbol{s}|))$.
5. $\mathcal{C}: \boldsymbol{C}_{\mathbf{0}} \wedge \boldsymbol{C}_{1} \wedge \cdots \wedge \boldsymbol{C}_{\boldsymbol{q}(\mid s) \mid}$.

Polynomial size!
6. Output of \mathcal{C} true \Longleftrightarrow sequence of states of \boldsymbol{M} is legal and leads to an accept state.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity
2. Since $\boldsymbol{p}()$ and $\boldsymbol{q}()$ are known to \mathcal{A}, it can set up all required memory and time steps in advance
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time
Note: Above reduction can be done to SAT as well.
Reduction to SAT was the original proof of Steve Cook.
