Chapter 2

Reductions and NP

CS 573: Algorithms, Fall 2014
August 28, 2014

2.1 Reductions Continued

2.1.1 The Satisfiability Problem (SAT)

2.1.1.1 Propositional Formulas

Definition 2.1.1. Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.
(A) A literal is either a boolean variable x_{i} or its negation $\neg x_{i}$.
(B) A clause is a disjunction of literals.

For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
(C) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
(A) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(D) A formula φ is a 3 CNF :

A CNF formula such that every clause has exactly 3 literals.
(A) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

2.1.1.2 Satisfiability

SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

3SAT
Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

SAT ${ }^{\text {S. }}$ Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
Example 2.1.2. (A) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true (B) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT Given a 3CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

2.1.1.4 Importance of SAT and 3SAT

(A) SAT, 3SAT: basic constraint satisfaction problems.
(B) Many different problems can reduced to them: simple+powerful expressivity of constraints.
(C) Arise in many hardware/software verification/correctness applications.
(D) ... fundamental problem of NP-Completeness.

2.1.2 SAT and 3SAT
 2.1.2.1 SAT \leq_{P} 3SAT

How SAT is different from 3SAT?In SAT clauses might have arbitrary length: $1,2,3, \ldots$ variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.
Reduce from of SAT to 3SAT: make all clauses to have 3 variables...
Basic idea
(A) Pad short clauses so they have 3 literals.
(B) Break long clauses into shorter clauses.
(C) Repeat the above till we have a 3 CNF .

2.1.2.2 \quad 3SAT \leq_{P} SAT

(A) 3 SAT \leq_{P} SAT.
(B) Because...

A 3SAT instance is also an instance of SAT.

2.1.2.3 \quad SAT \leq_{P} 3SAT

Claim 2.1.3. $\operatorname{SAT} \leq_{P} 3 S A T$.
Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(A) φ is satisfiable iff φ^{\prime} is satisfiable.
(B) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3 .

2.1.3 \quad SAT \leq_{P} 3SAT

2.1.3.1 A clause with a single literal

Reduction Ideas Challenge: Some clauses in φ \# liters $\neq 3$.
\forall clauses with $\neq 3$ literals: construct set logically equivalent clauses.
(A) Clause with one literal: $c=\ell$ clause with a single literal. u, v be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & (\ell \vee u \vee v) \wedge(\ell \vee u \vee \neg v) \\
& \wedge(\ell \vee \neg u \vee v) \wedge(\ell \vee \neg u \vee \neg v) .
\end{aligned}
$$

Observe: c^{\prime} satisfiable $\Longleftrightarrow c$ is satisfiable

2.1.4 \quad SAT \leq_{P} 3SAT

2.1.4.1 A clause with two literals

Reduction Ideas: 2 and more literals
(A) Case clause with 2 literals: Let $c=\ell_{1} \vee \ell_{2}$. Let u be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

c is satisfiable $\Longleftrightarrow c^{\prime}$ is satisfiable

2.1.4.2 Breaking a clause

Lemma 2.1.4. For any boolean formulas X and Y and z a new boolean variable. Then

$$
X \vee Y \text { is satisfiable }
$$

if and only if, z can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in X and Y).

2.1.5 \quad SAT \leq_{P} 3SAT (contd)

2.1.5.1 Clauses with more than 3 literals

Let $c=\ell_{1} \vee \cdots \vee \ell_{k}$. Let $u_{1}, \ldots u_{k-3}$ be new variables. Consider

$$
\begin{aligned}
c^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge\left(\ell_{3} \vee \neg u_{1} \vee u_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg u_{2} \vee u_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right) .
\end{aligned}
$$

Claim 2.1.5. c is satisfiable $\Longleftrightarrow c^{\prime}$ is satisfiable.
Another way to see it - reduce size clause by one \& repeat :

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right) .
$$

2.1.5.2 An Example

Example 2.1.6.

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right) .
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right) .
\end{aligned}
$$

2.1.6 Overall Reduction Algorithm

2.1.6.1 Reduction from SAT to 3SAT

```
ReduceSATTo3SAT( }\varphi\mathrm{ ) :
    // \varphi: CNF formula.
    for each clause c of }\varphi\mathrm{ do
        if c does not have exactly 3 literals then
            construct c' as before
        else
            c}=
    \psi is conjunction of all c}\mp@subsup{c}{}{\prime}\mathrm{ constructed in loop
    return Solver3SAT( }\psi
```

Correctness (informal) φ is satisfiable $\Longleftrightarrow \psi$ satisfiable
$\ldots \forall c \in \varphi$: new 3CNF formula c^{\prime} is equivalent to c.

2.1.6.2 What about 2SAT?

(A) 2SAT can be solved in poly time! (specifically, linear time!)
(B) No poly time reduction from SAT (or 3SAT) to 2SAT.
(C) If \exists reduction \Longrightarrow SAT, 3SAT solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?
$(x \vee y \vee z)$: clause.
convert to collection of 2 CNF clauses. Introduce a fake variable α, and rewrite this as

$$
\begin{array}{lll}
& (x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } & (x \vee \alpha) \wedge(\neg \alpha \vee y \vee z) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

(In animal farm language: 2SAT good, 3SAT bad.)

2.1.6.3 What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels $x=0$ and $x=1$). For ever 2CNF clause add two directed edges in the graph. The edges
are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

2.1.7 Reducing 3SAT to Independent Set
 2.1.7.1 Independent Set
 Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k ?

2.1.7.2 $3 \mathrm{SAT} \leq_{P}$ Independent Set

The reduction $\mathbf{3 S A T} \leq_{P}$ Independent Set Input: Given a 3CNF formula φ
Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.
G_{φ} should be constructable in time polynomial in size of φ
(A) Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.
(B) Notice: Handle only 3CNF formulas (fails for other kinds of boolean formulas).

2.1.7.3 Interpreting 3SAT

There are two ways to think about 3SAT
(A) Assign 0/1 (false/true) to vars \Longrightarrow formula evaluates to true.

Each clause evaluates to true.
(B) Pick literal from each clause \& find assignment s.t. all true.
... Fail if two literals picked are in conflict, e.g. you pick x_{i} and $\neg x_{i}$

Use second view of 3SAT for reduction.

2.1.7.4 The Reduction

(A) G_{φ} will have one vertex for each literal in a clause
(B) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
(C) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
(D) Take k to be the number of clauses

2.1.7.5 Correctness

Proposition 2.1.7. φ is satisfiable $\Longleftrightarrow G_{\varphi}$ has an independent set of size k k : number of clauses in φ.

Proof: $\Rightarrow a$: truth assignment satisfying φ
(A) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Figure 2.1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

2.1.7.6 Correctness (contd)

Proposition 2.1.8. φ is satisfiable $\Longleftrightarrow G_{\varphi}$ has an independent set of size k (= number of clauses in $\varphi)$.
Proof: $\Leftarrow S$: independent set in G_{φ} of size k
(A) S must contain exactly one vertex from each clause
(B) S cannot contain vertices labeled by conflicting clauses
(C) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

2.1.7.7 Transitivity of Reductions

Lemma 2.1.9. $X \leq_{P} Y$ and $Y \leq_{P} Z$ implies that $X \leq_{P} Z$.
(A) Note: $X \leq_{P} Y$ does not imply that $Y \leq_{P} X$ and hence it is very important to know the FROM and TO in a reduction.
(B) To prove $X \leq_{P} Y$: show a reduction FROM X TO Y ... show \exists algorithm for Y implies an algorithm for X.

2.2 Definition of NP

2.2.0.8 Recap ...

(A) Clique
(A) Set Cover
(B) Independent Set
(B) SAT
(C) Vertex Cover
(C) 3SAT

Problems

Relationship Vertex Cover \approx_{P} Independent Set \leq_{P} Clique \leq_{P} Independent Set Independent Set \approx_{P} Clique

3SAT \leq_{P} SAT \leq_{P} 3SAT3SAT \approx_{P} SAT
3SAT $\leq{ }_{P}$ Independent Set
Independent Set \leq_{P} Vertex Cover \leq_{P} Independent Set Independent Set \approx_{P} Vertex Cover

2.3 Preliminaries

2.3.1 Problems and Algorithms

2.3.1.1 Problems and Algorithms: Formal Approach

Decision Problems
(A) Problem Instance: Binary string s, with size $|s|$
(B) Problem: Set X of strings s.t. answer is "yes": members of X are $\boldsymbol{Y E S}$ instances of X. Strings not in X are NO instances of X.

Definition 2.3.1. (A) alg: algorithm for problem X if $\operatorname{alg}(s)=" y e s " \Longleftrightarrow s \in X$.
(B) alg have polynomial running time $\exists p(\cdot)$ polynomial s.t. $\forall s$, $\operatorname{alg}(s)$ terminates in at most $O(p(|s|))$ steps.

2.3.1.2 Polynomial Time

Definition 2.3.2. Polynomial time (denoted by \mathbf{P}): class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example 2.3.3. Problems in \mathbf{P} include
(A) Is there a shortest path from s to t of length $\leq k$ in G ?
(B) Is there a flow of value $\geq k$ in network G ?
(C) Is there an assignment to variables to satisfy given linear constraints?

2.3.1.3 Efficiency Hypothesis

Efficiency hypothesis. A problem X has an efficient algorithm
$\Longleftrightarrow X \in \mathbf{P}$, that is X has a polynomial time algorithm.
(A) Justifications:
(A) Robustness of definition to variations in machines.
(B) A sound theoretical definition.
(C) Most known polynomial time algorithms for "natural" problems have small polynomial running times.

2.3.2 Problems that are hard...

2.3.2.1 ...with no known polynomial time algorithms

Problems
(A) Independent Set
(B) Vertex Cover
(C) Set Cover
(D) SAT
(E) 3SAT
(A) undecidable problems are way harder (no algorithm at all!)
(B) ...but many problems want to solve: similar to above.
(C) Question: What is common to above problems?

2.3.2.2 Efficient Checkability

(A) Above problems have the property:

Checkability For any YES instance I_{X} of X :
(A) there is a proof (or certificate) C.
(B) Length of certificate $|C| \leq \operatorname{poly}\left(\left|I_{X}\right|\right)$.
(C) Given C, I_{x} : efficiently check that I_{X} is YES instance.
(B) Examples:
(A) SAT formula φ : proof is a satisfying assignment.
(B) Independent Set in graph G and k :

Certificate: a subset S of vertices.

2.3.3 Certifiers/Verifiers

2.3.3.1 Certifiers

Definition 2.3.4. Algorithm $C(\cdot, \cdot)$ is certifier for problem $X: \forall s \in X$ there $\exists t$ such that $C(s, t)=$ "YES", and conversely, if for some s and $t, C(s, t)=$ "yes" then $s \in X$.
t is the certificate or proof for s.

Definition 2.3.5 (Efficient Certifier.). Certifier C is efficient certifier for X if there is a polynomial $p(\cdot)$ s.t. for every string s :
$\star s \in X$ if and only if
\star there is a string t :
(A) $|t| \leq p(|s|)$,
(B) $C(s, t)=" y e s "$,
(C) and C runs in polynomial time.

2.3.3.2 Example: Independent Set

(A) Problem: Does $G=(V, E)$ have an independent set of size $\geq k$?
(A) Certificate: Set $S \subseteq V$.
(B) Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

2.3.4 Examples

2.3.4.1 Example: Vertex Cover
(A) Problem: Does G have a vertex cover of size $\leq k$?
(A) Certificate: $S \subseteq V$.
(B) Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

2.3.4.2 Example: SAT

(A) Problem: Does formula φ have a satisfying truth assignment?
(A) Certificate: Assignment a of $0 / 1$ values to each variable.
(B) Certifier: Check each clause under a and say "yes" if all clauses are true.

2.3.4.3 Example:Composites

Composite

Instance: A number s.
Question: Is the number s a composite?
(A) Problem: Composite.
(A) Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.
(B) Certifier: Check that t divides s.

$2.4 \quad N P$

2.4.1 Definition

2.4.1.1 Nondeterministic Polynomial Time

Definition 2.4.1. Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example 2.4.2. Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

2.4.2 Why is it called...

2.4.2.1 Nondeterministic Polynomial Time

(A) A certifier is an algorithm $C(I, c)$ with two inputs:
(A) I : instance.
(B) $c:$ proof/certificate that the instance is indeed a YES instance of the given problem.
(B) Think about C as algorithm for original problem, if:
(A) Given I, the algorithm guess (non-deterministically, and who knows how) the certificate c.
(B) The algorithm now verifies the certificate c for the instance I.
(C) Usually NP is described using Turing machines (gag).

2.4.2.2 Asymmetry in Definition of NP

(A) Only YES instances have a short proof/certificate. NO instances need not have a short certificate.
(B) For example... Example 2.4.3. SAT formula φ. No easy way to prove that φ is NOT satisfiable!
(C) More on this and co-NP later on.

2.4.3 Intractability
 2.4.3.1 P versus $N P$

Proposition 2.4.4. $\mathrm{P} \subseteq \mathrm{NP}$.
For a problem in \mathbf{P} no need for a certificate!
Proof: Consider problem $X \in \mathbf{P}$ with algorithm alg. Need to demonstrate that X has an efficient certifier:
(A) Certifier C (input s, t):
runs $\operatorname{alg}(s)$ and returns its answer.
(B) C runs in polynomial time.
(C) If $s \in X$, then for every $t, C(s, t)=$ "YES".
(D) If $s \notin X$, then for every $t, C(s, t)=$ "NO".

2.4.3.2 Exponential Time

Definition 2.4.5. Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O\left(2^{\operatorname{poly}(|s|)}\right)$.

Example: $O\left(2^{n}\right), O\left(2^{n \log n}\right), O\left(2^{n^{3}}\right), \ldots$

2.4.3.3 $N P$ versus $E X P$

Proposition 2.4.6. NP \subseteq EXP .
Proof: Let $X \in \mathbf{N P}$ with certifier C. Need to design an exponential time algorithm for X.
(A) For every t, with $|t| \leq p(|s|)$ run $C(s, t)$; answer "yes" if any one of these calls returns "yes".
(B) The above algorithm correctly solves X (exercise).
(C) Algorithm runs in $O\left(q(|s|+|p(s)|) 2^{p(|s|)}\right)$, where q is the running time of C.

2.4.3.4 Examples

(A) SAT: try all possible truth assignment to variables.
(B) Independent Set: try all possible subsets of vertices.
(C) Vertex Cover: try all possible subsets of vertices.

2.4.3.5 Is $N P$ efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{E X P}$.
Big question is there are problem in NP that does not belong to P ? Is $\mathbf{P}=\mathbf{N P}$?

2.4.4 If $P=N P \ldots$

2.4.4.1 Or: If pigs could fly then life would be sweet.

(A) Many important optimization problems can be solved efficiently.
(B) The RSA cryptosystem can be broken.
(C) No security on the web.
(D) No e-commerce
(E) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

2.4.4.2 $\quad P$ versus $N P$

Status Relationship between \mathbf{P} and NP remains one of the most important open problems in mathematics/computer science.
Consensus: Most people feel/believe $\mathbf{P} \neq \mathrm{NP}$.
Resolving \mathbf{P} versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

2.5 Not for lecture: Converting any boolean formula into CNF

2.5.0.3 The dark art of formula conversion into CNF

Consider an arbitrary boolean formula ϕ defined over k variables. To keep the discussion concrete, consider the formula $\phi \equiv x_{k}=x_{i} \wedge x_{j}$. We would like to convert this formula into an equivalent CNF formula.

2.5.1 Formula conversion into CNF

2.5.1.1 Step 1

Build a truth table for the boolean formula.

			value of
x_{k}	x_{i}	x_{j}	$x_{k}=x_{i} \wedge x_{j}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

2.5.2 Formula conversion into CNF

2.5.2.1 Step 1.5-understand what a single CNF clause represents

Given an assignment, say, $x_{k}=0, x_{i}=0$ and $x_{j}=1$, consider the CNF clause $x_{k} \vee x_{i} \vee \overline{x_{j}}$ (you negate a variable if it is assigned one). Its truth table is

x_{k}	x_{i}	x_{j}	$x_{k} \vee x_{i} \vee \overline{x_{j}}$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Observe that a single clause assigns zero to one row, and one everywhere else. An conjunction of several such clauses, as such, would result in a formula that is 0 in all the rows that corresponds to these clauses, and one everywhere else.

2.5.3 Formula conversion into CNF

2.5.3.1 Step 2

Write down CNF clause for every row in the table that is zero.

x_{k}	x_{i}	x_{j}	$x_{k}=x_{i} \wedge x_{j}$	CNF clause
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}$
1	0	0	0	$\overline{x_{k}} \vee x_{i} \vee x_{j}$
1	0	1	0	$\overline{x_{k} \vee x_{i} \vee \overline{x_{j}}}$
1	1	0	0	$\overline{x_{k}} \vee \overline{x_{i}} \vee x_{j}$
1	1	1	1	

The conjunction (i.e., and) of all these clauses is clearly equivalent to the original formula. In this case $\psi \equiv\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(\overline{x_{k}} \vee x_{i} \vee \overline{x_{j}}\right) \wedge\left(\overline{x_{k}} \vee \overline{x_{i}} \vee x_{j}\right)$

2.5.4 Formula conversion into CNF

2.5.4.1 Step 3 - simplify if you want to

Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
(A) $\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(\overline{x_{k}} \vee x_{i} \vee \overline{x_{j}}\right)$ is equivalent to $\left(\overline{x_{k}} \vee x_{i}\right)$.
(B) $\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(\overline{x_{k}} \vee \overline{x_{i}} \vee x_{j}\right)$ is equivalent to $\left(\overline{x_{k}} \vee x_{j}\right)$.

Using the above two observation, we have that our formula $\psi \equiv\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(\overline{x_{k}} \vee x_{i} \vee x_{j}\right) \wedge\left(\overline{x_{k}} \vee x_{i} \vee \overline{x_{j}}\right) \wedge$ $\left(\overline{x_{k}} \vee \overline{x_{i}} \vee x_{j}\right)$
is equivalent to
$\psi \equiv\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge\left(\overline{x_{k}} \vee x_{i}\right) \wedge\left(\overline{x_{k}} \vee x_{j}\right)$.
We conclude:
Lemma 2.5.1. The formula $x_{k}=x_{i} \wedge x_{j}$ is equivalent to the CNF formula $\psi \equiv\left(x_{k} \vee \overline{x_{i}} \vee \overline{x_{j}}\right) \wedge$ $\left(\overline{x_{k}} \vee x_{i}\right) \wedge\left(\overline{x_{k}} \vee x_{j}\right)$.

