Entropy, Randomness, and Information

Lecture 27
December 5, 2013
Part I

Entropy
“If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us.”
The entropy in bits of a discrete random variable \(X \) is

\[
\mathbb{H}(X) = - \sum_x \Pr[X = x] \log \Pr[X = x].
\]

Equivalently,

\[
\mathbb{H}(X) = \mathbb{E} \left[\log \frac{1}{\Pr[X]} \right].
\]
Entropy intuition...

Intuition...

$H(X)$ is the number of fair coin flips that one gets when getting the value of X.
Binary entropy

\(H(X) = - \sum_x \Pr[X = x] \lg \Pr[X = x] \)

Definition

The **binary entropy** function \(H(p) \) for a random binary variable that is 1 with probability \(p \), is \(H(p) = -p \lg p - (1 - p) \lg(1 - p) \). We define \(H(0) = H(1) = 0 \).

Q: How many truly random bits are there when given the result of flipping a single coin with probability \(p \) for heads?
Binary entropy

$$H(X) = - \sum_x \Pr[X = x] \lg \Pr[X = x]$$

Definition

The **binary entropy** function $H(p)$ for a random binary variable that is 1 with probability p, is $H(p) = -p \lg p - (1 - p) \lg (1 - p)$. We define $H(0) = H(1) = 0$.

Q: How many truly random bits are there when given the result of flipping a single coin with probability p for heads?
Binary entropy

\[H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x] \]

Definition

The **binary entropy** function \(H(p) \) for a random binary variable that is \(1 \) with probability \(p \), is \(H(p) = -p \log p - (1 - p) \log(1 - p) \). We define \(H(0) = H(1) = 0 \).

Q: How many truly random bits are there when given the result of flipping a single coin with probability \(p \) for heads?
Binary entropy:
\[H(p) = -p \log p - (1 - p) \log (1 - p) \]

\(H(p) \) is a concave symmetric around \(1/2 \) on the interval \([0, 1]\).

- Maximum at \(1/2 \).
- \(H(3/4) \approx 0.8113 \) and \(H(7/8) \approx 0.5436 \).
- A coin that has \(3/4 \) probably to be heads have higher amount of “randomness” in it than a coin that has probability \(7/8 \) for heads.
Binary entropy:

$$\mathcal{H}(p) = -p \log_2 p - (1 - p) \log_2 (1 - p)$$

1. $\mathcal{H}(p)$ is a concave symmetric around $1/2$ on the interval $[0, 1]$.
2. Maximum at $1/2$.
3. $\mathcal{H}(3/4) \approx 0.8113$ and $\mathcal{H}(7/8) \approx 0.5436$.
4. Coin that has $3/4$ probably to be heads have higher amount of “randomness” in it than a coin that has probability $7/8$ for heads.
Binary entropy:
\[H(p) = -p \log p - (1 - p) \log(1 - p) \]

1. \(H(p) \) is a concave symmetric around \(1/2 \) on the interval \([0, 1]\).
2. maximum at \(1/2 \).
3. \(H(3/4) \approx 0.8113 \) and \(H(7/8) \approx 0.5436 \).
4. coin that has \(3/4 \) probably to be heads have higher amount of “randomness” in it than a coin that has probability \(7/8 \) for heads.
Binary entropy:

$$H(p) = -p \log p - (1 - p) \log(1 - p)$$

1. $H(p)$ is a concave symmetric around $1/2$ on the interval $[0, 1]$.
2. maximum at $1/2$.
3. $H(3/4) \approx 0.8113$ and $H(7/8) \approx 0.5436$.
4. coin that has $3/4$ probably to be heads have higher amount of “randomness” in it than a coin that has probability $7/8$ for heads.
And now for some unnecessary math

1. $H(p) = -p \log p - (1 - p) \log(1 - p)$
2. $H'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p}$
3. $H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)}$.
4. $\implies H''(p) \leq 0$, for all $p \in (0, 1)$, and the $H(\cdot)$ is concave.
5. $H'(1/2) = 0 \implies H(1/2) = 1$ max of binary entropy.
6. \implies balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log(1 - p) \)
2. \(H'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p} \)
3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)} \).
4. \(\implies H''(p) \leq 0 \), for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.
5. \(H'(1/2) = 0 \implies H(1/2) = 1 \) max of binary entropy.
6. \(\implies \) balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log (1 - p) \)

2. \(H'(p) = - \log p + \log (1 - p) = \log \frac{1-p}{p} \)

3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)} \).

\(\implies H''(p) \leq 0, \) for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.

4. \(H'(1/2) = 0 \implies H(1/2) = 1 \) max of binary entropy.

5. \(H'(1/2) = 0 \implies H(1/2) = 1 \) max of binary entropy.

6. \(\implies \) balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. $H(p) = -p \log p - (1 - p) \log (1 - p)$
2. $H'(p) = -\log p + \log (1 - p) = \log \frac{1 - p}{p}$
3. $H''(p) = \frac{p}{1 - p} \cdot \left(-\frac{1}{p^2}\right) = -\frac{1}{p(1-p)}.$
4. $\implies H''(p) \leq 0$, for all $p \in (0,1)$, and the $H(\cdot)$ is concave.
5. $H'(1/2) = 0 \implies H(1/2) = 1$ max of binary entropy.
6. \implies balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. $H(p) = -p \log p - (1 - p) \log(1 - p)$
2. $H'(p) = -\log p + \log(1 - p) = \log \frac{1-p}{p}$
3. $H''(p) = \frac{1}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)}$.
4. $\implies H''(p) \leq 0$, for all $p \in (0, 1)$, and the $H(\cdot)$ is concave.
5. $H'(1/2) = 0 \implies H(1/2) = 1$ max of binary entropy.
6. \implies balanced coin has the largest amount of randomness in it.
And now for some unnecessary math

1. \(H(p) = -p \log p - (1 - p) \log (1 - p) \)

2. \(H'(p) = -\log p + \log (1 - p) = \log \frac{1-p}{p} \)

3. \(H''(p) = \frac{p}{1-p} \cdot \left(-\frac{1}{p^2} \right) = -\frac{1}{p(1-p)} \)

4. \(\implies H''(p) \leq 0 \), for all \(p \in (0, 1) \), and the \(H(\cdot) \) is concave.

5. \(H'(1/2) = 0 \implies H(1/2) = 1 \text{ max} \) of binary entropy.

6. \(\implies \text{balanced coin has the largest amount of randomness in it.} \)
Squeezing good random bits out of bad random bits...

Given the result of n coin flips: b_1, \ldots, b_n from a faulty coin, with head with probability p, how many truly random bits can we extract?
Squeezing good random bits out of bad random bits...

Question…

Given the result of \(n \) coin flips: \(b_1, \ldots, b_n \) from a faulty coin, with head with probability \(p \), how many truly random bits can we extract?

If believe intuition about entropy, then this number should be

\[
\approx n H(p).
\]
entropy of X is $H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]$.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy $H(X) = - \sum_{i=1}^n \frac{1}{n} \log \frac{1}{n} = \log n$.

Entropy is oblivious to the exact values random variable can have.

random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
1. **Entropy** of X is $H(X) = -\sum_x \Pr[X = x] \log \Pr[X = x]$.

2. Entropy of uniform variable.

Example

A random variable X that has probability $\frac{1}{n}$ to be i, for $i = 1, \ldots, n$, has entropy $H(X) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$.

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
entropy of X is $\mathbb{H}(X) = -\sum_x \Pr[X = x] \log \Pr[X = x]$.

Entropy of uniform variable.

Example

A random variable X that has probability $1/n$ to be i, for $i = 1, \ldots, n$, has entropy $\mathbb{H}(X) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$.

Entropy is oblivious to the exact values random variable can have.

random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
1. **Entropy** of X is $H(X) = - \sum_x \Pr[X = x] \log \Pr[X = x]$.

2. Entropy of uniform variable.

Example

A random variable X that has probability $\frac{1}{n}$ to be i, for $i = 1, \ldots, n$, has entropy $H(X) = - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$.

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, 1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
1. **Entropy** of X is $H(X) = -\sum_x \Pr[X = x] \log \Pr[X = x]$.

2. Entropy of uniform variable.

Example

A random variable X that has probability $\frac{1}{n}$ to be i, for $i = 1, \ldots, n$, has entropy $H(X) = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n} = \log n$.

3. Entropy is oblivious to the exact values random variable can have.

4. Random variables over $-1, +1$ with equal probability has the same entropy (i.e., 1) as a fair coin.
Lemma

Let X and Y be two independent random variables, and let Z be the random variable (X, Y). Then $\mathbb{H}(Z) = \mathbb{H}(X) + \mathbb{H}(Y)$.
Proof

In the following, summation are over all possible values that the variables can have. By the independence of X and Y we have

$$H(Z) = \sum_{x,y} \Pr[(X, Y) = (x, y)] \log \frac{1}{\Pr[(X, Y) = (x, y)]}$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y] \log \frac{1}{\Pr[X = x] \Pr[Y = y]}$$

$$= \sum_x \sum_y \Pr[X = x] \Pr[Y = y] \log \frac{1}{\Pr[X = x]}$$

$$+ \sum_y \sum_x \Pr[X = x] \Pr[Y = y] \log \frac{1}{\Pr[Y = y]}$$
Proof continued

\[H(Z) = \sum_x \sum_y \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[X = x]} \]

\[+ \sum_y \sum_x \Pr[X = x] \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]} \]

\[= \sum_x \Pr[X = x] \lg \frac{1}{\Pr[X = x]} \]

\[+ \sum_y \Pr[Y = y] \lg \frac{1}{\Pr[Y = y]} \]

\[= H(X) + H(Y). \]
Bounding the binomial coefficient using entropy

Lemma

Suppose that nq is integer in the range $[0, n]$. Then

$$\frac{2^n \mathbb{H}(q)}{n + 1} \leq \binom{n}{nq} \leq 2^n \mathbb{H}(q).$$
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

$$\binom{n}{nq} q^{nq} (1 - q)^{n-nq} \leq (q + (1 - q))^n = 1.$$

As such, since

$$q^{-nq} (1 - q)^{-(1-q)n} = 2^{n(-q \log q - (1-q) \log(1-q))} = 2^{n \mathbb{H}(q)},$$

we have

$$\binom{n}{nq} \leq q^{-nq} (1 - q)^{-(1-q)n} = 2^{n \mathbb{H}(q)}.$$
Proof

Holds if \(q = 0 \) or \(q = 1 \), so assume \(0 < q < 1 \). We have

\[
\binom{n}{nq} q^{nq} (1 - q)^{n - nq} \leq (q + (1 - q))^n = 1.
\]

As such, since

\[
q^{-nq} (1 - q)^{-(1-q)n} = 2^n (-q \lg q - (1-q) \lg(1-q)) = 2^n H(q),
\]

we have

\[
\binom{n}{nq} \leq q^{-nq} (1 - q)^{-(1-q)n} = 2^n H(q).
\]
Proof

Holds if \(q = 0 \) or \(q = 1 \), so assume \(0 < q < 1 \). We have

\[
\binom{n}{nq} q^{nq} (1 - q)^{n - nq} \leq (q + (1 - q))^n = 1.
\]

As such, since

\[
q^{-nq} (1 - q)^{-q^n} = 2^{n(-q \lg q - (1-q) \lg (1-q))} = 2^n H(q),
\]

we have

\[
\binom{n}{nq} \leq q^{-nq} (1 - q)^{-q^n} = 2^n H(q).
\]
Proof

Holds if $q = 0$ or $q = 1$, so assume $0 < q < 1$. We have

\[
\binom{n}{nq} q^{nq} (1 - q)^{n-nq} \leq (q + (1 - q))^n = 1.
\]

As such, since

\[
q^{-nq} (1 - q)^{-(1-q)n} = 2^n (-q \log q - (1-q) \log (1-q)) = 2^n H(q),
\]

we have

\[
\binom{n}{nq} \leq q^{-nq} (1 - q)^{-(1-q)n} = 2^n H(q).
\]
Proof continued

Other direction...

1. $\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}$

2. $\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i)$.

3. Claim: $\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq}$ largest term in $\sum_{k=0}^{n} \mu(k) = 1$.

4. $\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k}(1 - \frac{n-k}{k+1} \frac{q}{1-q})$.

5. sign of $\Delta_k = $ size of last term...

6. $\text{sign}(\Delta_k) = \text{sign}(1 - \frac{(n-k)q}{(k+1)(1-q)})$

 $\quad = \text{sign}(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)})$.

Sariel (UIUC) CS573 16 Fall 2013 16 / 28
Proof continued

Other direction...

1. \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \]

2. \[\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i). \]

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1. \)

4. \(\Delta_k = \mu(k) - \mu(k+1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q}\right), \)

5. sign of \(\Delta_k \) = size of last term...

6. \[\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)}\right) \]

\[= \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)}\right). \]
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q}\right) \).

5. sign of \(\Delta_k \) = size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)

\[\quad = \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right). \]
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) \),

5. sign of \(\Delta_k \) = size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)

\[= \text{sign} \left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)} \right) \]
Proof continued

Other direction...

1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \[\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i). \]

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1. \)

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right), \)

5. sign of \(\Delta_k = \) size of last term...

6. \[\text{sign}(\Delta_k) = \text{sign} \left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \]

\[= \text{sign} \left(\frac{(k+1)(1-q)-(n-k)q}{(k+1)(1-q)} \right). \]
Proof continued
Other direction...

1. $$\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}$$

2. $$\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i).$$

3. Claim: $$\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq}$$ largest term in $$\sum_{k=0}^{n} \mu(k) = 1.$$

4. $$\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q}\right),$$

5. sign of $$\Delta_k$$ = size of last term...

6. $$\text{sign}(\Delta_k) = \text{sign}\left(1 - \frac{(n-k)q}{(k+1)(1-q)}\right)$$

 $$= \text{sign}\left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)}\right).$$
1. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k} \)

2. \(\sum_{i=0}^{n} \binom{n}{i} q^i (1 - q)^{n-i} = \sum_{i=0}^{n} \mu(i) \).

3. Claim: \(\mu(nq) = \binom{n}{nq} q^{nq} (1 - q)^{n-nq} \) largest term in \(\sum_{k=0}^{n} \mu(k) = 1 \).

4. \(\Delta_k = \mu(k) - \mu(k + 1) = \binom{n}{k} q^k (1 - q)^{n-k} \left(1 - \frac{n-k}{k+1} \frac{q}{1-q} \right) \),

5. sign of \(\Delta_k = \) size of last term...

6. \(\text{sign}(\Delta_k) = \text{sign}\left(1 - \frac{(n-k)q}{(k+1)(1-q)} \right) \)

 \[= \text{sign}\left(\frac{(k+1)(1-q) - (n-k)q}{(k+1)(1-q)} \right) \].
1. \[(k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]
2. \[\Rightarrow \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
 \[\Delta_k < 0 \text{ otherwise.}\]
3. \[\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\]
4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]
5. \[\Rightarrow \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]
6. \[\mu(nq) \text{ larger than the average in sum.}\]
7. \[\Rightarrow \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}.\]
8. \[\Rightarrow \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq}(1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^{nH(q)}.\]
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\)

2. \(\implies \Delta_k \geq 0\) when \(k \geq nq + q - 1\) \(\Delta_k < 0\) otherwise.

3. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1),\) for \(k < nq,\) and \(\mu(k) \geq \mu(k + 1)\) for \(k \geq nq.\)

5. \(\implies \mu(nq)\) is the largest term in \(\sum_{k=0}^{n} \mu(k) = 1.\)

6. \(\mu(nq)\) larger than the average in sum.

7. \(\implies \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\)

8. \(\implies \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq} (1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^{n\mathbb{H}(q)}.\)
Proof continued

1. \[(k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]

2. \[\Rightarrow \Delta_k \geq 0 \text{ when } k \geq nq + q - 1 \]
 \[\Delta_k < 0 \text{ otherwise.}\]

3. \[\mu(k) = \binom{n}{k}q^k(1 - q)^{n-k}\]

4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]

5. \[\Rightarrow \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]

6. \[\mu(nq) \text{ larger than the average in sum.}\]

7. \[\Rightarrow \binom{n}{k}q^k(1 - q)^{n-k} \geq \frac{1}{n+1}.\]

8. \[\Rightarrow \binom{n}{nq} \geq \frac{1}{n+1}q^{-nq}(1 - q)^{-(n-nq)} = \frac{1}{n+1}2^{nH(q)}.\]
Proof continued

1. \((k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\)

2. \[\implies \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
 \[\Delta_k < 0 \text{ otherwise.}\]

3. \(\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\)

4. \(\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\)

5. \[\implies \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]

6. \(\mu(nq) \text{ larger than the average in sum.}\)

7. \[\implies \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]

8. \[\implies \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq} (1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^n H(q).\]
\begin{enumerate}
\item \[(k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]
\item \[\implies \Delta_k \geq 0 \text{ when } k \geq nq + q - 1 \]
\[\Delta_k < 0 \text{ otherwise.}\]
\item \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]
\item \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]
\item \[\implies \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]
\item \[\mu(nq) \text{ larger than the average in sum.}\]
\item \[\implies \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]
\item \[\implies \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq} (1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^n H(q).\]
\end{enumerate}
Proof continued

1. \[(k + 1)(1 - q) - (n - k)q =
 \[k + 1 - kq - q - nq + kq = 1 + k - q - nq.
\]

2. \[\iff \quad \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
 \[\Delta_k < 0 \text{ otherwise.}\]

3. \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]

4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]

5. \[\iff \quad \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]

6. \[\mu(nq) \text{ larger than the average in sum.}\]

7. \[\iff \quad \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]

8. \[\iff \quad \frac{1}{n+1} q^{-nq} (1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^n H(q).\]
Proof continued

1. \[(k + 1)(1 - q) - (n - k)q =
 k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]
2. \[\Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
 \[\Delta_k < 0 \text{ otherwise.}\]
3. \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]
4. \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]
5. \[\Rightarrow \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]
6. \[\mu(nq) \text{ larger than the average in sum.}\]
7. \[\Rightarrow \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]
8. \[\Rightarrow \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq}(1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^{n\mathbb{H}(q)}.\]
(1) \[(k + 1)(1 - q) - (n - k)q = k + 1 - kq - q - nq + kq = 1 + k - q - nq.\]

2 \[\iff \Delta_k \geq 0 \text{ when } k \geq nq + q - 1\]
\[\Delta_k < 0 \text{ otherwise.}\]

3 \[\mu(k) = \binom{n}{k} q^k (1 - q)^{n-k}\]

4 \[\mu(k) < \mu(k + 1), \text{ for } k < nq, \text{ and } \mu(k) \geq \mu(k + 1) \text{ for } k \geq nq.\]

5 \[\implies \mu(nq) \text{ is the largest term in } \sum_{k=0}^{n} \mu(k) = 1.\]

6 \[\mu(nq) \text{ larger than the average in sum.}\]

7 \[\implies \binom{n}{k} q^k (1 - q)^{n-k} \geq \frac{1}{n+1}.\]

8 \[\implies \binom{n}{nq} \geq \frac{1}{n+1} q^{-nq} (1 - q)^{-(n-nq)} = \frac{1}{n+1} 2^{nH(q)}.\]
Corollary

We have:

(i) \(q \in [0, 1/2] \Rightarrow \binom{n}{\lfloor nq \rfloor} \leq 2^n\mathbb{H}(q). \)

(ii) \(q \in [1/2, 1] \Rightarrow \binom{n}{\lceil nq \rceil} \leq 2^n\mathbb{H}(q). \)

(iii) \(q \in [1/2, 1] \Rightarrow \frac{2^{n\mathbb{H}(q)}}{n+1} \leq \binom{n}{\lfloor nq \rfloor}. \)

(iv) \(q \in [0, 1/2] \Rightarrow \frac{2^{n\mathbb{H}(q)}}{n+1} \leq \binom{n}{\lceil nq \rceil}. \)

Proof is straightforward but tedious.
What we have...

1. Proved that $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$.
2. Estimate is loose.
3. Sanity check...

 (I) A sequence of n bits generated by coin with probability q for head.

 (II) By Chernoff inequality... roughly nq heads in this sequence.

 (III) Generated sequence Y belongs to $\binom{n}{nq} \approx 2^{n\mathbb{H}(q)}$ possible sequences.

 (IV) ...of similar probability.

 (V) $\implies \mathbb{H}(Y) \approx \log_2 \binom{n}{nq} = n\mathbb{H}(q)$.

Sariel (UIUC)
CS573
Fall 2013
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^{nH(q)} \).

2. Estimate is loose.

3. Sanity check...

 (I) A sequence of \(n \) bits generated by coin with probability \(q \) for head.

 (II) By Chernoff inequality... roughly \(nq \) heads in this sequence.

 (III) Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^{nH(q)} \) possible sequences.

 (IV) ...of similar probability.

 (V) \(\implies H(Y) \approx \log \binom{n}{nq} = nH(q) \).
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^{nH(q)} \).
2. Estimate is loose.
3. Sanity check...

 (I) A sequence of \(n \) bits generated by coin with probability \(q \) for head.

 (II) By Chernoff inequality... roughly \(nq \) heads in this sequence.

 (III) Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^{nH(q)} \) possible sequences.

 (IV) ...of similar probability.

 (V) \(\implies H(Y) \approx \lg \binom{n}{nq} = nH(q) \).
What we have...

1. Proved that $\binom{n}{nq} \approx 2^{nH(q)}$.
2. Estimate is loose.
3. Sanity check...

 (I) A sequence of n bits generated by coin with probability q for head.
 (II) By Chernoff inequality... roughly nq heads in this sequence.
 (III) Generated sequence Y belongs to $\binom{n}{nq} \approx 2^{nH(q)}$ possible sequences.
 (IV) ...of similar probability.

 (V) $\implies H(Y) \approx \lg \binom{n}{nq} = nH(q)$.
What we have...

1. Proved that \(\binom{n}{nq} \approx 2^{nH(q)} \).

2. Estimate is loose.

3. Sanity check...

 (I) A sequence of \(n \) bits generated by coin with probability \(q \) for head.

 (II) By Chernoff inequality... roughly \(nq \) heads in this sequence.

 (III) Generated sequence \(Y \) belongs to \(\binom{n}{nq} \approx 2^{nH(q)} \) possible sequences .

 (IV) ...of similar probability.

 (V) \(\implies H(Y) \approx \lg \binom{n}{nq} = nH(q) \).
Extracting randomness...

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition

An extraction function Ext takes as input the value of a random variable X and outputs a sequence of bits y, such that

$$\Pr[\text{Ext}(X) = y \mid |y| = k] = \frac{1}{2^k},$$

whenever $\Pr[|y| = k] > 0$, where $|y|$ denotes the length of y.
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. X: uniform random integer variable $0, \ldots, 11$.
5. $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...

$$\Pr[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2] = \frac{1}{4},$$
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. X: uniform random integer variable $0, \ldots, 11$.
5. $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...

$$\Pr \left[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2 \right] = \frac{1}{4},$$
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. X: uniform random integer variable $0, \ldots, 11$.
5. $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...

\[
\Pr\left[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2 \right] = \frac{1}{4},
\]
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. X: uniform random integer variable $0, \ldots, 11$.
5. $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...
 \[
 \Pr \left[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2 \right] = \frac{1}{4},
 \]
Extracting randomness...

1. **X**: uniform random integer variable out of $0, \ldots, 7$.
2. **$\text{Ext}(X)$**: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. **X**: uniform random integer variable $0, \ldots, 11$.
5. **$\text{Ext}(x)$**: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...
\[
\Pr\left[\text{Ext}(X) = 00 \mid \left|\text{Ext}(X)\right| = 2\right] = \frac{1}{4}.
\]
Extracting randomness...

1. \(X\): uniform random integer variable out of \(0, \ldots, 7\).
2. \(\text{Ext}(X)\): binary representation of \(x\).
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. \(X\): uniform random integer variable \(0, \ldots, 11\).
5. \(\text{Ext}(x)\): output the binary representation for \(x\) if \(0 \leq x \leq 7\).
6. If \(x\) is between 8 and 11?
7. Idea... Output binary representation of \(x - 8\) as a two bit number.
8. A valid extractor...
\[
\Pr\left[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2\right] = \frac{1}{4},
\]
Extracting randomness...

1. \(X \): uniform random integer variable out of \(0, \ldots, 7 \).
2. \(\text{Ext}(X) \): binary representation of \(x \).
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. \(X \): uniform random integer variable \(0, \ldots, 11 \).
5. \(\text{Ext}(x) \): output the binary representation for \(x \) if \(0 \leq x \leq 7 \).
6. If \(x \) is between 8 and 11?
7. Idea... Output binary representation of \(x - 8 \) as a two bit number.
8. A valid extractor...
 \[
 \Pr \left[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2 \right] = \frac{1}{4},
 \]
Extracting randomness...

1. X: uniform random integer variable out of $0, \ldots, 7$.
2. $\text{Ext}(X)$: binary representation of x.
3. Definition more subtle... all extracted sequence of the same length would have the same probability.
4. X: uniform random integer variable $0, \ldots, 11$.
5. $\text{Ext}(x)$: output the binary representation for x if $0 \leq x \leq 7$.
6. If x is between 8 and 11?
7. Idea... Output binary representation of $x - 8$ as a two bit number.
8. A valid extractor...

$$\Pr[\text{Ext}(X) = 00 \mid |\text{Ext}(X)| = 2] = \frac{1}{4},$$
The following is obvious, but we provide a proof anyway.

Lemma

Let \(\frac{x}{y} \) *be a faction, such that* \(\frac{x}{y} < 1 \). *Then, for any* \(i \), *we have*

\[
\frac{x}{y} < \frac{x + i}{y + i}.
\]

Proof.

We need to prove that \(x(y + i) - (x + i)y < 0 \). The left size is equal to \(i(x - y) \), but since \(y > x \) (as \(\frac{x}{y} < 1 \)), this quantity is negative, as required.
Theorem

Suppose that the value of a random variable X is chosen uniformly at random from the integers $\{0, \ldots, m - 1\}$. Then there is an extraction function for X that outputs on average at least $\lfloor \lg m \rfloor - 1 = \lfloor H(X) \rfloor - 1$ independent and unbiased bits.
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

Example:

2. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks whose sizes are powers of 2.

3. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

Example: \(x = 10 \):
then falls into block \(2^2 \)... \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.
1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
then falls into block \(2^2 \)...
\(x \) relative location is 2. Output 2 written using two bits, Output: “10”.
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \): then falls into block \(2^2 \)... \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| o | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

3. \(\{0, \ldots, m - 1\} \) decomposed into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):

 then falls into block \(2^2 \).

 \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.

Sariel (UIUC) CS573 Fall 2013 24 / 28
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. Decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):

 then falls into block \(2^2 \ldots \)

 \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \):
 then falls into block \(2^2 \)...
 \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.
Proof

1. \(m \): A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. Example:

3. decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.

4. If \(x \) is in block \(2^k \), output its relative location in the block in binary representation.

5. Example: \(x = 10 \): then falls into block \(2^2 \)...

 \(x \) relative location is 2. Output 2 written using two bits, Output: “10”.

Sariel (UIUC) CS573 Fall 2013 24 / 28
Proof

1. **m**: A sum of unique powers of 2, namely \(m = \sum_i a_i 2^i \), where \(a_i \in \{0, 1\} \).

2. **Example**:

 \[
 \begin{array}{cccccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
 \end{array}
 \]

3. **decomposed \(\{0, \ldots, m - 1\} \) into disjoint union of blocks sizes are powers of 2.**

4. **If** \(x \) **is in block** \(2^k \), **output its relative location in the block in binary representation.**

5. **Example**: \(x = 10 \):

 \[
 \begin{array}{cccccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
 \end{array}
 \]

 then falls into block \(2^2 \)...

 \(x \) **relative location is 2. Output** \(2 \) **written using two bits, Output: “10”.

Proof continued

1. Valid extractor...
2. Theorem holds if \(m \) is a power of two. Only one block.
3. \(m \) not a power of 2...
4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits...
... entropy is \(k \).
5. Let \(2^k < m < 2^{k+1} \) biggest block.
6. \(u = \lfloor \lg(m - 2^k) \rfloor < k \).
There must be a block of size \(u \) in the decomposition of \(m \).
7. two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).
8. Largest two blocks...
9. \(2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0 \).
10. \(Y \): random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits.
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \log_2(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.
10. Y: random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...

2. Theorem holds if \(m \) is a power of two. Only one block.

3. \(m \) not a power of 2...

4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits. ... entropy is \(k \).

5. Let \(2^k < m < 2^{k+1} \) biggest block.

6. \(u = \left\lfloor \log_2(m - 2^k) \right\rfloor < k. \)

 There must be a block of size \(u \) in the decomposition of \(m \).

7. two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).

8. Largest two blocks...

9. \(2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0. \)

10. \(Y \): random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...
2. Theorem holds if \(m \) is a power of two. Only one block.
3. \(m \) not a power of 2...
4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits. ... entropy is \(k \).
5. Let \(2^k < m < 2^{k+1} \) biggest block.
6. \(u = \left\lfloor \log_2(m - 2^k) \right\rfloor < k \).
 There must be a block of size \(u \) in the decomposition of \(m \).
7. Two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).
8. Largest two blocks...
9. \(2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0 \).
10. \(Y \): random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...

2. Theorem holds if m is a power of two. Only one block.

3. m not a power of 2...

4. X falls in block of size 2^k: then output k complete random bits. ... entropy is k.

5. Let $2^k < m < 2^{k+1}$ biggest block.

6. $u = \left\lfloor \lg (m - 2^k) \right\rfloor < k$.

7. There must be a block of size u in the decomposition of m.

8. Two blocks in decomposition of m: sizes 2^k and 2^u.

9. Largest two blocks...

10. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.

10. Y: random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...

2. Theorem holds if \(m \) is a power of two. Only one block.

3. \(m \) not a power of 2...

4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits.

... entropy is \(k \).

5. Let \(2^k < m < 2^{k+1} \) biggest block.

6. \(u = \left\lfloor \lg(m - 2^k) \right\rfloor < k \).

There must be a block of size \(u \) in the decomposition of \(m \).

7. two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).

8. Largest two blocks...

9. \(2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0 \).

10. \(Y \): random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits. ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \left\lfloor \lg(m - 2^k) \right\rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.
10. Y: random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits.
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \left\lfloor \log(m - 2^k) \right\rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.
10. Y: random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...
2. Theorem holds if \(m \) is a power of two. Only one block.
3. \(m \) not a power of \(2 \)...
4. \(X \) falls in block of size \(2^k \): then output \(k \) complete random bits.
 ... entropy is \(k \).
5. Let \(2^k < m < 2^{k+1} \) biggest block.
6. \(u = \lfloor \lg(m - 2^k) \rfloor < k \).
 There must be a block of size \(u \) in the decomposition of \(m \).
7. two blocks in decomposition of \(m \): sizes \(2^k \) and \(2^u \).
8. Largest two blocks...
9. \(2^k + 2 \cdot 2^u > m \implies 2^{u+1} + 2^k - m > 0 \).
10. \(Y \): random variable = number of bits output by extractor.
Proof continued

1. Valid extractor...

2. Theorem holds if m is a power of two. Only one block.

3. m not a power of 2...

4. X falls in block of size 2^k: then output k complete random bits.. ... entropy is k.

5. Let $2^k < m < 2^{k+1}$ biggest block.

6. $u = \left\lfloor \lg(m - 2^k) \right\rfloor < k$.
 There must be a block of size u in the decomposition of m.

7. two blocks in decomposition of m: sizes 2^k and 2^u.

8. Largest two blocks...

9. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.

10. Y: random variable = number of bits output by extractor.
1. Valid extractor...
2. Theorem holds if m is a power of two. Only one block.
3. m not a power of 2...
4. X falls in block of size 2^k: then output k complete random bits. ...
 ... entropy is k.
5. Let $2^k < m < 2^{k+1}$ biggest block.
6. $u = \lfloor \lg(m - 2^k) \rfloor < k$.
 There must be a block of size u in the decomposition of m.
7. two blocks in decomposition of m: sizes 2^k and 2^u.
8. Largest two blocks...
9. $2^k + 2 \times 2^u > m \implies 2^{u+1} + 2^k - m > 0$.
10. Y: random variable = number of bits output by extractor.
Proof continued

1. By lemma, since \(\frac{m-2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m \)):

\[
E[Y] \geq \frac{2^k}{m} + \frac{m - 2^k}{m} \left(\left\lfloor \log_2(m - 2^k) \right\rfloor - 1 \right) = \frac{2^k}{m} + \frac{m - 2^k}{m} (k - k + u - 1) = k + \frac{m - 2^k}{m} (u - k - 1)
\]
By lemma, since \(\frac{m - 2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m + (2^{u+1} + 2^k - m)} = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

By induction (assumed holds for all numbers smaller than \(m \)):

\[
E[Y] \geq \frac{2^k}{m} k + \frac{m - 2^k}{m} \left(\left\lfloor \log(m - 2^k) \right\rfloor - 1 \right)
\]

\[
= \frac{2^k}{m} k + \frac{m - 2^k}{m} (k - k + u - 1)
\]

\[
= k + \frac{m - 2^k}{m} (u - k - 1)
\]
1. By lemma, since \(\frac{m - 2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m \)):

\[
E[Y] \geq \frac{2^k}{m}k + \frac{m - 2^k}{m} \left(\left\lfloor \log(m - 2^k) \right\rfloor - 1 \right)
\]

\[
= \frac{2^k}{m}k + \frac{m - 2^k}{m} (k - k + u - 1)
\]

\[
= k + \frac{m - 2^k}{m} (u - k - 1)
\]
Proof continued

1. By lemma, since \(\frac{m-2^k}{m} < 1 \):

\[
\frac{m - 2^k}{m} \leq \frac{m - 2^k + (2^{u+1} + 2^k - m)}{m} + (2^{u+1} + 2^k - m) = \frac{2^{u+1}}{2^{u+1} + 2^k}.
\]

2. By induction (assumed holds for all numbers smaller than \(m \)):

\[
E[Y] \geq \frac{2^k}{m} k + \frac{m - 2^k}{m} \left(\left\lfloor \log_2(m - 2^k) \right\rfloor - 1 \right)
\]

\[
= \frac{2^k}{m} k + \frac{m - 2^k}{m} (k - k + u - 1) = 0
\]

\[
= k + \frac{m - 2^k}{m} (u - k - 1)
\]
We have:

\[E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1) \]

\[\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1) \]

\[= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u) , \]

since \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u = k - 1 \), then \(E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1 \), as required.

3. If \(u = k - 2 \) then \(E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1. \)
Proof continued..

1. We have:

$$E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1)$$

$$\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1)$$

$$= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u),$$

since $u - k - 1 \leq 0$ as $k > u$.

2. If $u = k - 1$, then $E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1$, as required.

3. If $u = k - 2$ then $E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1$.

We have:

$$E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1)$$

$$\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1)$$

$$= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u),$$

since $u - k - 1 \leq 0$ as $k > u$.

If $u = k - 1$, then $E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1$, as required.

If $u = k - 2$ then $E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1$.
Proof continued..

1. We have:

\[E[Y] \geq k + \frac{m - 2^k}{m} (u - k - 1) \]

\[\geq k + \frac{2^{u+1}}{2^{u+1} + 2^k} (u - k - 1) \]

\[= k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u) , \]

since \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u = k - 1 \), then \(E[Y] \geq k - \frac{1}{2} \cdot 2 = k - 1 \), as required.

3. If \(u = k - 2 \) then \(E[Y] \geq k - \frac{1}{3} \cdot 3 = k - 1 \).
1. \(\mathbb{E}[Y] \geq k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u) \).
 And \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u < k - 2 \) then

 \[
 \mathbb{E}[Y] \geq k - \frac{2^{u+1}}{2^k} (1 + k - u)
 = k - \frac{k - u + 1}{2^{k-u-1}}
 = k - \frac{2 + (k - u - 1)}{2^{k-u-1}}
 \geq k - 1,
 \]

 since \((2 + i)/2^i \leq 1 \) for \(i \geq 2 \).
1. \[E[Y] \geq k - \frac{2^{u+1}}{2^{u+1} + 2^k} (1 + k - u). \]
 And \(u - k - 1 \leq 0 \) as \(k > u \).

2. If \(u < k - 2 \) then

 \[E[Y] \geq k - \frac{2^{u+1}}{2^k} (1 + k - u) \]

 \[= k - \frac{k - u + 1}{2^{k-u-1}} \]

 \[= k - \frac{2 + (k - u - 1)}{2^{k-u-1}} \]

 \[\geq k - 1, \]

 since \((2 + i) / 2^i \leq 1 \) for \(i \geq 2 \).