Codes...

- Σ: alphabet.
- **binary code**: assigns a string of 0s and 1s to each character in the alphabet.
- each symbol in input = a codeword over some other alphabet.
- Useful for transmitting messages over a wire: only $0/1$.
- receiver gets a binary stream of bits...
- ... decode the message sent.
- **prefix code**: reading a prefix of the input binary string uniquely match it to a code word.
- ... continuing to decipher the rest of the stream.
- binary/prefix code is **prefix-free** if no code is a prefix of any other.
- ASCII and Unicode’s UTF-8 are both prefix-free binary codes.
Codes...

- Encoding: given frequency table: $f[1 \ldots n]$.
- $f[i]$: frequency of ith character.
- $\text{code}(i)$: binary string for ith character.
- $\text{len}(s)$: length (in bits) of binary string s.
- Compute tree T that minimizes

$$\text{cost}(T) = \sum_{i=1}^{n} f[i] \ast \text{len}(\text{code}(i)), \quad (1)$$

Frequency table for

"A tale of two cities" by Dickens

<table>
<thead>
<tr>
<th>char</th>
<th>frequency</th>
<th>code</th>
<th>char</th>
<th>freq</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>48165</td>
<td>1110</td>
<td>'N'</td>
<td>42380</td>
<td>1100</td>
</tr>
<tr>
<td>'B'</td>
<td>8414</td>
<td>10100</td>
<td>'O'</td>
<td>46499</td>
<td>1101</td>
</tr>
<tr>
<td>'C'</td>
<td>13896</td>
<td>00100</td>
<td>'P'</td>
<td>9957</td>
<td>10100</td>
</tr>
<tr>
<td>'D'</td>
<td>28041</td>
<td>0011</td>
<td>'Q'</td>
<td>667</td>
<td>1111011001</td>
</tr>
<tr>
<td>'E'</td>
<td>74809</td>
<td>011</td>
<td>'R'</td>
<td>37187</td>
<td>0101</td>
</tr>
<tr>
<td>'F'</td>
<td>13559</td>
<td>11111</td>
<td>'S'</td>
<td>37575</td>
<td>1000</td>
</tr>
<tr>
<td>'G'</td>
<td>12530</td>
<td>11110</td>
<td>'T'</td>
<td>54024</td>
<td>000</td>
</tr>
<tr>
<td>'H'</td>
<td>38961</td>
<td>1001</td>
<td>'U'</td>
<td>16726</td>
<td>01001</td>
</tr>
<tr>
<td>'I'</td>
<td>41005</td>
<td>1011</td>
<td>'V'</td>
<td>5199</td>
<td>111101010</td>
</tr>
<tr>
<td>'J'</td>
<td>710</td>
<td>1111011010</td>
<td>'W'</td>
<td>14113</td>
<td>00101</td>
</tr>
<tr>
<td>'K'</td>
<td>4782</td>
<td>11110111</td>
<td>'X'</td>
<td>724</td>
<td>1111011011</td>
</tr>
<tr>
<td>'L'</td>
<td>22030</td>
<td>10101</td>
<td>'Y'</td>
<td>12177</td>
<td>111100</td>
</tr>
<tr>
<td>'M'</td>
<td>15298</td>
<td>01000</td>
<td>'Z'</td>
<td>215</td>
<td>1111011000</td>
</tr>
</tbody>
</table>

Computed prefix codes...

The Huffman tree generating the code

Build only on A-Z for clarity.
Mergeability of code trees

- two trees for some disjoint parts of the alphabet...
- Merge into larger tree by creating a new node and hanging the trees from this common node.
- ![Diagram of merging trees]
- ...put together two subtrees.

Building optimal prefix code trees

- take two least frequent characters in frequency table...
- ... merge them into a tree, and put the root of merged tree back into table.
- ...instead of the two old trees.
- Algorithm stops when there is a single tree.
- Intuition: infrequent characters participate in a large number of merges. Long code words.
- Algorithm is due to David Huffman (1952).
- Resulting code is best one can do.
- **Huffman coding**: building block used by numerous other compression algorithms.

Analysis...

Lemma

- **T**: optimal code tree (prefix free!).
- Then **T** is a full binary tree.
- ... every node of **T** has either 0 or 2 children.
- If height of **T** is **d**, then there are leafs nodes of height **d** that are sibling.

Proof...

- If there is an internal node in **T** that has one child, we can remove this node from **T**, by connecting its only child directly with its parent. The resulting code tree is clearly a better compressor, in the sense of
 \[\text{cost}(T) = \sum_{i=1}^{n} f[i] * \text{len(code}(i))\].
- **u**: leaf **u** with maximum depth **d** in **T**. Consider parent \(v = p(u) \).
- \(\Rightarrow \ v \): has two children, both leafs
Lemma
Let \(x \) and \(y \) be the two least frequent characters (breaking ties between equally frequent characters arbitrarily). There is an optimal code tree in which \(x \) and \(y \) are siblings.

Proof...
1. Claim: \(\exists \) optimal code s.t. \(x \) and \(y \) are siblings + deepest.
2. \(T \): optimal code tree with depth \(d \).
3. By lemma... \(T \) has two leaves at depth \(d \) that are siblings.
4. If not \(x \) and \(y \), but some other characters \(\alpha \) and \(\beta \).
5. \(T' \): swap \(x \) and \(\alpha \).
6. \(x \) depth inc by \(\Delta \), and depth of \(\alpha \) decreases by \(\Delta \).
7. \(\text{cost}(T') = \text{cost}(T) - (f[\alpha] - f[x]) \Delta. \)
8. \(x \): one of the two least frequent characters.
 ...but \(\alpha \) is not.
9. \(\iff f[\alpha] > f[x] \).
10. Swapping \(x \) and \(\alpha \) does not increase cost.
11. \(T' \): optimal code tree, swapping \(x \) and \(\alpha \) does not decrease cost.
12. \(T' \) is also an optimal code tree (\(f[\alpha] = f[x] \)).
13. Swapping \(y \) and \(b \) must give yet another optimal code tree.
14. Final opt code tree, \(x, y \) are max-depth siblings.

Huffman’s codes are optimal

Theorem
Huffman codes are optimal prefix-free binary codes.

Proof...
1. If message has 1 or 2 diff characters, then theorem easy.
2. \(f[1 \ldots n] \) be original input frequencies.
3. Assume \(f[1] \) and \(f[2] \) are the two smallest.
5. lemma \(\iff \exists \) opt. code tree \(T_{\text{opt}} \) for \(f[1..n] \)
6. \(T_{\text{opt}} \) has 1 and 2 as siblings.
7. Remove 1 and 2 from \(T_{\text{opt}} \).
8. \(T'_{\text{opt}} \): Remaining tree has \(3, \ldots, n \) as leaves and “special” character \(n+1 \) (i.e., parent 1, 2 in \(T_{\text{opt}} \)).
La proof continued...

- character $n+1$: has frequency $f[n+1]$.
 Now, $f[n+1] = f[1] + f[2]$, we have

$$\text{cost}(T_{\text{opt}}) = \sum_{i=1}^{n} f[i] \text{depth}_{T_{\text{opt}}}(i)$$

$$= \sum_{i=3}^{n+1} f[i] \text{depth}_{T_{\text{opt}}}(i) + f[1] \text{depth}_{T_{\text{opt}}}(1) + f[2] \text{depth}_{T_{\text{opt}}}(2) - f[n+1] \text{depth}_{T_{\text{opt}}}(n+1)$$

$$= \text{cost}(T'_{\text{opt}}) + (f[1] + f[2]) \text{depth}(T_{\text{opt}}) - (f[1] + f[2])(\text{depth}(T_{\text{opt}}) - 1)$$

$$= \text{cost}(T'_{\text{opt}}) + f[1] + f[2].$$

La proof continued...

- implies $\min T_{\text{opt}} \equiv \min T'_{\text{opt}}$.

- T'_{opt}: must be optimal coding tree for $f[3, \ldots, n+1]$.

- T'_{H}: Huffman tree for $f[3, \ldots, n+1]$.

- T_H: overall Huffman tree constructed for $f[1, \ldots, n]$.

- By construction: T'_{H} formed by removing leafs 1 and 2 from T_H.

- By induction: Huffman tree generated for $f[3, \ldots, n+1]$ is optimal.

- $\text{cost}(T'_{\text{opt}}) = \text{cost}(T'_{H}).$

- \implies Huffman tree has the same cost as the optimal tree.

What we get...

- A tale of two cities: 779,940 bytes.

- using above Huffman compression results in a compression to a file of size 439,688 bytes.

- Ignoring space to store tree.

- gzip: 301,295 bytes
 bzip2: 220,156 bytes!

- Huffman encoder can be easily written in a few hours of work!

- All later compressors use it as a black box...

Average size of code word

- input is made out of n characters.

- p_i: fraction of input that is ith char (probability).

- use probabilities to build Huffman tree.

- Q: What is the length of the codewords assigned to characters as function of probabilities?

- special case...

Lemma

Let $1, \ldots, n$ be n symbols, such that the probability for the ith symbol is p_i, and furthermore, there is an integer $l_i \geq 0$, such that $p_i = 1/2^l$. Then, in the Huffman coding for this input, the code for i is of length l_i.
Proof

- Proof by induction of the Huffman algorithm.
- Let $n = 2$: claim holds since there are only two characters with probability $1/2$.
- Let i and j be the two characters with lowest probability.
- Must be that $p_i = p_j$ (otherwise, $\sum_k p_k$ can not be equal to one).
- Huffman’s tree merges these two letters, into a single “character” that have probability $2p_i$.
- New “character” has encoding of length $l_i - 1$, by induction (on remaining $n - 1$ symbols).
- Resulting tree encodes i and j by code words of length $(l_i - 1) + 1 = l_i$.

\[\sum_i p_i \log \frac{1}{p_i} \]
\[H(X) = \sum_i \Pr[X = i] \log \frac{1}{\Pr[X = i]} \]
which is the \textit{entropy} of X.