Learning, Linear Separability and Linear Programming

Lecture 22
November 12, 2013
Labeling...

1. **given examples:** a database of cars.
2. like to determine which cars are sport cars.
3. Each car record: interpreted as point in high dimensions.
6. Real world: hundreds of attributes. In some cases even millions of attributes!
7. Automate this **classification** process: label sports/regular car automatically.
given examples: a database of cars.
like to determine which cars are sport cars.
Each car record: interpreted as point in high dimensions.
Example: sport car with 4 doors, manufactured in 1997, by Quaky (with manufacturer ID 6): \((4, 1997, 6)\).
Labeled as a sport car.
Tractor by General Mess (manufacturer ID 3) in 1998: \((0, 1997, 3)\)
Labeled as not a sport car.
Real world: hundreds of attributes. In some cases even millions of attributes!
Automate this \textit{classification} process: label sports/regular car automatically.
given examples: a database of cars.

like to determine which cars are sport cars.

Each car record: interpreted as point in high dimensions.

Example: sport car with 4 doors, manufactured in 1997, by Quaky (with manufacturer ID 6): \((4, 1997, 6)\).
Labeled as a sport car.

Tractor by General Mess (manufacturer ID 3) in 1998: \((0, 1997, 3)\)
Labeled as not a sport car.

Real world: hundreds of attributes. In some cases even millions of attributes!

Automate this classification process: label sports/regular car automatically.
Labeling...

given examples: a database of cars.

like to determine which cars are sport cars.

Each car record: interpreted as point in high dimensions.

Example: sport car with 4 doors, manufactured in 1997, by Quaky (with manufacturer ID 6): \((4, 1997, 6)\).
Labeled as a sport car.

Tractor by General Mess (manufacturer ID 3) in 1998: \((0, 1997, 3)\)
Labeled as not a sport car.

Real world: hundreds of attributes. In some cases even millions of attributes!

Automate this classification process: label sports/regular car automatically.
Automatic classification...

1. learning algorithm:
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. learning: training + classifying.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(\ell \) that separates the red points from the blue points.
Automatic classification...

1. **learning algorithm:**
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. **learning**: training + classifying.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(l \) that separates the red points from the blue points.
Automatic classification...

1. **learning algorithm:**
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. **Learning**: *training* + *classifying*.

3. Learn a function: $f : \mathbb{R}^d \rightarrow \{-1, 1\}$.

4. challenge: f might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line ℓ that separates the red points from the blue points.
Automatic classification...

1. learning algorithm:
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ...can use it for classifying new data.

2. learning: training + classifying.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(l \) that separates the red points from the blue points.
Automatic classification...

1. learning algorithm:
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. learning: training + classifying.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(\ell \) that separates the red points from the blue points.
Automatic classification...

1. learning algorithm:
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. **learning**: *training* + *classifying*.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(\ell \) that separates the red points from the blue points.
Automatic classification...

1. learning algorithm:
 1. given several (or many) classified examples...
 2. ...develop its own conjecture for rule of classification.
 3. ... can use it for classifying new data.

2. **learning**: *training* + *classifying*.

3. Learn a function: \(f : \mathbb{R}^d \rightarrow \{-1, 1\} \).

4. challenge: \(f \) might have infinite complexity...

5. ...rare situation in real world. Assume learnable functions.

6. red and blue points that are linearly separable.

7. Trying to learn a line \(\ell \) that separates the red points from the blue points.
Linear separability example...
Learning linear separation

1. Given red and blue points – how to compute the separating line \(\ell \)?

2. line/plane/hyperplane is the zero set of a linear function.

3. Form: \(\forall x \in \mathbb{R}^d \quad f(x) = \langle a, x \rangle + b \),
 where \(a = (a_1, \ldots, a_d) \), \(b = (b_1, \ldots, b_d) \) \(\in \mathbb{R}^2 \).
 \(\langle a, x \rangle = \sum_i a_i x_i \) is the dot product of \(a \) and \(x \).

4. classification done by computing sign of \(f(x) \): \(\text{sign}(f(x)) \).

5. If \(\text{sign}(f(x)) \) is negative: \(x \) is not in class.
 If positive: inside.

6. A set of training examples:
 \[
 S = \left\{ (x_1, y_1), \ldots, (x_n, y_n) \right\},
 \]
 where \(x_i \in \mathbb{R}^d \) and \(y_i \in \{-1,1\} \), for \(i = 1, \ldots, n \).
Learning linear separation

1. Given red and blue points – how to compute the separating line ℓ?

2. Line/plane/hyperplane is the zero set of a linear function.

3. Form: $\forall x \in \mathbb{R}^d \quad f(x) = \langle a, x \rangle + b,$
 where $a = (a_1, \ldots, a_d), b = (b_1, \ldots, b_d) \in \mathbb{R}^2.$
 $\langle a, x \rangle = \sum_i a_i x_i$ is the dot product of a and x.

4. Classification done by computing sign of $f(x)$: $\text{sign}(f(x))$.

5. If $\text{sign}(f(x))$ is negative: x is not in class.
 If positive: inside.

6. A set of training examples:

 $$S = \left\{ (x_1, y_1), \ldots, (x_n, y_n) \right\},$$

 where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, for $i = 1, \ldots, n.$
Learning linear separation

1. Given red and blue points – how to compute the separating line \(\mathcal{L} \)?

2. Line/plane/hyperplane is the zero set of a linear function.

3. Form: \(\forall x \in \mathbb{R}^d \quad f(x) = \langle a, x \rangle + b \), where \(a = (a_1, \ldots, a_d) \), \(b = (b_1, \ldots, b_d) \) \(\in \mathbb{R}^2 \). \(\langle a, x \rangle = \sum_i a_i x_i \) is the **dot product** of \(a \) and \(x \).

4. Classification done by computing sign of \(f(x) \): \(\text{sign}(f(x)) \).

5. If \(\text{sign}(f(x)) \) is negative: \(x \) is not in class.
 If positive: inside.

6. A set of **training examples**:

 \[
 S = \left\{ (x_1, y_1), \ldots, (x_n, y_n) \right\},
 \]

 where \(x_i \in \mathbb{R}^d \) and \(y_i \in \{-1,1\} \), for \(i = 1, \ldots, n \).
Learning linear separation

1. Given red and blue points – how to compute the separating line ℓ?

2. line/plane/hyperplane is the zero set of a linear function.

3. Form: $\forall x \in \mathbb{R}^d \quad f(x) = \langle a, x \rangle + b$, where $a = (a_1, \ldots, a_d)$, $b = (b_1, \ldots, b_d) \in \mathbb{R}^2$. $\langle a, x \rangle = \sum_i a_i x_i$ is the dot product of a and x.

4. classification done by computing sign of $f(x)$: $\text{sign}(f(x))$.

5. If $\text{sign}(f(x))$ is negative: x is not in class.
 If positive: inside.

6. A set of training examples:

$$S = \{(x_1, y_1), \ldots, (x_n, y_n)\},$$

where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, for $i = 1, \ldots, n$.
Learning linear separation

1. Given red and blue points – how to compute the separating line ℓ?

2. line/plane/hyperplane is the zero set of a linear function.

3. Form: $\forall x \in \mathbb{R}^d \; f(x) = \langle a, x \rangle + b$, where $a = (a_1, \ldots, a_d), \; b = (b_1, \ldots, b_d) \in \mathbb{R}^2$.
 $\langle a, x \rangle = \sum_i a_i x_i$ is the dot product of a and x.

4. classification done by computing sign of $f(x)$: $\text{sign}(f(x))$.

5. If $\text{sign}(f(x))$ is negative: x is not in class.
 If positive: inside.

6. A set of training examples:

 $$S = \{(x_1, y_1), \ldots, (x_n, y_n)\},$$

 where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$, for $i = 1, \ldots, n$.
Learning linear separation

1. Given red and blue points – how to compute the separating line ℓ?

2. Line/plane/hyperplane is the zero set of a linear function.

3. Form: $\forall x \in \mathbb{R}^d \quad f(x) = \langle a, x \rangle + b$,
 where $a = (a_1, \ldots, a_d)$, $b = (b_1, \ldots, b_d) \in \mathbb{R}^2$.
 $\langle a, x \rangle = \sum_i a_i x_i$ is the dot product of a and x.

4. Classification done by computing sign of $f(x)$: $\text{sign}(f(x))$.

5. If $\text{sign}(f(x))$ is negative: x is not in class.
 If positive: inside.

6. A set of training examples:

 $$S = \left\{ (x_1, y_1), \ldots, (x_n, y_n) \right\},$$

 where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$, for $i = 1, \ldots, n$.
Classification...

1. **Linear classifier** $h: (w, b)$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.
2. Classification of $x \in \mathbb{R}^d$ is $\text{sign}(\langle w, x \rangle + b)$.
3. **Labeled** example (x, y), h classifies (x, y) correctly if $\text{sign}(\langle w, x \rangle + b) = y$.
4. Assume a linear classifier exists.
5. Given n labeled example. How to compute the linear classifier for these examples?
6. Use linear programming....
7. Looking for (w, b), such that for an (x_i, y_i) we have $\text{sign}(\langle w, x_i \rangle + b) = y_i$, which is

 \[
 \langle w, x_i \rangle + b \geq 0 \quad \text{if } y_i = 1,
 \]

 and

 \[
 \langle w, x_i \rangle + b \leq 0 \quad \text{if } y_i = -1.
 \]
linear classifier $h: (w, b)$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

2 classification of $x \in \mathbb{R}^d$ is $\text{sign}(\langle w, x \rangle + b)$.

3 labeled example (x, y), h classifies (x, y) correctly if $\text{sign}(\langle w, x \rangle + b) = y$.

4 Assume a linear classifier exists.

5 Given n labeled example. How to compute the linear classifier for these examples?

6 Use linear programming....

7 looking for (w, b), such that for an (x_i, y_i) we have $\text{sign}(\langle w, x_i \rangle + b) = y_i$, which is

$$\langle w, x_i \rangle + b \geq 0 \quad \text{if } y_i = 1,$$

and

$$\langle w, x_i \rangle + b \leq 0 \quad \text{if } y_i = -1.$$
1. **linear classifier** h: (w, b) where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

2. classification of $x \in \mathbb{R}^d$ is $\text{sign}(\langle w, x \rangle + b)$.

3. **labeled** example (x, y), h classifies (x, y) **correctly** if $\text{sign}(\langle w, x \rangle + b) = y$.

4. Assume a linear classifier exists.

5. Given n labeled example. How to compute the linear classifier for these examples?

6. Use linear programming....

7. looking for (w, b), such that for an (x_i, y_i) we have $\text{sign}(\langle w, x_i \rangle + b) = y_i$, which is

\[
\langle w, x_i \rangle + b \geq 0 \quad \text{if } y_i = 1, \\
\text{and} \quad \langle w, x_i \rangle + b \leq 0 \quad \text{if } y_i = -1.
\]
1 **linear classifier** $h: (w, b)$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

2 classification of $x \in \mathbb{R}^d$ is $\text{sign}(\langle w, x \rangle + b)$.

3 **labeled** example (x, y), h classifies (x, y) correctly if $\text{sign}(\langle w, x \rangle + b) = y$.

4 Assume a linear classifier exists.

5 Given n labeled example. How to compute the linear classifier for these examples?

6 Use linear programming....

7 looking for (w, b), such that for an (x_i, y_i) we have $\text{sign}(\langle w, x_i \rangle + b) = y_i$, which is

$$\langle w, x_i \rangle + b \geq 0 \quad \text{if } y_i = 1,$$

and

$$\langle w, x_i \rangle + b \leq 0 \quad \text{if } y_i = -1.$$
1. **linear classifier** $h: (w, b)$ where $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$.

2. classification of $x \in \mathbb{R}^d$ is $\text{sign}(\langle w, x \rangle + b)$.

3. labeled example (x, y), h classifies (x, y) correctly if $\text{sign}(\langle w, x \rangle + b) = y$.

4. Assume a linear classifier exists.

5. Given n labeled example. How to compute the linear classifier for these examples?

6. Use linear programming....

7. looking for (w, b), such that for an (x_i, y_i) we have $\text{sign}(\langle w, x_i \rangle + b) = y_i$, which is

 $\langle w, x_i \rangle + b \geq 0$ if $y_i = 1$,

 and $\langle w, x_i \rangle + b \leq 0$ if $y_i = -1$.

Sariel (UIUC) CS573 Fall 2013 6 / 28
Or equivalently, let \(x_i = (x_i^1, \ldots, x_i^d) \in \mathbb{R}^d \), for \(i = 1, \ldots, m \), and let \(w = (w^1, \ldots, w^d) \), then we get the linear constraint

\[
\sum_{k=1}^{d} w^k x_i^k + b \geq 0 \quad \text{if } y_i = 1,
\]

and

\[
\sum_{k=1}^{d} w^k x_i^k + b \leq 0 \quad \text{if } y_i = -1.
\]

Thus, we get a set of linear constraints, one for each training example, and we need to solve the resulting linear program.
1. **Stumbling block:** is that linear programming is very sensitive to noise.

2. If points are misclassified \Rightarrow no solution.

3. Use an iterative algorithm that converges to the optimal solution if it exists...
1. Stumbling block: is that linear programming is very sensitive to noise.
2. If points are misclassified \implies no solution.
3. Use an iterative algorithm that converges to the optimal solution if it exists...
Linear programming for learning?

1. Stumbling block: is that linear programming is very sensitive to noise.

2. If points are misclassified \Rightarrow no solution.

3. Use an iterative algorithm that converges to the optimal solution if it exists...
Perceptron algorithm...

\[\textbf{perceptron}(S: \text{ a set of } l \text{ examples}) \]

\[w_0 \leftarrow 0, k \leftarrow 0 \]

\[R = \max_{(x,y) \in S} \|x\| . \]

repeat

\[\text{for } (x, y) \in S \text{ do} \]

\[\text{if sign}(\langle w_k, x \rangle) \neq y \text{ then} \]

\[w_{k+1} \leftarrow w_k + y \times x \]

\[k \leftarrow k + 1 \]

\[\text{until no mistakes are made in the classification} \]

return \[w_k \] and \[k \]
Perceptron algorithm

1. Why **perceptron** algorithm converges?

2. Assume made a mistake on a sample \((x, y)\) and \(y = 1\). Then,
\[
\langle w_k, x \rangle < 0, \text{ and}
\]
\[
\langle w_{k+1}, x \rangle = \langle w_k + y \cdot x, x \rangle = \langle w_k, x \rangle + y \langle x, x \rangle
\]
\[
= \langle w_k, x \rangle + y \|x\| > \langle w_k, x \rangle.
\]

3. “walking” in the right direction..

4. ... new value assigned to \(x\) by \(w_{k+1}\) is larger (“more positive”) than the old value assigned to \(x\) by \(w_k\).

5. After enough iterations of such fix-ups, label would change...
1. Why perceptron algorithm converges?

2. Assume made a mistake on a sample \((x, y)\) and \(y = 1\). Then, \(\langle w_k, x \rangle < 0\), and

\[
\langle w_{k+1}, x \rangle = \langle w_k + y \cdot x, x \rangle = \langle w_k, x \rangle + y \langle x, x \rangle
\]
\[
= \langle w_k, x \rangle + y \|x\| > \langle w_k, x \rangle.
\]

3. “walking” in the right direction..

4. ... new value assigned to \(x\) by \(w_{k+1}\) is larger (“more positive”) than the old value assigned to \(x\) by \(w_k\).

5. After enough iterations of such fix-ups, label would change...
Perceptron algorithm

1. Why perceptron algorithm converges?
2. Assume made a mistake on a sample \((x, y)\) and \(y = 1\). Then,
 \[\langle w_k, x \rangle < 0, \text{ and} \]

 \[
 \langle w_{k+1}, x \rangle = \langle w_k + y \cdot x, x \rangle = \langle w_k, x \rangle + y \langle x, x \rangle \\
 = \langle w_k, x \rangle + y \|x\| > \langle w_k, x \rangle .
 \]

3. “walking” in the right direction..
4. ... new value assigned to \(x\) by \(w_{k+1}\) is larger (“more positive”) than the old value assigned to \(x\) by \(w_k\).
5. After enough iterations of such fix-ups, label would change...
Why perceptron algorithm converges?

Assume made a mistake on a sample \((x, y)\) and \(y = 1\). Then,
\[
\langle w_k, x \rangle < 0, \text{ and}
\]
\[
\langle w_{k+1}, x \rangle = \langle w_k + y \cdot x, x \rangle = \langle w_k, x \rangle + y \langle x, x \rangle
\]
\[
= \langle w_k, x \rangle + y \|x\| > \langle w_k, x \rangle.
\]

“walking” in the right direction..

... new value assigned to \(x\) by \(w_{k+1}\) is larger (“more positive”) than the old value assigned to \(x\) by \(w_k\).

After enough iterations of such fix-ups, label would change...
Theorem

Let S be a training set of examples, and let $R = \max_{(x,y) \in S} \|x\|$. Suppose that there exists a vector w_{opt} such that $\|w_{opt}\| = 1$, and a number $\gamma > 0$, such that

$$y \langle w_{opt}, x \rangle \geq \gamma \quad \forall (x, y) \in S.$$

Then, the number of mistakes made by the online perceptron algorithm on S is at most

$$\left(\frac{R}{\gamma} \right)^2.$$
Claim by figure...
Claim by figure...
Claim by figure...
Claim by figure...

hard

easy

\# errors: \((R/\gamma)^2\)

\# errors: \((R/\gamma')^2\)
Proof of Perceptron convergence...

1. Idea of proof: perceptron weight vector converges to \mathbf{w}_{opt}.

2. Distance between \mathbf{w}_{opt} and kth update vector:

$$\alpha_k = \left\| \mathbf{w}_k - \frac{R^2}{\gamma} \mathbf{w}_{opt} \right\|^2.$$

3. Quantify the change between α_k and α_{k+1}

4. Example being misclassified is (x, y).
Proof of Perceptron convergence...

1. Idea of proof: perceptron weight vector converges to w_{opt}.

2. Distance between w_{opt} and kth update vector:

$$\alpha_k = \left\| w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right\|^2.$$

3. Quantify the change between α_k and α_{k+1}.

4. Example being misclassified is (x, y).
Proof of Perceptron convergence...

1. Idea of proof: **perceptron** weight vector converges to w_{opt}.

2. Distance between w_{opt} and kth update vector:

$$\alpha_k = \left\| w_k - \frac{R^2}{\gamma} w_{opt} \right\|^2.$$

3. Quantify the change between α_k and α_{k+1}.

4. Example being misclassified is (x, y).
Proof of Perceptron convergence...

1. Idea of proof: perceptron weight vector converges to w_{opt}.

2. Distance between w_{opt} and kth update vector:

$$\alpha_k = \left\| w_k - \frac{R^2}{\gamma} w_{opt} \right\|^2.$$

3. Quantify the change between α_k and α_{k+1}

4. Example being misclassified is (x, y).
Example being misclassified is \((x, y)\) (both are constants).

\[w_{k+1} \leftarrow w_k + y \times x \]

\[\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \]

\[= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \]

\[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle \]

\[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle \]

\[= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2 . \]
1. Example being misclassified is \((x, y)\) (both are constants).

2. \(w_{k+1} \leftarrow w_k + y \times x\)

3.
\[
\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \\
= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle \\
= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2 .
\]
Example being misclassified is \((x, y)\) (both are constants).

\[w_{k+1} \leftarrow w_k + y \times x \]

\[\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \]

\[= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \]

\[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle \]

\[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle \]

\[= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2. \]
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y \cdot x \]

3. \[
\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{\text{opt}} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{\text{opt}} \right\|^2 \\
= \left\| \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx \right\|^2 \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx \right\rangle \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) \right\rangle \\
\quad + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), x \right\rangle + \left\langle x, x \right\rangle \\
= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), x \right\rangle + \left\| x \right\|^2 .
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y \cdot x \]

3. \[
\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \\
= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle \\
= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle \\
= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2 .
\]
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y \cdot x \]

3. \[
\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{\text{opt}} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{\text{opt}} \right\|^2 \\
= \left\| \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx \right\|^2 \\
= \langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) + yx \rangle \\
= \langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right) \rangle \\
\quad + 2y \langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), x \rangle + \langle x, x \rangle \\
= \alpha_k + 2y \langle \left(w_k - \frac{R^2}{\gamma} w_{\text{opt}} \right), x \rangle + \left\| x \right\|^2. \]
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y \times x \]

3. \[\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \]

 \[= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \]

 \[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle \]

 \[= \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle \]

 \[= \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2. \]
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y \times x \]

3. \[
\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2
\]
 \[
 = \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2
 \]
 \[
 = \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\rangle
 \]
 \[
 = \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) \right\rangle
 \]
 \[
 + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\langle x, x \right\rangle
 \]
 \[
 = \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \left\| x \right\|^2.
 \]
Proof of Perceptron convergence...

1. Example being misclassified is \((x, y)\) (both are constants).

2. \[w_{k+1} \leftarrow w_k + y * x \]

3. \[\alpha_{k+1} = \left\| w_{k+1} - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \left\| w_k + yx - \frac{R^2}{\gamma} w_{opt} \right\|^2 \]

 \[= \left\| \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \right\|^2 \]

 \[= \langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx, \left(w_k - \frac{R^2}{\gamma} w_{opt} \right) + yx \rangle \]

 \[= \langle w_k - \frac{R^2}{\gamma} w_{opt}, w_k - \frac{R^2}{\gamma} w_{opt} \rangle + 2y \langle w_k - \frac{R^2}{\gamma} w_{opt}, x \rangle + \langle x, x \rangle \]

 \[= \alpha_k + 2y \langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \rangle + \left\| x \right\|^2. \]
Proof of Perceptron convergence...

1. We proved: \(\alpha_{k+1} = \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \| x \|^2 \).

2. \((x, y)\) is misclassified: \(\text{sign}(\left\langle w_k, x \right\rangle) \neq y \)

3. \(\implies \text{sign}(y \left\langle w_k, x \right\rangle) = -1 \)

4. \(\implies y \left\langle w_k, x \right\rangle < 0. \)

5. \(\| x \| \leq R \implies \)

\[
\alpha_{k+1} \leq \alpha_k + R^2 + 2y \left\langle w_k, x \right\rangle - 2y \left\langle \frac{R^2}{\gamma} w_{opt}, x \right\rangle \\
\leq \alpha_k + R^2 + -2\frac{R^2}{\gamma} y \left\langle w_{opt}, x \right\rangle .
\]

6. ... since \(2y \left\langle w_k, x \right\rangle < 0. \)
Proof of Perceptron convergence...

1. We proved: \(\alpha_{k+1} = \alpha_k + 2y \langle (w_k - \frac{R^2}{\gamma} w_{opt}), x \rangle + \|x\|^2 \).

2. \((x, y)\) is misclassified: \(\text{sign}(\langle w_k, x \rangle) \neq y \)

3. \(\implies \text{sign}(y \langle w_k, x \rangle) = -1 \)

4. \(\implies y \langle w_k, x \rangle < 0. \)

5. \(\|x\| \leq R \implies \)

\[
\alpha_{k+1} \leq \alpha_k + R^2 + 2y \langle w_k, x \rangle - 2y \langle \frac{R^2}{\gamma} w_{opt}, x \rangle
\]

\[
\leq \alpha_k + R^2 + \frac{R^2}{\gamma} - 2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle.
\]

6. \(\ldots \text{ since } 2y \langle w_k, x \rangle < 0. \)
Proof of Perceptron convergence...

1. We proved: $\alpha_{k+1} = \alpha_k + 2y \langle (w_k - \frac{R^2}{\gamma} w_{opt}) , x \rangle + \| x \|^2$.

2. (x, y) is misclassified: $\text{sign}(\langle w_k, x \rangle) \neq y$

3. $\implies \text{sign}(y \langle w_k, x \rangle) = -1$

4. $\implies y \langle w_k, x \rangle < 0$.

5. $\| x \| \leq R \implies$

\[
\alpha_{k+1} \leq \alpha_k + R^2 + 2y \langle w_k, x \rangle - 2y \left\langle \frac{R^2}{\gamma} w_{opt}, x \right\rangle
\]

\[
\leq \alpha_k + R^2 + -2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle.
\]

6. ... since $2y \langle w_k, x \rangle < 0$.

Sariel (UIUC)
CS573 15 Fall 2013 15 / 28
Proof of Perceptron convergence...

1. We proved: \(\alpha_{k+1} = \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \| x \|^2 \).

2. \((x, y)\) is misclassified: \(\text{sign}(\langle w_k, x \rangle) \neq y \)

3. \(\implies \text{sign}(y \langle w_k, x \rangle) = -1 \)

4. \(\implies y \langle w_k, x \rangle < 0 \).

5. \(\|
\begin{align*}
\alpha_{k+1} & \leq \alpha_k + R^2 + 2y \langle w_k, x \rangle - 2y \left\langle \frac{R^2}{\gamma} w_{opt}, x \right\rangle \\
& \leq \alpha_k + R^2 + \left. -2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \right.
\end{align*}
\)

6. \(\ldots \text{since } 2y \langle w_k, x \rangle < 0. \)
We proved: \(\alpha_{k+1} = \alpha_k + 2y \left\langle \left(w_k - \frac{R^2}{\gamma} w_{opt} \right), x \right\rangle + \| x \|^2 \).

2. \((x, y)\) is misclassified: \(\text{sign}(\langle w_k, x \rangle) \neq y \)

3. \(\implies \text{sign}(y \langle w_k, x \rangle) = -1 \)

4. \(\implies y \langle w_k, x \rangle < 0. \)

5. \(\| x \| \leq R \implies \)

\[
\alpha_{k+1} \leq \alpha_k + R^2 + 2y \langle w_k, x \rangle - 2y \left\langle \frac{R^2}{\gamma} w_{opt}, x \right\rangle
\]

\[
\leq \alpha_k + R^2 + -2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle.
\]

6. ... since \(2y \langle w_k, x \rangle < 0. \)
Proof of Perceptron convergence...

1. We proved: \[\alpha_{k+1} = \alpha_k + 2y \left(\langle w_k - \frac{R^2}{\gamma} w_{opt} \rangle, x \right) + \|x\|^2. \]

2. (x, y) is misclassified: \[\text{sign}(\langle w_k, x \rangle) \neq y \]

3. \[\Rightarrow \text{sign}(y \langle w_k, x \rangle) = -1 \]

4. \[\Rightarrow y \langle w_k, x \rangle < 0. \]

5. \[\|x\| \leq R \Rightarrow \]

\[\alpha_{k+1} \leq \alpha_k + R^2 + 2y \langle w_k, x \rangle - 2y \left\langle \frac{R^2}{\gamma} w_{opt}, x \right\rangle \]

\[\leq \alpha_k + R^2 + -2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle. \]

6. ... since \(2y \langle w_k, x \rangle < 0. \)
Proof of Perceptron convergence...

1. Proved: \(\alpha_{k+1} \leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \).

2. \(\text{sign}(\langle w_{opt}, x \rangle) = y \).

3. By margin assumption: \(y \langle w_{opt}, x \rangle \geq \gamma \), \(\forall (x, y) \in S \).

4. \[\begin{align*}
\alpha_{k+1} & \leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \\
& \leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} \\
& \leq \alpha_k + R^2 - 2R^2 \\
& \leq \alpha_k - R^2.
\end{align*} \]
Proof of Perceptron convergence...

1. Proved: \(\alpha_{k+1} \leq \alpha_k + R^2 - \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \).

2. \(\text{sign}(\langle w_{opt}, x \rangle) = y \).

3. By margin assumption: \(y \langle w_{opt}, x \rangle \geq \gamma \), \(\forall (x, y) \in S \).

4. \(\alpha_{k+1} \leq \alpha_k + R^2 - \frac{R^2}{\gamma} \gamma \leq \alpha_k + R^2 - 2R^2 \leq \alpha_k - R^2 \).
Proof of Perceptron convergence...

1. Proved: \(\alpha_{k+1} \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \).

2. \(\text{sign}(\langle w_{opt}, x \rangle) = y \).

3. By margin assumption: \(y \langle w_{opt}, x \rangle \geq \gamma, \quad \forall (x, y) \in S \).

4. \[
\begin{align*}
\alpha_{k+1} & \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \\
& \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} \gamma \\
& \leq \alpha_k + R^2 - 2R^2 \\
& \leq \alpha_k - R^2.
\end{align*}
\]
Proof of Perceptron convergence...

1. Proved: \(\alpha_{k+1} \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \).

2. \(\text{sign}(\langle w_{opt}, x \rangle) = y \).

3. By margin assumption: \(y \langle w_{opt}, x \rangle \geq \gamma, \quad \forall (x, y) \in S \).

4. \[
\begin{align*}
\alpha_{k+1} & \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \\
& \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} \gamma \\
& \leq \alpha_k + R^2 - 2R^2 \\
& \leq \alpha_k - R^2.
\end{align*}
\]
Proof of Perceptron convergence...

1. Proved: \(\alpha_{k+1} \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \).

2. \(\text{sign}(\langle w_{opt}, x \rangle) = y \).

3. By margin assumption: \(y \langle w_{opt}, x \rangle \geq \gamma, \forall (x, y) \in S \).

4. \[
\begin{align*}
\alpha_{k+1} & \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle \\
& \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} \gamma \\
& \leq \alpha_k + R^2 - 2R^2 \\
& \leq \alpha_k - R^2.
\end{align*}
\]
Proof of Perceptron convergence...

1. Proved: $\alpha_{k+1} \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle$.

2. $\text{sign}(\langle w_{opt}, x \rangle) = y$.

3. By margin assumption: $y \langle w_{opt}, x \rangle \geq \gamma$, $\forall (x, y) \in S$.

4. $\alpha_{k+1} \leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} y \langle w_{opt}, x \rangle$

 \begin{align*}
 &\leq \alpha_k + R^2 - 2\frac{R^2}{\gamma} \gamma \\
 &\leq \alpha_k + R^2 - 2R^2 \\
 &\leq \alpha_k - R^2.
 \end{align*}
1. Proved: $\alpha_{k+1} \leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle$.

2. $\text{sign}(\langle w_{opt}, x \rangle) = y$.

3. By margin assumption: $y \langle w_{opt}, x \rangle \geq \gamma, \forall (x, y) \in S$.

4. $\alpha_{k+1} \leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} y \langle w_{opt}, x \rangle$
 \begin{align*}
 &\leq \alpha_k + R^2 - 2 \frac{R^2}{\gamma} \gamma \\
 &\leq \alpha_k + R^2 - 2R^2 \\
 &\leq \alpha_k - R^2.
 \end{align*}
Proof of Perceptron convergence...

1. We have: $\alpha_{k+1} \leq \alpha_k - R^2$

2. $\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2}$.

3. $\forall i \quad \alpha_i \geq 0$.

4. Q: max # classification errors can make?

5. ... # of updates

6. .. # of updates $\leq \alpha_0 / R^2$...

7. A: $\leq \frac{R^2}{\gamma^2}$.
Proof of Perceptron convergence...

1. We have: \[\alpha_{k+1} \leq \alpha_k - R^2 \]

2. \[\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2}. \]

3. \(\forall i \quad \alpha_i \geq 0. \)

4. Q: max \# classification errors can make?

5. ... \# of updates

6. .. \# of updates \(\leq \alpha_0/R^2 \ldots \)

7. A: \(\leq \frac{R^2}{\gamma^2}. \)
Proof of Perceptron convergence...

1. We have: \(\alpha_{k+1} \leq \alpha_k - R^2 \)

2. \(\alpha_0 = \left\| \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \).

3. \(\forall i \quad \alpha_i \geq 0.\)

4. Q: max # classification errors can make?

5. ... # of updates

6. .. # of updates \(\leq \alpha_0 / R^2 \) ...

7. A: \(\leq \frac{R^2}{\gamma^2} \).
Proof of Perceptron convergence...

1. We have: \(\alpha_{k+1} \leq \alpha_k - R^2 \)

2. \(\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \).

3. \(\forall i \quad \alpha_i \geq 0 \).

4. Q: max # classification errors can make?

5. ... # of updates

6. ... # of updates \(\leq \alpha_0 / R^2 \)...

7. A: \(\leq \frac{R^2}{\gamma^2} \).
Proof of Perceptron convergence...

1. We have: $\alpha_{k+1} \leq \alpha_k - R^2$

2. $\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2}$.

3. $\forall i \quad \alpha_i \geq 0$.

4. Q: max # classification errors can make?

5. ... # of updates

6. ... # of updates $\leq \alpha_0 / R^2$...

7. A: $\leq \frac{R^2}{\gamma^2}$.
Proof of Perceptron convergence...

1. We have: \(\alpha_{k+1} \leq \alpha_k - R^2 \)

2. \(\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \left\| w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \).

3. \(\forall i \quad \alpha_i \geq 0. \)

4. Q: max # classification errors can make?

5. ... # of updates

6. .. # of updates \(\leq \alpha_0/R^2 \)...

7. A: \(\leq \frac{R^2}{\gamma^2} \).
Proof of Perceptron convergence...

1. We have: \(\alpha_{k+1} \leq \alpha_k - R^2 \)

2. \(\alpha_0 = \left\| 0 - \frac{R^2}{\gamma} w_{opt} \right\|^2 = \frac{R^4}{\gamma^2} \| w_{opt} \|^2 = \frac{R^4}{\gamma^2} \).

3. \(\forall i \quad \alpha_i \geq 0 \).

4. Q: max # classification errors can make?

5. ... # of updates

6. .. # of updates \(\leq \alpha_0 / R^2 \ldots \)

7. A: \(\leq \frac{R^2}{\gamma^2} \).

\[\square \]
Any linear program can be written as the problem of separating red points from blue points. As such, the perceptron algorithm can be used to solve linear programs.
Learning a circle...

1. Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points, and does not contain the blue points.

2. Q: How to compute the circle σ?

3. **Lifting**: $\ell: (x, y) \mapsto (x, y, x^2 + y^2)$.

4. $z(P) = \{\ell(x, y) = (x, y, x^2 + y^2) \mid (x, y) \in P\}$
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points, and does not contain the blue points.

Q: How to compute the circle σ?

Lifting: $\ell : (x, y) \rightarrow (x, y, x^2 + y^2)$.

$z(P) = \{\ell(x, y) = (x, y, x^2 + y^2) \mid (x, y) \in P\}$
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points, and does not contain the blue points.

Q: How to compute the circle σ?

Lifting: $\ell : (x, y) \rightarrow (x, y, x^2 + y^2)$.

$z(P) = \{\ell(x, y) = (x, y, x^2 + y^2) \mid (x, y) \in P\}$
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points, and does not contain the blue points.

Q: How to compute the circle σ?

Lifting: $\ell : (x, y) \mapsto (x, y, x^2 + y^2)$.

$$z(P) = \{ \ell(x, y) = (x, y, x^2 + y^2) \mid (x, y) \in P \}$$
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points, and does not contain the blue points.

Q: How to compute the circle σ?

Lifting: $\ell : (x, y) \rightarrow (x, y, x^2 + y^2)$.

$z(P) = \{ \ell(x, y) = (x, y, x^2 + y^2) \mid (x, y) \in P \}$
Theorem

Two sets of points R and B are separable by a circle in two dimensions, if and only if $\ell(R)$ and $\ell(B)$ are separable by a plane in three dimensions.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
 \(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
 \(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
 \(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
 \(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
 \(\iff \forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\Longrightarrow \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
\(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
\(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
\(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
\(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
\(\forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\iff \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \) \((x - a)^2 + (y - b)^2 \leq r^2 \)
\(\forall (x, y) \in B \) \((x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \) \(-2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
\(\forall (x, y) \in B \) \(-2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
\(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
\(\forall (x, y) \in R \) \(h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \) \(h(\ell(x, y)) \leq 0 \)
\(\forall (x, y) \in B \) \(h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\iff \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
 \(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
 \(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
 \(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
 \(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
 \(\forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\iff \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
 \(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
 \(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
 \(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
 \(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
 \(\forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\Rightarrow \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
 \(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
 \(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
 \(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
 \(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
 \(\forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\iff \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof

1. \(\sigma \equiv (x - a)^2 + (y - b)^2 = r^2 \): circle containing \(R \), and all points of \(B \) outside.

2. \(\forall (x, y) \in R \quad (x - a)^2 + (y - b)^2 \leq r^2 \)
 \(\forall (x, y) \in B \quad (x - a)^2 + (y - b)^2 > r^2 \).

3. \(\forall (x, y) \in R \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 \leq 0 \)
 \(\forall (x, y) \in B \quad -2ax - 2by + (x^2 + y^2) - r^2 + a^2 + b^2 > 0 \).

4. Setting \(z = z(x, y) = x^2 + y^2 \):
 \(h(x, y, z) = -2ax - 2by + z - r^2 + a^2 + b^2 \)
 \(\forall (x, y) \in R \quad h(x, y, z(x, y)) \leq 0 \)

5. \(\iff \forall (x, y) \in R \quad h(\ell(x, y)) \leq 0 \)
 \(\forall (x, y) \in B \quad h(\ell(x, y)) > 0 \)

6. \(p \in \sigma \iff h(\ell(p)) \leq 0 \).

7. Proved: if point set is separable by a circle \(\iff \) lifted point set \(\ell(R) \) and \(\ell(B) \) are separable by a plane.
Proof: Other direction

1. Assume \(\ell(R) \) and \(\ell(B) \) are linearly separable. Let separating place be:

\[h \equiv ax + by + cz + d = 0 \]

2. \(\forall (x, y, x^2 + y^2) \in \ell(R): \ ax + by + c(x^2 + y^2) + d \leq 0 \)

3. \(\forall (x, y, x^2 + y^2) \in \ell(B): \ ax + by + c(x^2 + y^2) + d \geq 0 \).

4. \(U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0 \} \).

5. If \(U(h) \) is a circle \(\implies R \subset U(h) \) and \(B \cap U(h) = \emptyset \).

6. \(U(h) \equiv ax + by + c(x^2 + y^2) \leq -d \).

7. \(\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c} \)

8. \(\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2 + b^2}{4c^2} - \frac{d}{c} \)

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume $\ell(R)$ and $\ell(B)$ are linearly separable. Let separating place be:

$$h \equiv ax + by + cz + d = 0$$

2. $\forall (x, y, x^2 + y^2) \in \ell(R): ax + by + c(x^2 + y^2) + d \leq 0$

3. $\forall (x, y, x^2 + y^2) \in \ell(B): ax + by + c(x^2 + y^2) + d \geq 0$.

4. $U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\}$.

5. If $U(h)$ is a circle $\implies R \subset U(h)$ and $B \cap U(h) = \emptyset$.

6. $U(h) \equiv ax + by + c(x^2 + y^2) \leq -d$.

7. $\iff \left(x^2 + \frac{a}{c} x \right) + \left(y^2 + \frac{b}{c} y \right) \leq -\frac{d}{c}$

8. $\iff \left(x + \frac{a}{2c} \right)^2 + \left(y + \frac{b}{2c} \right)^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c}$

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume $\ell(R)$ and $\ell(B)$ are linearly separable. Let separating place be:

$$h \equiv ax + by + cz + d = 0$$

2. $\forall (x, y, x^2 + y^2) \in \ell(R)$: $ax + by + c(x^2 + y^2) + d \leq 0$

3. $\forall (x, y, x^2 + y^2) \in \ell(B)$: $ax + by + c(x^2 + y^2) + d \geq 0$.

4. $U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\}$.

5. If $U(h)$ is a circle $\implies R \subset U(h)$ and $B \cap U(h) = \emptyset$.

6. $U(h) \equiv ax + by + c(x^2 + y^2) \leq -d$.

7. $\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c}$

8. $\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c}$

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume \(\ell(R) \) and \(\ell(B) \) are linearly separable. Let separating place be:

\[
h \equiv ax + by + cz + d = 0
\]

2. \(\forall (x, y, x^2 + y^2) \in \ell(R): \ ax + by + c(x^2 + y^2) + d \leq 0 \)

3. \(\forall (x, y, x^2 + y^2) \in \ell(B): \ ax + by + c(x^2 + y^2) + d \geq 0 \).

4. \(U(h) = \{(x, y) \ | \ h((x, y, x^2 + y^2)) \leq 0 \} \).

5. If \(U(h) \) is a circle \(\iff R \subset U(h) \) and \(B \cap U(h) = \emptyset \).

6. \(U(h) \equiv ax + by + c(x^2 + y^2) \leq -d \).

7. \(\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c} \)

8. \(\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2 + b^2}{4c^2} - \frac{d}{c} \)

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume $\ell(R)$ and $\ell(B)$ are linearly separable. Let separating place be:

 $$h \equiv ax + by + cz + d = 0$$

2. $\forall (x, y, x^2 + y^2) \in \ell(R): ax + by + c(x^2 + y^2) + d \leq 0$

3. $\forall (x, y, x^2 + y^2) \in \ell(B): ax + by + c(x^2 + y^2) + d \geq 0$.

4. $U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\}$.

5. If $U(h)$ is a circle $\implies R \subset U(h)$ and $B \cap U(h) = \emptyset$.

6. $U(h) \equiv ax + by + c(x^2 + y^2) \leq -d$.

7. $\iff (x^2 + \frac{a}{c} x) + (y^2 + \frac{b}{c} y) \leq -\frac{d}{c}$

8. $\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c}$

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume $\ell(\mathcal{R})$ and $\ell(\mathcal{B})$ are linearly separable. Let separating plane be:

$$h \equiv ax + by + cz + d = 0$$

2. $\forall (x, y, x^2 + y^2) \in \ell(\mathcal{R})$: $ax + by + c(x^2 + y^2) + d \leq 0$

3. $\forall (x, y, x^2 + y^2) \in \ell(\mathcal{B})$: $ax + by + c(x^2 + y^2) + d \geq 0$.

4. $U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\}$.

5. If $U(h)$ is a circle $\implies \mathcal{R} \subset U(h)$ and $\mathcal{B} \cap U(h) = \emptyset$.

6. $U(h) \equiv ax + by + c(x^2 + y^2) \leq -d$.

7. $\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c}$

8. $\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c}$

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume \(\ell(R) \) and \(\ell(B) \) are linearly separable. Let separating place be:

\[
h \equiv ax + by + cz + d = 0
\]

2. \(\forall (x, y, x^2 + y^2) \in \ell(R) : ax + by + c(x^2 + y^2) + d \leq 0 \)

3. \(\forall (x, y, x^2 + y^2) \in \ell(B) : ax + by + c(x^2 + y^2) + d \geq 0 \).

4. \(U(h) = \left\{ (x, y) \mid h((x, y, x^2 + y^2)) \leq 0 \right\} \).

5. If \(U(h) \) is a circle \(\implies R \subset U(h) \) and \(B \cap U(h) = \emptyset \).

6. \(U(h) \equiv ax + by + c(x^2 + y^2) \leq -d. \)

7. \(\iff \left(x^2 + \frac{a}{c}x \right) + \left(y^2 + \frac{b}{c}y \right) \leq -\frac{d}{c} \)

8. \(\iff \left(x + \frac{a}{2c} \right)^2 + \left(y + \frac{b}{2c} \right)^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c} \)

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume \(\ell(R) \) and \(\ell(B) \) are linearly separable. Let separating place be:

\[
h \equiv ax + by + cz + d = 0
\]

2. \(\forall (x, y, x^2 + y^2) \in \ell(R): ax + by + c(x^2 + y^2) + d \leq 0 \)

3. \(\forall (x, y, x^2 + y^2) \in \ell(B): ax + by + c(x^2 + y^2) + d \geq 0. \)

4. \(U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\} \).

5. If \(U(h) \) is a circle \(\implies R \subset U(h) \) and \(B \cap U(h) = \emptyset \).

6. \(U(h) \equiv ax + by + c(x^2 + y^2) \leq -d. \)

7. \(\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c} \)

8. \(\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2+b^2}{4c^2} - \frac{d}{c} \)

9. This is disk in the plane, as claimed.
Proof: Other direction

1. Assume $\ell(R)$ and $\ell(B)$ are linearly separable. Let separating place be:

 $$h \equiv ax + by + cz + d = 0$$

2. $\forall (x, y, x^2 + y^2) \in \ell(R): ax + by + c(x^2 + y^2) + d \leq 0$
3. $\forall (x, y, x^2 + y^2) \in \ell(B): ax + by + c(x^2 + y^2) + d \geq 0$.
4. $U(h) = \{(x, y) \mid h((x, y, x^2 + y^2)) \leq 0\}$.
5. If $U(h)$ is a circle $\implies R \subset U(h)$ and $B \cap U(h) = \emptyset$.
6. $U(h) \equiv ax + by + c(x^2 + y^2) \leq -d$.
7. $\iff (x^2 + \frac{a}{c}x) + (y^2 + \frac{b}{c}y) \leq -\frac{d}{c}$
8. $\iff (x + \frac{a}{2c})^2 + (y + \frac{b}{2c})^2 \leq \frac{a^2 + b^2}{4c^2} - \frac{d}{c}$
9. This is disk in the plane, as claimed.
A closing comment...

Linear separability is a powerful technique that can be used to learn complicated concepts that are considerably more complicated than just hyperplane separation. This lifting technique showed above is the *kernel technique* or *linearization*.
Q: how complex is the function trying to learn?

VC-dimension is one way of capturing this notion. (VC = Vapnik, Chervonenkis, 1971).

A matter of expressivity: What is harder to learn:

1. A rectangle in the plane.
2. A halfplane.
3. A convex polygon with k sides.
A Little Bit On VC Dimension

Q: how complex is the function trying to learn?

VC-dimension is one way of capturing this notion. (VC = Vapnik, Chervonenkis, 1971).

A matter of expressivity: What is harder to learn:

1. A rectangle in the plane.
2. A halfplane.
3. A convex polygon with k sides.
Q: how complex is the function trying to learn?

VC-dimension is one way of capturing this notion. (VC = Vapnik, Chervonenkis, 1971).

A matter of expressivity: What is harder to learn:

1. A rectangle in the plane.
2. A halfplane.
3. A convex polygon with k sides.
Thinking about concepts as binary functions...

1. \(X = \{p_1, p_2, \ldots, p_m\} \): points in the plane.

2. \(\mathcal{H} \): set of all halfplanes.

3. A half-plane \(r \in \mathcal{H} \) defines a binary vector

\[
r(X) = (b_1, \ldots, b_m)
\]

where \(b_i = 1 \) if and only if \(p_i \) is inside \(r \).

4. Possible binary vectors generated by halfplanes:

\[
U(X, \mathcal{H}) = \{r(X) \mid r \in \mathcal{H}\}.
\]

5. A set \(X \) of \(m \) elements is **shattered** by \(R \) if

\[
|U(X, R)| = 2^m.
\]

6. What does this mean?

7. The **VC-dimension** of a set of ranges \(R \) is the size of the largest set that it can shatter.
Thinking about concepts as binary functions...

1. \(X = \{p_1, p_2, \ldots, p_m\}\): points in the plane.
2. \(\mathcal{H}\): set of all halfplanes.
3. A half-plane \(r \in \mathcal{H}\) defines a binary vector
 \[
 r(X) = (b_1, \ldots, b_m)
 \]
 where \(b_i = 1\) if and only if \(p_i\) is inside \(r\).
4. Possible binary vectors generated by halfplanes:
 \[
 U(X, \mathcal{H}) = \{r(X) \mid r \in \mathcal{H}\}.
 \]
5. A set \(X\) of \(m\) elements is **shattered** by \(\mathcal{R}\) if
 \[
 |U(X, \mathcal{R})| = 2^m.
 \]
6. What does this mean?
7. The **VC-dimension** of a set of ranges \(\mathcal{R}\) is the size of the largest set that it can shatter.
Thinking about concepts as binary functions...

1. \(X = \{p_1, p_2, \ldots, p_m\} \): points in the plane.
2. \(\mathcal{H} \): set of all halfplanes.
3. A half-plane \(r \in \mathcal{H} \) defines a binary vector
 \[r(X) = (b_1, \ldots, b_m) \]
 where \(b_i = 1 \) if and only if \(p_i \) is inside \(r \).
4. Possible binary vectors generated by halfplanes:
 \[U(X, \mathcal{H}) = \{ r(X) \mid r \in \mathcal{H} \} \]
5. A set \(X \) of \(m \) elements is \textit{shattered} by \(R \) if
 \[|U(X, R)| = 2^m. \]
6. What does this mean?
7. The \textit{VC-dimension} of a set of ranges \(R \) is the size of the largest set that it can shatter.
Thinking about concepts as binary functions...

1. $X = \{p_1, p_2, \ldots, p_m\}$: points in the plane.
2. \mathcal{H}: set of all halfplanes.
3. A half-plane $r \in \mathcal{H}$ defines a binary vector $r(X) = (b_1, \ldots, b_m)$ where $b_i = 1$ if and only if p_i is inside r.
4. Possible binary vectors generated by halfplanes: $U(X, \mathcal{H}) = \{r(X) \mid r \in \mathcal{H}\}$.
5. A set X of m elements is **shattered** by R if $|U(X, R)| = 2^m$.

6. What does this mean?
7. The **VC-dimension** of a set of ranges R is the size of the largest set that it can shatter.
Thinking about concepts as binary functions...

1. \(X = \{p_1, p_2, \ldots, p_m\} \): points in the plane.
2. \(\mathcal{H} \): set of all halfplanes.
3. A half-plane \(r \in \mathcal{H} \) defines a binary vector
 \[r(X) = (b_1, \ldots, b_m) \]
 where \(b_i = 1 \) if and only if \(p_i \) is inside \(r \).
4. Possible binary vectors generated by halfplanes:
 \[U(X, \mathcal{H}) = \{r(X) \mid r \in \mathcal{H}\} \]
5. A set \(X \) of \(m \) elements is **shattered** by \(R \) if
 \[|U(X, R)| = 2^m. \]
6. What does this mean?
7. The **VC-dimension** of a set of ranges \(R \) is the size of the largest set that it can shatter.
What is the VC dimensions of circles in the plane?

X is set of n points in the plane

C is a set of all circles.

$X = \{p, q, r, s\}$

What subsets of X can we generate by circle?
What is the VC dimensions of circles in the plane?

X is set of n points in the plane

C is a set of all circles.

$X = \{p, q, r, s\}$

What subsets of X can we generate by circle?
Subsets realized by disks

\{\emptyset, \{r\}, \{p\}, \{q\}, \{s\}, \{p, s\}, \{p, q\}, \{p, r\}, \{r, q\}, \{q, s\}\} and
\{r, p, q\}, \{p, r, s\} \{p, s, q\}, \{s, q, r\}\} and \{r, p, q, s\}

We got only 15 sets. There is one set which is not there. Which one?

The VC dimension of circles in the plane is 3.
Subsets realized by disks

\[
\{\}, \{r\}, \{p\}, \{q\}, \{s\}, \{p, s\}, \{p, q\}, \{p, r\}, \{r, q\}, \{q, s\} \quad \text{and} \quad \\
\{r, p, q\}, \{p, r, s\} \{p, s, q\}, \{s, q, r\} \quad \text{and} \quad \{r, p, q, s\}
\]

We got only 15 sets. There is one set which is not there. Which one?

The VC dimension of circles in the plane is 3.
Subsets realized by disks

\[
\{\}, \{r\}, \{p\}, \{q\}, \{s\}, \{p, s\}, \{p, q\}, \{p, r\}, \{r, q\}, \{ q, s \} \quad \text{and} \quad \{r, p, q\}, \{p, r, s\} \{p, s, q\}, \{s, q, r\} \quad \text{and} \quad \{r, p, q, s\}
\]

We got only 15 sets. There is one set which is not there. Which one?

The VC dimension of circles in the plane is 3.
Lemma (Sauer Lemma)

If R has VC dimension d then $|U(X, R)| = O(m^d)$, where m is the size of X.