Multiplying polynomials quickly

Definition

polynomial \(p(x) \) of degree \(n \):
a function

\[
p(x) = \sum_{j=0}^{n} a_j x^j = a_0 + x(a_1 + x(a_2 + \ldots + x a_n)).
\]

\(x_0 \): \(p(x_0) \) can be computed in \(O(n) \) time.

“dual” (and equivalent) representation...

Theorem

For any set \(\{(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})\} \) of \(n \) point-value pairs such that all the \(x_k \) values are distinct, there is a unique polynomial \(p(x) \) of degree \(n - 1 \), such that \(y_k = p(x_k) \), for \(k = 0, \ldots, n - 1 \).

Polynomial via point-value

\(\{(x_0, y_0), (x_1, y_1), (x_2, y_2)\} \): polynomial through points:

\[
p(x) = y_0 \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_0-x_0)(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_1-x_0)(x_1-x_1)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_1)(x_2-x_2)}
\]

\(i \)th is zero for \(x = x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n-1} \), and is equal to \(y_i \) for \(x = x_i \).
Polynomials: regular vs. point-value pair representation

Just because.

1. Given n point-value pairs. Can compute $p(x)$ in $O(n^2)$ time.
2. Point-value pairs representation: Multiply polynomials quickly!
3. p, q polynomial of degree $n - 1$, both represented by $2n$ point-value pairs
 $\{(x_0, y_0), (x_1, y_1), \ldots, (x_{2n-1}, y_{2n-1})\}$ for $p(x)$, and
 $\{(x_0', y_0'), (x_1', y_1'), \ldots, (x_{2n-1}', y_{2n-1}')\}$ for $q(x)$.
4. $r(x) = p(x)q(x)$: product.
5. In point-value representation representation of $r(x)$ is
 $\{(x_0, r(x_0)), \ldots, (x_{2n-1}, r(x_{2n-1}))\}$
 $= \{(x_0, p(x_0)q(x_0)), \ldots, (x_{2n-1}, p(x_{2n-1})q(x_{2n-1}))\}$.

Which implies...

- $p(x)$ and $q(x)$: point-value pairs \implies compute $r(x) = p(x)q(x)$ in linear time!
- $r(x)$ is in point-value representation. Bummer.
- $r(x)$ is in point-value representation. Bummer.
- Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- ...and back!
- \implies computing product of two polynomials in $O(n \log n)$ time.
- Fast Fourier Transform is a way to do this.
- choosing the x_i values carefully, and using divide and conquer.

Part I

Computing a polynomial quickly on n values

Let’s just use some magic.

- Assume: polynomials have degree $n - 1$, where $n = 2^k$.
- ... pad polynomials with terms having zero coefficients.
- Magic set of numbers: $\Psi = \{x_1, \ldots, x_n\}$.
 Property: $|\text{SQ}(\Psi)| = n/2$, where $\text{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- $|\text{square}(\Psi)| = |\Psi| / 2$.
- Easy to find such set...
- Magic: Have this property repeatedly...
 $\text{SQ}(\text{SQ}(\Psi))$ has $n/4$ distinct values.
 $\text{SQ}(\text{SQ}(\text{SQ}(\Psi)))$ has $n/8$ values.
 $\text{SQ}^i(\Psi)$ has $n/2^i$ distinct values.
- Oops: No such set of real numbers.
- NO SUCH SET.
Collapsible sets

Assume magic...

Let us for the time being ignore this technicality, and fly, for a moment, into the land of fantasy, and assume that we do have such a set of numbers, so that \(|\text{SQ}'(\Psi)| = n/2^i\) numbers, for \(i = 0, \ldots, k\). Let us call such a set of numbers collapsible.

FFT: The dividing stage

- \(p(x) = \sum_{i=0}^{n-1} a_i x^i\) as \(p(x) = u(x^2) + x \cdot v(x^2)\).
- \(\Psi\): collapsible set of size \(n\).
- \(p(\Psi)\): compute polynomial of degree \(n - 1\) on \(n\) values.

Decompose:

\[
\begin{align*}
u(y) &= \sum_{i=0}^{n/2-1} a_{2i} y^i \quad \text{and} \quad v(y) &= \sum_{i=0}^{n/2-1} a_{1+2i} y^i.
\end{align*}
\]

Need to compute \(u(x^2)\), for all \(x \in \Psi\).

Need to compute \(v(x^2)\), for all \(x \in \Psi\).

\(\text{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}\).

\(\implies\) Need to compute \(u(\text{SQ}(\Psi)), v(\text{SQ}(\Psi))\).

\(u(\text{SQ}(\Psi)), v(\text{SQ}(\Psi))\): comp. poly. degree \(\frac{n}{2} - 1\) on \(\frac{n}{2}\) values.

Breaking the input polynomial into two polynomials of half the degree

- For a set \(\mathcal{X} = \{x_0, \ldots, x_n\}\) and polynomial \(p(x)\), let

\[
p(\mathcal{X}) = \left\langle (x_0, p(x_0)), \ldots, (x_n, p(x_n)) \right\rangle.
\]

- \(p(x) = \sum_{i=0}^{n-1} a_i x^i\) as \(p(x) = u(x^2) + x \cdot v(x^2)\), where

\[
\begin{align*}
u(y) &= \sum_{i=0}^{n/2-1} a_{2i} y^i \quad \text{and} \quad v(y) &= \sum_{i=0}^{n/2-1} a_{1+2i} y^i.
\end{align*}
\]

All even degree terms in \(u(\cdot)\), all odd degree terms in \(v(\cdot)\).

Maximum degree of \(u(y)\), \(v(y)\) is \(n/2\).

FFT: The conquering stage

- \(\Psi\): Collapsible set of size \(n\).
- \(p(x) = \sum_{i=0}^{n-1} a_i x^i\) as \(p(x) = u(x^2) + x \cdot v(x^2)\).

\(u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i\) and \(v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i\).

\(u(\text{SQ}(\Psi)), v(\text{SQ}(\Psi))\): Computed recursively.

Need to compute \(p(\Psi)\).

For \(x \in \Psi\): Compute \(p(x) = u(x^2) + x \cdot v(x^2)\).

Takes constant time per single element \(x \in \Psi\).

Takes \(O(n)\) time overall.
FFT algorithm

\texttt{FFTAlg}(p, X)

\begin{itemize}
\item \textbf{input:} \(p(x):\) A polynomial of degree \(n:\)
\[p(x) = \sum_{i=0}^{n-1} a_i x^i \]
\item \textbf{output:} \(p(X):\) A collapsible set of \(n\) elements.
\end{itemize}

\begin{itemize}
\item \(u(y) = \sum_{i=0}^{n/2-1} a_2i y^i\)
\item \(v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i.\)
\item \(Y = \text{SQ}(X) = \{ x^2 \mid x \in X \}.\)
\item \(U = \text{FFTAlg}(u, Y)\) /* \(U = u(\textbf{Y})*/
\item \(V = \text{FFTAlg}(v, Y)\) /* \(V = v(\textbf{Y})*/
\end{itemize}

\texttt{Out} \leftarrow \emptyset

\textbf{for} \(x \in X\) \textbf{do}

\begin{itemize}
\item \(\texttt{Out} \leftarrow \texttt{Out} \cup \{(x, p(x))\}\)
\end{itemize}

\textbf{return} \texttt{Out}

Generating Collapsible Sets

- **How to generate collapsible sets?**
- **Trick:** Use complex numbers!

Complex numbers – a quick reminder

- **Complex number:** pair \((\alpha, \beta)\) of real numbers. Written as \(\tau = \alpha + \beta i\).
 - \(\alpha:\) \textit{real} part,
 - \(\beta:\) \textit{imaginary} part.
- \(i\) is the root of \(-1\).
- Geometrically: a point in the complex plane:

 \[
 \tau = \alpha + \beta i
 \]

 ![Complex Plane Diagram]

 \[
 \tau = r \cos \phi + ir \sin \phi = r (\cos \phi + i \sin \phi)
 \]
A useful formula: \(\cos \phi + i \sin \phi = e^{i \phi} \)

- By Taylor’s expansion:
 \[
 \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots ,
 \]
 \[
 \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots ,
 \]
 and \(e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots . \)
- Since \(i^2 = -1 \):
 \[
 e^{ix} = 1 + i \frac{x}{1!} - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} + i \frac{x^5}{5!} - \frac{x^6}{6!} \cdots
 \]
 \[
 = \cos x + i \sin x .
 \]

Roots of unity
The desire to avoid war?

For \(j = 0, \ldots, n - 1 \), we get the \(n \) distinct roots of unity.

\[
\gamma_j(n) = \cos((2\pi j)/n) + i \sin((2\pi j)/n) = \gamma^j .
\]

Let \(\mathcal{A}(n) = \{ \gamma_0(n), \ldots, \gamma_{n-1}(n) \} \).

- \(|\text{SQ}(\mathcal{A}(n))| \) has \(n/2 \) entries.
- \(\text{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2) \)
- \(n \) to be a power of 2, then \(\mathcal{A}(n) \) is the required collapsible set.
Theorem
Given polynomial \(p(x) \) of degree \(n \), where \(n \) is a power of two, then we can compute \(p(X) \) in \(O(n \log n) \) time, where \(X = \mathcal{A}(n) \) is the set of \(n \) different powers of the \(n \)th root of unity over the complex numbers.

Recovering the polynomial
Think about FFT as a matrix multiplication operator.
\[
p(x) = \sum_{i=0}^{n-1} a_i x^i.
\]
Evaluating \(p(\cdot) \) on \(\mathcal{A}(n) \):

\[
\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{pmatrix}
= \begin{pmatrix}
1 & \gamma_0 & \gamma_0^2 & \gamma_0^3 & \cdots & \gamma_0^{n-1} \\
1 & \gamma_1 & \gamma_1^2 & \gamma_1^3 & \cdots & \gamma_1^{n-1} \\
1 & \gamma_2 & \gamma_2^2 & \gamma_2^3 & \cdots & \gamma_2^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \gamma_{n-1} & \gamma_{n-1}^2 & \gamma_{n-1}^3 & \cdots & \gamma_{n-1}^{n-1}
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{pmatrix},
\]

where \(\gamma_j = \gamma_j(n) = (\gamma_1(n))^j \) is the \(j \)th power of the \(n \)th root of unity, and \(y_j = p(\gamma_j) \).

The Vandermonde matrix
Because every matrix needs a name

\(V \) is the Vandermonde matrix.
\(V^{-1} \): inverse matrix of \(V \)
Vandermonde matrix. And let multiply the above formula from the left. We get:

\[
\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{pmatrix}
= V
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{pmatrix}
\implies
\begin{pmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_{n-1}
\end{pmatrix}
= V^{-1}
\begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
\vdots \\
y_{n-1}
\end{pmatrix}.
\]
The inverse Vandermonde matrix
..for the rescue

1. Recover the polynomial \(p(x) \) from the point-value pairs
 \[\{ (\gamma_0, p(\gamma_0)), (\gamma_1, p(\gamma_1)), \ldots, (\gamma_{n-1}, p(\gamma_{n-1})) \} \]
 by doing a single matrix multiplication of \(V^{-1} \) by the vector \([y_0, y_1, \ldots, y_{n-1}]\).
2. Multiplying a vector with \(n \) entries with \(n \times n \) matrix takes \(O(n^2) \) time.

 No benefit so far...

Proof
Consider the \((u, v)\) entry in the matrix \(C = V^{-1}V \). We have
\[
C_{u,v} = \sum_{j=0}^{n-1} \left(\beta_u \right)^j (\gamma_j)^v.
\]

As \(\gamma_j = (\gamma_1)^j \). Thus,
\[
C_{u,v} = \sum_{j=0}^{n-1} \left(\frac{\beta_u}{n} \right)^j (\gamma_1)^j = \sum_{j=0}^{n-1} \left(\frac{\beta_u \gamma_v}{n} \right)^j.
\]

Clearly, if \(u = v \) then
\[
C_{u,u} = \frac{1}{n} \sum_{j=0}^{n-1} (\beta_u \gamma_u)^j = \frac{1}{n} \sum_{j=0}^{n-1} (1)^j = \frac{n}{n} = 1.
\]

Proof continued...
If \(u \neq v \) then,
\[
\beta_u \gamma_v = (\gamma_u)^{-1} \gamma_v = (\gamma_1)^{-u} \gamma_1^v = (\gamma_1)^{v-u} = \gamma_{v-u}.
\]

And
\[
C_{u,v} = \frac{1}{n} \sum_{j=0}^{n-1} (\gamma_{v-u})^j = \frac{1}{n} \gamma_{v-u}^n - 1 = \frac{1}{n} \cdot \frac{1 - 1}{\gamma_{v-u} - 1} = 0,
\]

Proved that the matrix \(C \) have ones on the diagonal and zero everywhere else.

What is the inverse of the Vandermonde matrix

Vandermonde matrix is famous, beautiful and well known -- a celebrity matrix

Claim
\[
V^{-1} = \frac{1}{n} \begin{pmatrix}
1 & \beta_0 & \beta_0^2 & \ldots & \beta_0^{n-1} \\
1 & \beta_1 & \beta_1^2 & \ldots & \beta_1^{n-1} \\
1 & \beta_2 & \beta_2^2 & \ldots & \beta_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \beta_{n-1} & \beta_{n-1}^2 & \ldots & \beta_{n-1}^{n-1}
\end{pmatrix},
\]

where \(\beta_j = (\gamma_j(n))^{-1} \).
Recap...

- **n** point-value pairs \(\{(\gamma_0, y_0), \ldots, (\gamma_{n-1}, y_{n-1})\}\) of a polynomial \(p(x) = \sum_{i=0}^{n-1} a_i x^i\) over the set of \(n\)th roots of unity.
- Can recover coefficients of the polynomial by multiplying the vector \([y_0, y_1, \ldots, y_n]\) by the matrix \(V^{-1}\). Namely,

\[
\begin{pmatrix}
 a_0 \\
 a_1 \\
 \vdots \\
 a_{n-1}
\end{pmatrix} = \frac{1}{n} \begin{pmatrix}
 1 & \beta_0 & \beta_0^2 & \beta_0^3 & \cdots & \beta_0^{n-1} \\
 1 & \beta_1 & \beta_1^2 & \beta_1^3 & \cdots & \beta_1^{n-1} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \beta_{n-1} & \beta_{n-1}^2 & \beta_{n-1}^3 & \cdots & \beta_{n-1}^{n-1}
\end{pmatrix}
\begin{pmatrix}
 y_0 \\
 y_1 \\
 \vdots \\
 y_{n-1}
\end{pmatrix}.
\]

- \(W(x) = \sum_{i=0}^{n-1} (y_i/n)x^i\): \(a_i = W(\beta_i)\).

Recovering continued...

- recover coefficients of \(p(\cdot)\)...
- ... compute \(W(\cdot)\) on \(n\) values: \(\beta_0, \ldots, \beta_{n-1}\).
- \(\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}\).
- Indeed \(\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1\).
- Apply the \texttt{FFTAlg} algorithm on \(W(x)\) to compute \(a_0, \ldots, a_{n-1}\).

Result

Theorem

Given \(n\) point-value pairs of a polynomial \(p(x)\) of degree \(n - 1\) over the set of \(n\) powers of the \(n\)th roots of unity, we can recover the polynomial \(p(x)\) in \(O(n \log n)\) time.

Theorem

Given two polynomials of degree \(n\), they can be multiplied in \(O(n \log n)\) time.
Convolutions

- Two vectors: $A = [a_0, a_1, \ldots, a_n]$ and $B = [b_0, \ldots, b_n]$.
- *dot product* $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.
- A_r: shifting of A by $n - r$ locations to the left
 - Padded with zeros: $a_j = 0$ for $j \not\in \{0, \ldots, n\}$.
- $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \ldots, a_{2n-r}]$
 - where $a_j = 0$ if $j \not\in \{0, \ldots, n\}$.
- Observation: $A_n = A$.

Example of shifting

Example

For $A = [3, 7, 9, 15]$, $n = 3$
$A_2 = [7, 9, 15, 0]$
$A_5 = [0, 0, 3, 7]$.

Definition

Definition

Let $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}$, for $i = 0, \ldots, 2n$. The vector $[c_0, \ldots, c_{2n}]$ is the *convolution* of A and B.

Question

How to compute the convolution of two vectors of length n?

Convolution via multiplication polynomials

- $p(x) = \sum_{i=0}^{n} \alpha_i x^i$, and $q(x) = \sum_{i=0}^{n} \beta_i x^i$.
- Coefficient of x^i in $r(x) = p(x)q(x)$ is $d_i = \sum_{j=0}^{i} \alpha_j \beta_{i-j}$.
- Want to compute $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}$.
- Set $\alpha_i = a_i$ and $\beta_i = b_{n-i-1}$.
Convolution by example

- Consider coefficient of x^2 in product of $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$.
- Sum of the entries on the anti diagonal:

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>a_1x</th>
<th>$a_2b_0x^2$</th>
<th>a_3x^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$+b_1x$</td>
<td>$a_1b_1x^2$</td>
<td>$a_2b_0x^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$+b_2x^2$</td>
<td>$a_0b_2x^2$</td>
<td>$a_1b_1x^2$</td>
<td>a_3x^3</td>
<td></td>
</tr>
<tr>
<td>$+b_3x^3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Entry in the ith row and jth column is $a_i b_j$.

Convolution

Theorem

Given two vectors $A = [a_0, a_1, \ldots, a_n]$, $B = [b_0, \ldots, b_n]$ one can compute their convolution in $O(n \log n)$ time.

Proof.

Let $p(x) = \sum_{i=0}^{n} a_{n-i}x^i$ and let $q(x) = \sum_{i=0}^{n} b_i x^i$. Compute $r(x) = p(x)q(x)$ in $O(n \log n)$ time using the convolution theorem. Let c_0, \ldots, c_{2n} be the coefficients of $r(x)$. It is easy to verify, as described above, that $[c_0, \ldots, c_{2n}]$ is the convolution of A and B. \qed