Chapter 13

Network Flow II

CS 573: Algorithms, Fall 2013
October 10, 2013

13.0.1 Accountability
13.0.1.1 Accountability

(A) People that do not know maximum flows: essentially everybody.
(B) Average salary on earth ¡ $5,000
(C) People that know maximum flow – most of them work in programming related jobs and make at least $10,000 a year.
(D) Salary of people that learned maximum flows: > $10,000
(E) Salary of people that did not learn maximum flows: < $5,000.
(F) Salary of people that know Latin: 0 (unemployed).

Conclusion Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!

13.0.2 The Ford-Fulkerson Method

13.0.2.1 Ford Fulkerson

algFordFulkerson(G, s, t)

Initialize flow f to zero
while ∃ path π from s to t in G_f do
 c_f(π) ← min \{c_f(u, v) \mid (u → v) ∈ π\}
 for ∀ (u → v) ∈ π do
 f(u, v) ← f(u, v) + c_f(π)
 f(v, u) ← f(v, u) − c_f(π)

Lemma 13.0.1. If the capacities on the edges of G are integers, then algFordFulkerson runs in
O(m |f^*|) time, where |f^*| is the amount of flow in the maximum flow and m = |E(G)|.

13.0.2.2 Proof of Lemma...

Proof: Observe that the algFordFulkerson method performs only subtraction, addition and min
operations. Thus, if it finds an augmenting path π, then c_f(π) must be a positive integer number. Namely, c_f(π) ≥ 1. Thus, |f^*| must be an integer number (by induction), and each iteration of the
algorithm improves the flow by at least 1. It follows that after |f^*| iterations the algorithm stops. Each
iteration takes O(m + n) = O(m) time, as can be easily verified.

13.0.2.3 Integrality theorem

Observation 13.0.2 (Integrality theorem). If the capacity function c takes on only integral values,
then the maximum flow f produced by the algFordFulkerson method has the property that |f| is integer-valued. Moreover, for all vertices u and v, the value of f(u, v) is also an integer.

13.0.3 The Edmonds-Karp algorithm

13.0.3.1 Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the shortest augmenting path in G_f.

Definition 13.0.3. For a flow f, let δ_f(v) be the length of the shortest path from the source s to v in
the residual graph G_f. Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma 13.0.4. ∀v ∈ V \ {s, t} the function δ_f(v) increases.
13.0.3.2 The disappearing/reappearing lemma

Lemma 13.0.5. During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof:
(A) iteration when edge \((u \rightarrow v)\) disappears.
(B) \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
(C) Fully utilized: \(c_f(\pi) = c_f(uv).\) \(f\) flow in beginning of iter.
(D) till \((u \rightarrow v)\) “magically” reappears.
(E) ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
(F) \(g\): flow used to compute \(\sigma\).
(G) We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
(H) distance of \(s\) to \(u\) had increased by 2. QED.

13.0.3.3 Comments...

(A) \(\delta_f(u)\) might become infinity.
(B) \(u\) is no longer reachable from \(s\).
(C) By monotonicity, the edge \((u \rightarrow v)\) would never appear again.

Observation 13.0.6. For every iteration/augmenting path of Edmonds-Karp algorithm, at least one edge disappears from the residual graph \(G_f\).

13.0.3.4 Edmonds-Karp # of iterations

Lemma 13.0.7. Edmonds-Karp handles \(O(nm)\) augmenting paths before it stops.
Its running time is \(O(nm^2)\), where \(n = |V(G)|\) and \(m = |E(G)|\).

Proof:
(A) Every edge might disappear at most \(n/2\) times.
(B) At most \(nm/2\) edge disappearances during execution Edmonds-Karp.
(C) In each iteration, by path augmentation, at least one edge disappears.
(D) Edmonds-Karp algorithm perform at most \(O(mn)\) iterations.
(E) Computing augmenting path takes \(O(m)\) time.
(F) Overall running time is \(O(nm^2)\).

13.0.3.5 Shortest distance increases during Edmonds-Karp execution

Lemma 13.0.8. Edmonds-Karp run on \(G = (V,E), s, t\), then \(\forall v \in V \setminus \{s,t\}\), the distance \(\delta_f(v)\) in \(G_f\) increases monotonically.

Proof
(A) By Contradiction. \(f\): flow before (first fatal) iteration.
(B) \(g\): flow after.
(C) \(v\): vertex s.t. \(\delta_g(v)\) is minimal, among all counter example vertices.
(D) \(v\): \(\delta_g(v)\) is minimal and \(\delta_g(v) < \delta_f(v)\).
13.0.3.6 Proof continued...

(A) \(\pi = s \rightarrow \cdots \rightarrow u \rightarrow v \): shortest path in \(G_g \) from \(s \) to \(v \).
(B) \((u \rightarrow v) \in E(G_g)\), and thus \(\delta_g(u) = \delta_g(v) - 1 \).
(C) By choice of \(v \): \(\delta_g(u) \geq \delta_f(u) \).

(i) If \((u \rightarrow v) \in E(G_f)\) then

\[
\delta_f(v) \leq \delta_f(u) + 1 \leq \delta_g(u) + 1 = \delta_g(v) - 1 + 1 = \delta_g(v).
\]

This contradicts our assumptions that \(\delta_f(v) > \delta_g(v) \).

13.0.3.7 Proof continued II

(ii) \(f \quad (u \rightarrow v) \notin E(G_f) \):

(A) \(\pi \) used in computing \(g \) from \(f \) contains \((v \rightarrow u)\).
(B) \((u \rightarrow v)\) reappeared in the residual graph \(G_g \) (while not being present in \(G_f \)).
(C) \(\Rightarrow \) \(\pi \) pushed a flow in the other direction on the edge \((u \rightarrow v)\). Namely, \((v \rightarrow u) \in \pi \).
(D) Algorithm always augment along the shortest path. By assumption \(\delta_g(v) < \delta_f(v) \), and definition of \(u \):

\[
\delta_f(u) = \delta_f(v) + 1 > \delta_g(v) = \delta_g(u) + 1,
\]

(E) \(\Rightarrow \) \(\delta_f(u) > \delta_g(u) \)

\(\Rightarrow \) monotonicity property fails for \(u \).
But: \(\delta_g(u) < \delta_g(v) \). A contradiction.

\[\blacksquare\]

13.1 Applications and extensions for Network Flow

13.1.1 Maximum Bipartite Matching

13.1.1.1 Bipartite Matching

\[\begin{array}{c}
13.1.1.2 Bipartite matching

Definition 13.1.1. \(G = (V, E) \): undirected graph.

\(M \subseteq E \): matching if all vertices \(v \in V \), at most one edge of \(M \) is incident on \(v \).

\(M \) is maximum matching if for any matching \(M' \): \(|M| \geq |M'| \).

\(M \) is perfect if it involves all vertices.
13.1.1.3 Computing bipartite matching

Theorem 13.1.2. Compute maximum bipartite matching in $O(nm)$ time.

Proof:
(A) G: bipartite graph G. (n vertices and m edges)
(B) Create new graph H with source on left and sink right.
(C) Direct all edges from left to right. Set all capacities to one.
(D) By Integrality theorem, flow in H is 0/1 on edges.
(E) A flow of value k in H \implies a collection of k vertex disjoint $s-t$ paths \implies matching in G of size k.
(F) M: matching of k edge in G, \implies flow of value k in H.
(G) Running time of the algorithm is $O(nm)$. Max flow is n, and as such, at most n augmenting paths.

13.1.1.4 Extension: Multiple Sources and Sinks

Question Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?

Solution The idea is to create a super source, that send all its flow to the old sources and similarly create a super sink that receives all the flow.

Clearly, computing flow in both networks in equivalent.

13.1.1.5 Proof by figures