THE MIN-CUT THEOREM STATES... YES, CALVIN?

BEFORE I DECIDE TO INVEST TIME AND ENERGY LEARNING NETWORK FLOWS, I WANT TO KNOW HOW MUCH IT'S GOING TO INCREASE MY POSTDOCTORAL SALARY! I DEMAND ACCOUNTABILITY!!

http://www.cs.berkeley.edu/~jrs/Calvin
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth: \$5,000
3. People that know maximum flow – most of them work in programming related jobs and make at least \$10,000 a year.
4. Salary of people that learned maximum flows: \(\geq \$10,000\)
5. Salary of people that did not learn maximum flows: \(\leq \$5,000\).
6. Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth \(\$5,000 \)
3. People that know maximum flow – most of them work in programming related jobs and make at least \(\$10,000 \) a year.
4. Salary of people that learned maximum flows: \(> \$10,000 \)
5. Salary of people that did not learn maximum flows: \(< \$5,000 \).
6. Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth is $5,000.
3. People that know maximum flow – most of them work in programming related jobs and make at least $10,000 a year.
4. Salary of people that learned maximum flows: > $10,000
5. Salary of people that did not learn maximum flows: < $5,000.
6. Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth \(\approx \$5,000 \)
3. People that know maximum flow – most of them work in programming related jobs and make at least \(\$10,000 \) a year.
4. Salary of people that learned maximum flows: \(> \$10,000 \)
5. Salary of people that did not learn maximum flows: \(< \$5,000 \).
6. Salary of people that know Latin: \(0 \) (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
People that do not know maximum flows: essentially everybody.

Average salary on earth \(\$5,000 \)

People that know maximum flow – most of them work in programming related jobs and make at least \(\$10,000 \) a year.

Salary of people that learned maximum flows: \(> \$10,000 \)

Salary of people that did not learn maximum flows: \(< \$5,000 \).

Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth: $5,000
3. People that know maximum flow – most of them work in programming related jobs and make at least $10,000 a year.
4. Salary of people that learned maximum flows: > $10,000
5. Salary of people that did not learn maximum flows: < $5,000.
6. Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Accountability

1. People that do not know maximum flows: essentially everybody.
2. Average salary on earth \(\$5,000 \)
3. People that know maximum flow – most of them work in programming related jobs and make at least \(\$10,000 \) a year.
4. Salary of people that learned maximum flows: \(> \$10,000 \)
5. Salary of people that did not learn maximum flows: \(< \$5,000 \).
6. Salary of people that know Latin: 0 (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!
Ford Fulkerson

\[
\text{algFordFulkerson}(G, s, t) \\
\text{Initialize flow } f \text{ to zero} \\
\text{while } \exists \text{ path } \pi \text{ from } s \text{ to } t \text{ in } G_f \text{ do} \\
\quad c_f(\pi) \leftarrow \min \left\{ c_f(u, v) \mid (u \rightarrow v) \in \pi \right\} \\
\quad \text{for } \forall (u \rightarrow v) \in \pi \text{ do} \\
\quad \quad f(u, v) \leftarrow f(u, v) + c_f(\pi) \\
\quad \quad f(v, u) \leftarrow f(v, u) - c_f(\pi)
\]

Lemma

If the capacities on the edges of \(G \) are integers, then \text{algFordFulkerson} runs in \(O(m |f^*|) \) time, where \(|f^*|\) is the amount of flow in the maximum flow and \(m = |E(G)| \).
Proof of Lemma...

Proof.

Observe that the \texttt{algFordFulkerson} method performs only subtraction, addition and \texttt{min} operations. Thus, if it finds an augmenting path π, then $c_f(\pi)$ must be a \textit{positive} integer number. Namely, $c_f(\pi) \geq 1$. Thus, $|f^*|$ must be an integer number (by induction), and each iteration of the algorithm improves the flow by at least 1. It follows that after $|f^*|$ iterations the algorithm stops. Each iteration takes $O(m + n) = O(m)$ time, as can be easily verified.
Observation (Integrality theorem)

If the capacity function \(c \) takes on only integral values, then the maximum flow \(f \) produced by the \texttt{algFordFulkerson} method has the property that \(|f| \) is integer-valued. Moreover, for all vertices \(u \) and \(v \), the value of \(f(u, v) \) is also an integer.
Edmonds-Karp algorithm

Edmonds-Karp: modify `algFordFulkerson` so it always returns the shortest augmenting path in G_f.

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph G_f. Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

$\forall v \in V \setminus \{s, t\}$ the function $\delta_f(v)$ increases.
Edmonds-Karp algorithm

Edmonds-Karp: modify algFordFulkerson so it always returns the shortest augmenting path in G_f.

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph G_f. Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

$\forall v \in V \setminus \{s, t\}$ the function $\delta_f(v)$ increases.
Edmonds-Karp algorithm

Edmonds-Karp: modify `algFordFulkerson` so it always returns the shortest augmenting path in G_f.

Definition

For a flow f, let $\delta_f(v)$ be the length of the shortest path from the source s to v in the residual graph G_f. Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

$\forall v \in V \setminus \{s, t\}$ the function $\delta_f(v)$ increases.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. iteration when edge \((u \rightarrow v)\) disappears.
2. \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. till \((u \rightarrow v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. distance of \(s\) to \(u\) had increased by 2. QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. iteration when edge \((u \rightarrow v)\) disappears.
2. \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. till \((u \rightarrow v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. distance of \(s\) to \(u\) had increased by 2. QED.
The disappearing/reappearing lemma

Lemma

During execution **Edmonds-Karp**, edge \((u \to v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. iteration when edge \((u \to v)\) disappears.
2. \((u \to v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. till \((u \to v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \to u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. distance of \(s\) to \(u\) had increased by 2. QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. iteration when edge \((u \rightarrow v)\) disappears.
2. \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. till \((u \rightarrow v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. distance of \(s\) to \(u\) had increased by \(2\). QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ might disappear/reappear from G_f at most $n/2$ times, $n = |V(G)|$.

Proof.

1. iteration when edge $(u \rightarrow v)$ disappears.
2. $(u \rightarrow v)$ appeared in augmenting path π.
3. Fully utilized: $c_f(\pi) = c_f(uv)$. f flow in beginning of iter.
4. till $(u \rightarrow v)$ “magically” reappears.
5. ... augmenting path σ that contained the edge $(v \rightarrow u)$.
6. g: flow used to compute σ.
7. We have: $\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$
8. distance of s to u had increased by 2. QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. iteration when edge \((u \rightarrow v)\) disappears.
2. \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. till \((u \rightarrow v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. distance of \(s\) to \(u\) had increased by \(2\). QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge $(u \rightarrow v)$ *might disappear/reappear from* G_f *at most* $n/2$ *times, $n = |V(G)|$.*

Proof.

1. Iteration when edge $(u \rightarrow v)$ disappears.
2. $(u \rightarrow v)$ appeared in augmenting path π.
3. Fully utilized: $c_f(\pi) = c_f(uv)$.
4. Flow f in beginning of iter.
5. Till $(u \rightarrow v)$ “magically” reappears.
6. ... augmenting path σ that contained the edge $(v \rightarrow u)$.
7. g: flow used to compute σ.
8. We have: $\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2$
9. Distance of s to u had increased by 2. QED.
The disappearing/reappearing lemma

Lemma

During execution Edmonds-Karp, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f\) at most \(n/2\) times, \(n = |V(G)|\).

Proof.

1. Iteration when edge \((u \rightarrow v)\) disappears.
2. \((u \rightarrow v)\) appeared in augmenting path \(\pi\).
3. Fully utilized: \(c_f(\pi) = c_f(uv)\). \(f\) flow in beginning of iter.
4. Till \((u \rightarrow v)\) “magically” reappears.
5. ... augmenting path \(\sigma\) that contained the edge \((v \rightarrow u)\).
6. \(g\): flow used to compute \(\sigma\).
7. We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2\)
8. Distance of \(s\) to \(u\) had increased by \(2\). QED.
Comments...

1. $\delta?(u)$ might become infinity.
2. u is no longer reachable from s.
3. By monotonicity, the edge $(u \rightarrow v)$ would never appear again.

Observation

For every iteration/augmenting path of Edmonds-Karp algorithm, at least one edge disappears from the residual graph $G?$.
Edmonds-Karp handles $O(nm)$ augmenting paths before it stops. Its running time is $O(nm^2)$, where $n = |V(G)|$ and $m = |E(G)|$.

Proof.

1. Every edge might disappear at most $n/2$ times.
2. At most $nm/2$ edge disappearances during execution Edmonds-Karp.
3. In each iteration, by path augmentation, at least one edge disappears.
4. Edmonds-Karp algorithm perform at most $O(mn)$ iterations.
5. Computing augmenting path takes $O(m)$ time.
6. Overall running time is $O(nm^2)$.
Shortest distance increases during Edmonds-Karp execution

Lemma

Edmonds-Karp run on $G = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in G_f increases monotonically.

Proof

1. By Contradiction. f: flow before (first fatal) iteration.
2. g: flow after.
3. v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
4. v: $\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v)$.
Shortest distance increases during Edmonds-Karp execution

Lemma

Edmonds-Karp run on $G = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in G_f increases monotonically.

Proof

1. By Contradiction. f: flow before (first fatal) iteration.
2. g: flow after.
3. v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
4. v: $\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v)$.
Shortest distance increases during Edmonds-Karp execution

Lemma

Edmonds-Karp run on \(G = (V, E) \), \(s, t \), then \(\forall v \in V \setminus \{s, t\} \), the distance \(\delta_f(v) \) in \(G_f \) increases monotonically.

Proof

1. By Contradiction. \(f \): flow before (first fatal) iteration.
2. \(g \): flow after.
3. \(v \): vertex s.t. \(\delta_g(v) \) is minimal, among all counter example vertices.
4. \(v \): \(\delta_g(v) \) is minimal and \(\delta_g(v) < \delta_f(v) \).
Shortest distance increases during Edmonds-Karp execution

Lemma

Edmonds-Karp run on $G = (V, E)$, s, t, then $\forall v \in V \setminus \{s, t\}$, the distance $\delta_f(v)$ in G_f increases monotonically.

Proof

1. By Contradiction. f: flow before (first fatal) iteration.
2. g: flow after.
3. v: vertex s.t. $\delta_g(v)$ is minimal, among all counter example vertices.
4. v: $\delta_g(v)$ is minimal and $\delta_g(v) < \delta_f(v)$.
Proof continued...

1. \(\pi = s \rightarrow \cdots \rightarrow u \rightarrow v \): shortest path in \(G_g \) from \(s \) to \(v \).
2. \((u \rightarrow v) \in E(G_g)\), and thus \(\delta_g(u) = \delta_g(v) - 1 \).
3. By choice of \(v \): \(\delta_g(u) \geq \delta_f(u) \).
 (i) If \((u \rightarrow v) \in E(G_f)\) then

 \[
 \delta_f(v) \leq \delta_f(u) + 1 \leq \delta_g(u) + 1 = \delta_g(v) - 1 + 1 = \delta_g(v)
 \]

 This contradicts our assumptions that \(\delta_f(v) > \delta_g(v) \).
(ii) $f \ (u \to v) \not\in E(G_f)$:

1. π used in computing g from f contains $(v \to u)$.
2. $(u \to v)$ reappeared in the residual graph G_g (while not being present in G_f).
3. $\implies \pi$ pushed a flow in the other direction on the edge $(u \to v)$. Namely, $(v \to u) \in \pi$.
4. Algorithm always augment along the shortest path. By assumption $\delta_g(v) < \delta_f(v)$, and definition of u:
 \[
 \delta_f(u) = \delta_f(v) + 1 > \delta_g(v) = \delta_g(u) + 1,
 \]
5. $\implies \delta_f(u) > \delta_g(u)$
 \implies monotonicity property fails for u.
But: $\delta_g(u) < \delta_g(v)$. A contradiction.
Bipartite Matching
Bipartite Matching
Bipartite Matching
Bipartite Matching
Bipartite matching

Definition

\(G = (V, E) \): undirected graph.

\(M \subseteq E \): **matching** if all vertices \(v \in V \), at most one edge of \(M \) is incident on \(v \).

\(M \) is **maximum matching** if for any matching \(M' \): \(|M| \geq |M'| \).

\(M \) is **perfect** if it involves all vertices.
Computing bipartite matching

Theorem

Compute maximum bipartite matching in $O(nm)$ time.

Proof.

1. G: bipartite graph G. (n vertices and m edges)
2. Create new graph H with source on left and sink right.
3. Direct all edges from left to right. Set all capacities to one.
4. By Integrality theorem, flow in H is $0/1$ on edges.
5. A flow of value k in H \implies a collection of k vertex disjoint $s-t$ paths \implies matching in G of size k.
7. Running time of the algorithm is $O(nm)$. Max flow is n, and as such, at most n augmenting paths.

\blacksquare
Extension: Multiple Sources and Sinks

Question

Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?
Extension: Multiple Sources and Sinks

Question
Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?

Solution
The idea is to create a super source, that send all its flow to the old sources and similarly create a super sink that receives all the flow. Clearly, computing flow in both networks in equivalent.
Proof by figures