Accountability

- People that do not know maximum flows: essentially everybody.
- Average salary on earth \(\$5,000 \)
- People that know maximum flow – most of them work in programming related jobs and make at least \(\$10,000 \) a year.
- Salary of people that learned maximum flows: \(\geq \$10,000 \)
- Salary of people that did not learn maximum flows: \(< \$5,000 \).
- Salary of people that know Latin: \(0 \) (unemployed).

Conclusion

Thus, by just learning maximum flows (and not knowing Latin) you can double your future salary!

Ford Fulkerson

\[
\text{algFordFulkerson}(G, s, t) \\
\text{Initialize flow } f \text{ to zero} \\
\text{while } \exists \text{ path } \pi \text{ from } s \text{ to } t \text{ in } G_f \text{ do} \\
\quad c_f(\pi) \leftarrow \min \{ c_f(u, v) \mid (u \rightarrow v) \in \pi \} \\
\quad \text{for } \forall (u \rightarrow v) \in \pi \text{ do} \\
\quad \quad f(u, v) \leftarrow f(u, v) + c_f(\pi) \\
\quad \quad f(v, u) \leftarrow f(v, u) - c_f(\pi)
\]

Lemma

If the capacities on the edges of \(G \) are integers, then \(\text{algFordFulkerson} \) runs in \(O(m|f^*|) \) time, where \(|f^*| \) is the amount of flow in the maximum flow and \(m = |E(G)| \).
Proof of Lemma...

Proof.
Observe that the \texttt{algFordFulkerson} method performs only subtraction, addition and \texttt{min} operations. Thus, if it finds an augmenting path \(\pi \), then \(c_f(\pi) \) must be a \textit{positive} integer number. Namely, \(c_f(\pi) \geq 1 \). Thus, \(|f^*| \) must be an integer number (by induction), and each iteration of the algorithm improves the flow by at least 1. It follows that after \(|f^*| \) iterations the algorithm stops. Each iteration takes \(O(m + n) = O(m) \) time, as can be easily verified.

Integrality theorem

Observation (Integrality theorem)

If the capacity function \(c \) takes on only integral values, then the maximum flow \(f \) produced by the \texttt{algFordFulkerson} method has the property that \(|f| \) is integer-valued. Moreover, for all vertices \(u \) and \(v \), the value of \(f(u, v) \) is also an integer.

Edmonds-Karp algorithm

\textbf{Edmonds-Karp}: modify \texttt{algFordFulkerson} so it always returns the shortest augmenting path in \(G_f \).

Definition

For a flow \(f \), let \(\delta_f(v) \) be the length of the shortest path from the source \(s \) to \(v \) in the residual graph \(G_f \). Each edge is considered to be of length 1.

Assume the following key lemma:

Lemma

\(\forall v \in V \setminus \{s, t\} \) the function \(\delta_f(v) \) increases.

The disappearing/reappearing lemma

\textbf{Lemma}

During execution \texttt{Edmonds-Karp}, edge \((u \rightarrow v)\) might disappear/reappear from \(G_f \) at most \(n/2 \) times, \(n = |V(G)| \).

Proof.

- iteration when edge \((u \rightarrow v)\) disappears.
- \((u \rightarrow v)\) appeared in augmenting path \(\pi \).
- Fully utilized: \(c_f(\pi) = c_f(uv) \). \(f \) flow in beginning of iter.
- till \((u \rightarrow v)\) “magically” reappears.
- ... augmenting path \(\sigma \) that contained the edge \((v \rightarrow u)\).
- \(g \): flow used to compute \(\sigma \).
- We have: \(\delta_g(u) = \delta_g(v) + 1 \geq \delta_f(v) + 1 = \delta_f(u) + 2 \)
- distance of \(s \) to \(u \) had increased by 2. QED.
Comments...

- $\delta_f(u)$ might become infinity.
- u is no longer reachable from s.
- By monotonicity, the edge $(u \rightarrow v)$ would never appear again.

Observation

For every iteration/augmenting path of Edmonds-Karp algorithm, at least one edge disappears from the residual graph G_f.

Edmonds-Karp # of iterations

Lemma

Edmonds-Karp handles $O(nm)$ augmenting paths before it stops. Its running time is $O(nm^2)$, where $n = |V(G)|$ and $m = |E(G)|$.

Proof.

- Every edge might disappear at most $n/2$ times.
- At most $nm/2$ edge disappearances during execution Edmonds-Karp.
- In each iteration, by path augmentation, at least one edge disappears.
- Edmonds-Karp algorithm perform at most $O(mn)$ iterations.
- Computing augmenting path takes $O(m)$ time.
- Overall running time is $O(nm^2)$.

Proof continued...

- $\pi = s \rightarrow \cdots \rightarrow u \rightarrow v$: shortest path in G_g from s to v.
- $(u \rightarrow v) \in E(G_g)$, and thus $\delta_g(u) = \delta_g(v) - 1$.
- By choice of v: $\delta_g(u) \geq \delta_f(u)$.
 - (i) If $(u \rightarrow v) \in E(G_f)$ then
 \[\delta_f(v) \leq \delta_f(u) + 1 \leq \delta_g(u) + 1 = \delta_g(v) - 1 + 1 = \delta_g(v). \]
 This contradicts our assumptions that $\delta_f(v) > \delta_g(v)$.
Proof continued II

(ii) \(f(u \rightarrow v) \notin E(G_f) \):
1. \(\pi \) used in computing \(g \) from \(f \) contains \((v \rightarrow u) \).
2. \((u \rightarrow v) \) reappeared in the residual graph \(G_g \) (while not being present in \(G_f \)).
3. \(\implies \pi \) pushed a flow in the other direction on the edge \((u \rightarrow v)\). Namely, \((v \rightarrow u) \in \pi\).
4. Algorithm always augment along the shortest path. By assumption \(\delta_g(v) < \delta_f(v) \), and definition of \(u \):
 \[\delta_f(u) = \delta_f(v) + 1 > \delta_g(v) = \delta_g(u) + 1. \]
5. \(\implies \delta_f(u) > \delta_g(u) \)
 \(\implies \) monotonicity property fails for \(u \).
 But: \(\delta_g(u) < \delta_g(v) \). A contradiction.

Bipartite matching

Definition

\(G = (V, E) \): undirected graph.
\(M \subseteq E \): matching if all vertices \(v \in V \), at most one edge of \(M \) is incident on \(v \).
\(M \) is maximum matching if for any matching \(M' \): \(|M| \geq |M'| \).
\(M \) is perfect if it involves all vertices.

Computing bipartite matching

Theorem

Compute maximum bipartite matching in \(O(nm) \) time.

Proof.
1. \(G \): bipartite graph \(G \). \((n \) vertices and \(m \) edges)
2. Create new graph \(H \) with source on left and sink right.
3. Direct all edges from left to right. Set all capacities to one.
4. By Integrality theorem, flow in \(H \) is \(0/1 \) on edges.
5. A flow of value \(k \) in \(H \) \(\implies \) a collection of \(k \) vertex disjoint \(s - t \) paths \(\implies \) matching in \(G \) of size \(k \).
6. \(M \): matching of \(k \) edge in \(G \), \(\implies \) flow of value \(k \) in \(H \).
7. Running time of the algorithm is \(O(nm) \). Max flow is \(n \), and as such, at most \(n \) augmenting paths.
Extension: Multiple Sources and Sinks

Question
Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?

Solution
The idea is to create a super source, that send all its flow to the old sources and similarly create a super sink that receives all the flow. Clearly, computing flow in both networks in equivalent.