Network Flow

Transfer as much “merchandise” as possible from one point to another.
Wireless network, transfer a large file from s to t.
Limited capacities.

Network: Definition

- Given a network with capacities on each connection.
- Q: How much “flow” can transfer from source s to a sink t?
- The flow is *splitable*.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- $G = (V, E)$: a *directed* graph.
- $\forall (u \rightarrow v) \in E(G)$: *capacity* $c(u, v) \geq 0$.
- $(u \rightarrow v) \notin G \implies c(u, v) = 0$.
- s: *source* vertex, t: target *sink* vertex.
- G, s, t and $c(\cdot)$: form *flow network* or *network*.
Network Example

- All flow from the source ends up in the sink.
- Flow on edge: non-negative quantity ≤ capacity of edge.

Problem: Max Flow

- Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute a legal flow f such that $|f|$ is maximized.

Flow definition

Definition (flow)

A flow in network is a function $f(\cdot, \cdot) : E(G) \rightarrow \mathbb{R}$:

- **Bounded by capacity**: \(\forall (u \rightarrow v) \in E \quad f(u, v) \leq c(u, v) \).
- **Anti symmetry**: \(\forall u, v \quad f(u, v) = -f(v, u) \).
- **Conservation of flow** (Kirchhoff’s Current Law): \(\forall u \in V \setminus \{s, t\} \quad \sum_v f(u, v) = 0 \).

Flow / value of f: \(|f| = \sum_{v \in V} f(s, v) \).

Part II

Some properties of flows and residual networks
Flow across sets of vertices

∀ X, Y ⊆ V, let \(f(X, Y) = \sum_{x \in X, y \in Y} f(x, y) \).

\(f(v, S) = f(\{v\}, S) \), where \(v \in V(G) \).

Observation

\(|f| = f(s, V)|.

Basic properties of flows: (i)

Lemma

For a flow \(f \), the following properties holds:

(i) \(\forall u \in V(G) \) we have \(f(u, u) = 0 \).

Proof.

Holds since \((u \rightarrow u)\) it not an edge in \(G \). \((u \rightarrow u) \) capacity is zero,
Flow on \((u \rightarrow u)\) is zero.

Basic properties of flows: (ii)

Lemma

For a flow \(f \), the following properties holds:

(ii) \(\forall X \subseteq V \) we have \(f(X, X) = 0 \).

Proof.

\[
\begin{align*}
\sum_{\{u,v\} \subseteq X, u \neq v} (f(u,v) + f(v,u)) + \sum_{u \in X} f(u,u) \\
= \sum_{\{u,v\} \subseteq X, u \neq v} (f(u,v) - f(u,v)) + \sum_{u \in X} 0 = 0,
\end{align*}
\]

by the anti-symmetry property of flow.

Basic properties of flows: (iii)

Lemma

For a flow \(f \), the following properties holds:

(iii) \(\forall X, Y \subseteq V \) we have \(f(X, Y) = -f(Y, X) \).

Proof.

By the anti-symmetry of flow, as
\[
\begin{align*}
f(X, Y) = \sum_{x \in X, y \in Y} f(x, y) = -\sum_{x \in X, y \in Y} f(y, x) = -f(Y, X).
\end{align*}
\]
Basic properties of flows: (iv)

Lemma
For a flow f, the following properties hold:

(iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that

$$f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$$

and

$$f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$$

Proof.
Follows from definition. (Check!)

Basic properties of flows: (v)

Lemma
For a flow f, the following properties hold:

(v) $\forall u \in V \setminus \{s, t\}$, we have $f(u, V) = f(V, u) = 0$.

Proof.
This is a restatement of the conservation of flow property.

Basic properties of flows: summary

Lemma
For a flow f, the following properties holds:

(i) $\forall u \in V(G)$ we have $f(u, u) = 0$.

(ii) $\forall X \subseteq V$ we have $f(X, X) = 0$.

(iii) $\forall X, Y \subseteq V$ we have $f(X, Y) = -f(Y, X)$.

(iv) $\forall X, Y, Z \subseteq V$ such that $X \cap Y = \emptyset$ we have that

$$f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$$

and

$$f(Z, X \cup Y) = f(Z, X) + f(Z, Y).$$

(v) For all $u \in V \setminus \{s, t\}$, we have $f(u, V) = f(V, u) = 0$.

All flow gets to the sink

Claim
$|f| = f(V, t)$.

Proof.
$$|f| = f(s, V) = f\left(V \setminus (V \setminus \{s\}), V\right)$$
$$= f(V, V) - f(V \setminus \{s\}, V)$$
$$= -f(V \setminus \{s\}, V)$$
$$= f(V, t) + f(V, V \setminus \{s, t\})$$
$$= f(V, t) + \sum_{u \in V \setminus \{s, t\}} f(V, u)$$
$$= f(V, t) + \sum_{u \in V \setminus \{s, t\}} 0$$
$$= f(V, t).$$

Since $f(V, V) = 0$ by (i) and $f(V, u) = 0$ by (iv).
Residual capacity

Definition

c: capacity, f: flow.

The **residual capacity** of an edge \((u \to v)\) is

\[
c_f(u, v) = c(u, v) - f(u, v).
\]

- residual capacity \(c_f(u, v)\) on \((u \to v)\) = amount of unused capacity on \((u \to v)\).
- ... next construct graph with all edges not being fully used by \(f\).

Residual graph: Definition

Definition

Given \(f, G = (V, E)\) and \(c\), as above, the **residual graph** (or **residual network**) of \(G\) and \(f\) is the graph \(G_f = (V, E_f)\) where

\[
E_f = \{ (u, v) \in V \times V \mid c_f(u, v) > 0 \}.
\]

- \((u \to v) \in E\): might induce two edges in \(E_f\)
- If \((u \to v) \in E, f(u, v) < c(u, v)\) and \((v \to u) \notin E(G)\)
- \(\implies c_f(u, v) = c(u, v) - f(u, v) > 0\)
- \(\implies (u \to v) \in E_f\). Also, \(c_f(v, u) = c(v, u) - f(v, u) = 0 - (-f(u, v)) = f(u, v)\), since \(c(v, u) = 0\) as \((v \to u)\) is not an edge of \(G\).
- \(\implies (v \to u) \in E_f\).

Residual network properties

Since every edge of \(G\) induces at most two edges in \(G_f\), it follows that \(G_f\) has at most twice the number of edges of \(G\); formally, |\(E_f\)| \(\leq 2 |E|\).

Lemma

Given a flow \(f\) defined over a network \(G\), then the residual network \(G_f\) together with \(c_f\) form a flow network.

Proof.

One need to verify that \(c_f(\cdot)\) is always a non-negative function, which is true by the definition of \(E_f\).
Increasing the flow

Lemma

\(G(V, E) \), a flow \(f \), and \(h \) a flow in \(G_f \). \(G_f \): residual network of \(f \).
Then \(f + h \) is a flow in \(G \) and its capacity is \(|f + h| = |f| + |h| \).

proof

By definition: \((f + h)(u, v) = f(u, v) + h(u, v)\) and thus \((f + h)(X, Y) = f(X, Y) + h(X, Y)\). Verify legal...

1. Anti symmetry: \((f + h)(u, v) = f(u, v) + h(u, v) = -f(v, u) - h(v, u) = -(f + h)(v, u)\).
2. Bounded by capacity:
 \[
 (f + h)(u, v) \leq f(u, v) + h(u, v) \leq f(u, v) + c_f(u, v)
 = f(u, v) + (c(u, v) - f(u, v)) = c(u, v).
 \]

Increasing the flow – proof continued

proof continued

1. For \(u \in V - s - t \) we have \((f + h)(u, V) = f(u, V) + h(u, V) = 0 + 0 = 0\) and as such \(f + h \) comply with the conservation of flow requirement.
2. Total flow is
 \[|f + h| = (f + h)(s, V) = f(s, V) + h(s, V) = |f| + |h| \]

More on augmenting paths

1. \(\pi \): augmenting path.
2. All edges of \(\pi \) have positive capacity in \(G_f \).
3. ... otherwise not in \(E_f \).
4. \(f, \pi \): can improve \(f \) by pushing positive flow along \(\pi \).
Residual capacity

Definition
\(\pi \): augmenting path of \(f \).
\(c_f(\pi) \): maximum amount of flow can push on \(\pi \).
\(c_f(\pi) \) is residual capacity of \(\pi \).
Formally,
\[
c_f(\pi) = \min_{(u \rightarrow v) \in \pi} c_f(u, v).
\]

Flow along augmenting path
\[
f_\pi(u, v) = \begin{cases}
c_f(\pi) & \text{if } (u \rightarrow v) \text{ is in } \pi \\
-c_f(\pi) & \text{if } (v \rightarrow u) \text{ is in } \pi \\
0 & \text{otherwise}
\end{cases}
\]

Increase flow by augmenting flow

Lemma
\(\pi \): augmenting path. \(f_\pi \) is flow in \(G_f \) and \(|f_\pi| = c_f(\pi) > 0 \).
Get bigger flow...

Lemma
Let \(f \) be a flow, and let \(\pi \) be an augmenting path for \(f \). Then \(f + f_\pi \) is a “better” flow. Namely, \(|f + f_\pi| = |f| + |f_\pi| > |f| \).
Flowing into the wall

1. Namely, \(f + f_\pi \) is flow with larger value than \(f \).
2. Can this flow be improved? Consider residual flow...

\[\begin{array}{c}
\text{Flowing into the wall} \\
\text{1. Namely, } f + f_\pi \text{ is flow with larger value than } f. \\
\text{2. Can this flow be improved? Consider residual flow...}
\end{array} \]

Part III

On maximum flows

The Ford-Fulkerson method

\[\text{algFordFulkerson}(G, c) \]
\[\begin{array}{l}
\text{begin} \\
\quad f \leftarrow \text{Zero flow on } G \\
\quad \text{while } (G_f \text{ has augmenting path } p) \text{ do} \\
\quad \quad (* \text{ Recompute } G_f \text{ for this check } *) \\
\quad \quad f \leftarrow f + f_p \\
\quad \quad \text{return } f \\
\text{end}
\end{array} \]

Some definitions

Definition

\((S, T)\): directed cut in flow network \(G = (V, E)\). A partition of \(V\) into \(S\) and \(T = V \setminus S\), such that \(s \in S\) and \(t \in T\).

Definition

The net flow of \(f\) across a cut \((S, T)\) is

\[f(S, T) = \sum_{s \in S, t \in T} f(s, t). \]

Definition

The capacity of \((S, T)\) is

\[c(S, T) = \sum_{s \in S, t \in T} c(s, t). \]

Definition

The minimum cut is the cut in \(G\) with the minimum capacity.
Flow across cut is the whole flow

Lemma

\(G, f, s, t \): cut of \(G \).

Then \(f(S, T) = |f| \).

Proof.

\[
f(S, T) = f(S, V) - f(S, S) = f(S, V)
 = f(s, V) + f(S - s, V) = f(s, V)
 = |f|,
\]

since \(T = V \setminus S \), and \(f(S - s, V) = \sum_{u \in S - s} f(u, V) = 0 \) (note that \(u \) cannot be \(t \) as \(t \in T \)).

Flow bounded by cut capacity

Claim

The flow in a network is upper bounded by the capacity of any cut \((S, T)\) in \(G \).

Proof.

Consider a cut \((S, T)\). We have \(|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \leq \sum_{u \in S, v \in T} c(u, v) = c(S, T) \).

THE POINT

Key observation

Maximum flow is bounded by the capacity of the minimum cut.

Surprisingly...

Maximum flow is exactly the value of the minimum cut.

The Min-Cut Max-Flow Theorem

Theorem (Max-flow min-cut theorem)

If \(f \) is a flow in a flow network \(G = (V, E) \) with source \(s \) and sink \(t \), then the following conditions are equivalent:

(A) \(f \) is a maximum flow in \(G \).

(B) The residual network \(G_f \) contains no augmenting paths.

(C) \(|f| = c(S, T) \) for some cut \((S, T)\) of \(G \). And \((S, T)\) is a minimum cut in \(G \).
Proof: (A) ⇒ (B):

Proof. (A) ⇒ (B): By contradiction. If there was an augmenting path \(p \) then \(c_f(p) > 0 \), and we can generate a new flow \(f + f_p \), such that \(|f + f_p| = |f| + c_f(p) > |f| \). A contradiction as \(f \) is a maximum flow.

Proof: (B) ⇒ (C):

Proof. \(s \) and \(t \) are disconnected in \(G_f \). Set \(S = \{ v \mid \text{Exists a path between } s \text{ and } v \text{ in } G_f \} \). Then \(T = V \setminus S \).

Have: \(s \in S \), \(t \in T \), \(\forall u \in S \) and \(\forall v \in T \): \(f(u, v) = c(u, v) \).

By contradiction: \(\exists u \in S, v \in T \) s.t. \(f(u, v) < c(u, v) \) ⇒ \((u \rightarrow v) \in E_f \) \(\Rightarrow v \) would be reachable from \(s \) in \(G_f \).

Contradiction.

\(\Rightarrow |f| = f(S, T) = c(S, T) \).

\((S, T) \) must be mincut. Otherwise \(\exists (S', T') \):

\(c(S', T') < c(S, T) = f(S, T) = |f| \).

But... \(|f| = f(S', T') \leq c(S', T') \). A contradiction.

Proof: (C) ⇒ (A):

Proof. Well, for any cut \((U, V)\), we know that \(|f| \leq c(U, V) \). This implies that if \(|f| = c(S, T) \) then the flow can not be any larger, and it is thus a maximum flow.

Implications

- The max-flow min-cut theorem \(\Rightarrow \) if \textit{algFordFulkerson} terminates, then computed max flow.
- Does not imply \textit{algFordFulkerson} always terminates.
- \textit{algFordFulkerson} might not terminate.
Part IV
Non-termination of Ford-Fulkerson

Some algebra...

For $\alpha = \frac{\sqrt{5} - 1}{2}$:

$$\alpha^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2 = \frac{1}{4} (\sqrt{5} - 1)^2 = \frac{1}{4} (5 - 2\sqrt{5} + 1)$$

$$= 1 + \frac{1}{4} (2 - 2\sqrt{5})$$

$$= 1 + \frac{1}{2} (1 - \sqrt{5})$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$
The network

Let it flow...

<table>
<thead>
<tr>
<th>#</th>
<th>Augment. path π</th>
<th>c_π</th>
<th>New residual network</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>α</td>
<td></td>
</tr>
</tbody>
</table>

Let it flow II

<table>
<thead>
<tr>
<th>#</th>
<th>Augment. path π</th>
<th>c_π</th>
<th>New residual network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>α^2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>α^2</td>
<td></td>
</tr>
</tbody>
</table>
Let it flow III

3. \[\alpha^2 \]

4. \[\alpha^2 \]

\[
\begin{align*}
&\text{Let it flow III} \\
&\text{moves} \quad \text{Residual network after} \\
&0 \quad \begin{array}{c}
\alpha^3 \\
\alpha^2 \alpha^2 \\
\end{array} \\
&\text{moves } 0, (1, 2, 3, 4) \quad \begin{array}{c}
\alpha^4 \\
\alpha^3 \\
\end{array} \\
&\text{moves } 0, (1, 2, 3, 4)^2 \quad \begin{array}{c}
\alpha^5 \\
\alpha(1 - \alpha^4) \\
\end{array} \\
&0.(1, 2, 3, 4)^i \quad \begin{array}{c}
\alpha^{2i+1} \\
\alpha - \alpha^{2i+1} \\
\end{array}
\end{align*}
\]

Namely, the algorithm never terminates.