Binomial distribution

$X_n = \text{numbers of heads when flipping a coin } n \text{ times.}$

Claim

$$\Pr[X_n = i] = \binom{n}{i} 2^{-n}.$$

Where:
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}.$$

Indeed, $\binom{n}{i}$ is the number of ways to choose i elements out of n elements (i.e., pick which i coin flip come up heads).

Each specific such possibility (say 010010...) had probability $1/2^n$.

Part II

Understanding the binomial distribution
Massive randomness.. Is not that random.

Consider flipping a fair coin \(n \) times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

This is known as **concentration of mass**. This is a very special case of the **law of large numbers**.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For \(n \) large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.
Part III
QuickSort with high probability

Show that QuickSort running time is $O(n \log n)$

- Probability of failure is
 $\alpha = Pr[C_{QS} \geq 32n \ln n] \leq Pr[\bigcup_i E_i] \leq \sum_{i=1}^{n} Pr[E_i]$.

- **Union bound**: for any two events A and B:
 $Pr[A \cup B] \leq Pr[A] + Pr[B]$.
 Assume: $Pr[E_i] \leq 1/n^3$.

- Bad probability... $\alpha \leq \sum_{i=1}^{n} Pr[E_i] \leq \sum_{i=1}^{n} 1/n^3 = 1/n^2$.

- \implies QuickSort performs $\leq 32n \ln n$ comparisons, w.h.p.

- \implies QuickSort runs in $O(n \log n)$ time, with high probability.

Proving that an element...

- ... participates in small number of rounds.

- n: number of elements in input for QuickSort.

- x: Arbitrary element x in input.

- S_1: Input.

- S_i: input to ith level recursive call that include x.

- x lucky in jth iteration, if balanced split...

 $|S_{j+1}| \leq (3/4) |S_j|$ and $|S_j \setminus S_{j+1}| \leq (3/4) |S_j|$

- $Y_j = 1 \iff x$ lucky in jth iteration.

- $Pr[Y_j] = 1/2$.

- **Observation**: Y_1, Y_2, \ldots, Y_m are independent variables.

- x can participate $\leq \rho = \log_{4/3} n \leq 3.5 \ln n$ rounds.

- ...since $|S_j| \leq n(3/4)^{\rho} \not\in$ of lucky iteration in $1 \ldots j$.

- If ρ lucky rounds in first k rounds $\implies |S_k| \leq (3/4)^{\rho} n \leq 1$.

Show that QuickSort running time is $O(n \log n)$

- QuickSort picks a pivot, splits into two subproblems, and continues recursively.

- Track single element in input.

- Game ends, when this element is alone in subproblem.

- Show every element in input, participates $\leq 32 \ln n$ rounds (with high enough probability).

- E_i: event ith element participates $> 32 \ln n$ rounds.

- C_{QS}: number of comparisons performed by QuickSort.

- Running time $O(C_{QS})$.

- Probability of failure is $\alpha = Pr[C_{QS} \geq 32n \ln n] \leq Pr[\bigcup_i E_i] \leq \sum_{i=1}^{n} Pr[E_i]$.

- \implies by the union bound.
Proving that an element...
... participates in small number of rounds.

- Brain reset!
- Q: How many rounds \(x \) participates in = how many coin flips till one gets \(\rho \) heads?
- A: In expectation, \(2\rho \) times.

Lemma

In \(M \) coin flips: \(\Pr[\# \text{ heads } \leq M/4] \leq \exp(-M/8) \).

- Set \(M = 32 \ln n \geq 8\rho \).
- \(\Pr[Y_j = 0] = \Pr[Y_j = 1] = 1/2 \).
- \(Y_1, Y_2, \ldots, Y_M \) are independent.
- \(\implies \) probability \(\leq \rho \leq M/4 \) ones in \(Y_1, \ldots, Y_M \) is
 \[\leq \exp\left(-\frac{M}{8}\right) \leq \exp(-\rho) \leq \frac{1}{n^3}. \]
- \(\implies \) probability \(x \) participates in \(M \) recursive calls of \(\text{QuickSort} \) \(\leq 1/n^3 \).

Proving that an element...
... participates in small number of rounds.

- Assume the following:

Theorem

With high probability (i.e., \(1 - 1/n^2 \)) the depth of the recursion of \(\text{QuickSort} \) is \(\leq 32 \ln n \). Thus, with high probability, the running time of \(\text{QuickSort} \) is \(O(n \log n) \).

- Same result holds for \(\text{MatchNutsAndBolts} \).

Proving that an element...
... participants in small number of rounds.

\(n \) input elements. Probability depth of recursion in \(\text{QuickSort} \) \(> 32 \ln n \) is \(\leq (1/n^2) \times n = 1/n^2 \).

Result:

Alternative proof of high probability of \(\text{QuickSort} \)

- \(T \): \(n \) items to be sorted.
- \(t \in T \): element.
- \(X_i \): the size of subproblem in \(i \)th level of recursion containing \(t \).
- \(X_0 = n \), and \(\mathbb{E}[X_i | X_{i-1}] \leq \frac{13}{8} X_{i-1} + \frac{1}{2} X_{i-1} \leq \frac{7}{8} X_{i-1} \).
- \(\forall \) random variables \(\mathbb{E}[X] = \mathbb{E}_y[\mathbb{E}[X | Y = y]] \).
- \(\mathbb{E}[X_i] = \mathbb{E}_y[\mathbb{E}[X_i | X_{i-1} = y]] \leq \mathbb{E}_{X_{i-1}=y}[\frac{7}{8} y] = \frac{7}{8} \mathbb{E}[X_{i-1}] \leq \left(\frac{7}{8}\right)^i \mathbb{E}[X_0] = \left(\frac{7}{8}\right)^n n. \)
Alternative proof of high probability of *QuickSort*

- $M = 8 \log_{8/7} n$: $\mu = \mathbb{E}[X_M] \leq \left(\frac{7}{8}\right)^M n \leq \frac{1}{n^7} n = \frac{1}{n^7}$.

- **Markov’s Inequality:** For a non-negative variable X, and $t > 0$, we have:
 $$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.$$

- By Markov’s inequality:
 $$\Pr[t \text{ participates} > M \text{ recursive calls}] \leq \Pr[X_M \geq 1] \leq \frac{\mathbb{E}[X_M]}{1} \leq \frac{1}{n^7}.$$

- Probability any element of input participates $> M$ recursive calls $\leq n(1/n^7) \leq 1/n^6$.

Preliminaries

- **X, Y:** Random variables are *independent* if $\forall x, y$:
 $$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x] \cdot \Pr[Y = y].$$

- The following is easy to prove:

Claim

*If X and Y are independent

- $\implies \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.
- $\implies Z = e^X$ and $W = e^Y$ are independent.*
Proof of Chernoff inequality

Fix arbitrary \(t > 0 \):

\[
\Pr[Y \geq \Delta] = \Pr[tY \geq t\Delta] = \Pr[\exp(tY) \geq \exp(t\Delta)] \leq \frac{E[\exp(tY)]}{\exp(t\Delta)},
\]

Chernoff inequality...

...what it really says

By theorem:

\[
\Pr[Y \geq \Delta] = \sum_{i=\Delta}^{n} \Pr[Y = i] = \sum_{i=n/2+\Delta/2}^{n} \left(\begin{array}{c} n \\ i \end{array}\right) \leq \exp\left(-\frac{\Delta^2}{2n}\right),
\]

Proof of Chernoff inequality

Continued...

\[
E[\exp(tX_i)] = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \frac{e^t + e^{-t}}{2}
\]
\[
= \frac{1}{2}\left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \cdots\right) + \frac{1}{2}\left(1 - \frac{t}{1!} + \frac{t^2}{2!} - \frac{t^3}{3!} + \cdots\right)
\]
\[
= 1 + \frac{t^2}{2!} + + \cdots + \frac{t^{2k}}{(2k)!} + \cdots.
\]

However: \((2k)! = k!(k + 1)(k + 2) \cdots 2k \geq k!2^k \).

\[
E[\exp(tY)] = E\left[\exp\left(\sum_{i=1}^{n} tX_i\right)\right] = E\left[\prod_{i} \exp(tX_i)\right] = \prod_{i} E[\exp(tX_i)] \leq \exp\left(\frac{t^2}{2}\right).
\]

Corollary

Let \(X_1, \ldots, X_n \) be \(n \) independent random variables, such that \(\Pr[X_i = 1] = \Pr[X_i = -1] = \frac{1}{2} \), for \(i = 1, \ldots, n \). Let \(Y = \sum_{i=1}^{n} X_i \). Then, for any \(\Delta > 0 \), we have

\[
\Pr[|Y| \geq \Delta] \leq 2\exp\left(-\frac{\Delta^2}{2n}\right).
\]
Chernoff inequality for coin flips

Let X_1, \ldots, X_n be n independent coin flips, such that $\Pr[X_i = 1] = \Pr[X_i = 0] = \frac{1}{2}$, for $i = 1, \ldots, n$. Let $Y = \sum_{i=1}^n X_i$. Then, for any $\Delta > 0$, we have

$$\Pr\left[\frac{n}{2} - Y \geq \Delta\right] \leq \exp\left(-\frac{2\Delta^2}{n}\right)$$

and

$$\Pr\left[Y - \frac{n}{2} \geq \Delta\right] \leq \exp\left(-\frac{2\Delta^2}{n}\right).$$

In particular, we have

$$\Pr\left[Y - \frac{n}{2} \geq \Delta\right] \leq 2 \exp\left(-\frac{2\Delta^2}{n}\right).$$

The special case we needed

Lemma

In a sequence of M coin flips, the probability that the number of ones is smaller than $L \leq M/4$ is at most $\exp(-M/8)$.

Proof.

Let $Y = \sum_{i=1}^M X_i$ the sum of the M coin flips. By the above corollary, we have:

$$\Pr[Y \leq L] = \Pr\left[\frac{M}{2} - Y \geq \frac{M}{2} - L\right] = \Pr\left[\frac{M}{2} - Y \geq \Delta\right],$$

where $\Delta = M/2 - L \geq M/4$. Using the above Chernoff inequality, we get $\Pr[Y \leq L] \leq \exp(-\frac{2\Delta^2}{M}) \leq \exp(-M/8)$. □

The Chernoff Bound

The general problem

Let X_1, \ldots, X_n be n independent Bernoulli trials, where $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$, and let denote

$$Y = \sum_{i} X_i \quad \mu = \mathbb{E}[Y].$$

Question: what is the probability that $Y \geq (1 + \delta)\mu$.
The Chernoff Bound
The general case

Theorem (Chernoff inequality)

For any $\delta > 0$,

$$\Pr[Y > (1 + \delta)\mu] < \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}}\right)^\mu.$$

Or in a more simplified form, for any $\delta \leq 2e - 1$,

$$\Pr[Y > (1 + \delta)\mu] < \exp\left(-\mu\delta^2/4\right),$$

and

$$\Pr[Y > (1 + \delta)\mu] < 2^{-\mu(1+\delta)},$$

for $\delta \geq 2e - 1$.

Part VI
Treaps

Balanced binary search trees...

- Work usually by storing additional information.
- Idea: For every element x inserted randomly choose priority $p(x) \in [0, 1]$.
- $X = \{x_1, \ldots, x_n\}$ priorities: $p(x_1), \ldots, p(x_n)$.
- x_k: lowest priority in X.
- Make x_k the root.
- partition X in the natural way:
 (A) L: set of all the numbers smaller than x_k in X, and
 (B) R: set of all the numbers larger than x_k in X.

Continuing recursively, we have:

(A) L: set of all the numbers smaller than x_k in X, and
(B) R: set of all the numbers larger than x_k in X.

Definition

Resulting tree a *treap*. Tree over the elements, and a heap over the priorities; that is, $TREAP = TREE + HEAP$.

Treaps - implementation

Observation

Given n distinct elements, and their (distinct) priorities, the treap storing them is uniquely defined.

Treaps continued

Lemma

S: n elements.

Expected depth of treap T for S is $O(\log(n))$.

Depth of treap T for S is $O(\log(n))$ w.h.p.

Proof.

QuickSort...
Treaps – insertion
- \(x \): an element to insert.
- Insert it into \(T \) as a regular binary tree.
- Takes \(O(\text{height}(T)) \).
- \(x \) is a leaf in the treap.
- Pick priority \(p(x) \in [0, 1] \).
- Valid search tree... but priority heap is broken at \(x \).
- Fix priority heap around \(x \).

Fix treap for a leaf \(x \)...

```plaintext
RotateUp(x)
y ← parent(x)
while \( p(y) > p(x) \) do
  if \( y \).left child = x then
    RotateRight(y)
  else
    RotateLeft(y)
y ← parent(x)
```

Insertion takes \(O(\text{height}(T)) \).

Treaps – deletion
- Deletion is just an insertion done in reverse.
- \(x \): element to delete.
- Set \(p(x) \leftarrow +\infty \).
- rotate \(x \) down till its a leaf.
- Rotate so that child with lower priority becomes new parent.
- \(x \) is now leaf – deleting is easy...

Split
- \(x \): element stored in treap \(T \).
- split \(T \) into two treaps – one treap \(T_{\leq x} \) and treap \(T_{> x} \) for all the elements larger than \(x \).
- Set \(p(x) \leftarrow -\infty \),
- fix priorities by rotation.
- \(x \) item is now the root.
- Splitting is now easy....
- Restore \(x \) to its original priority. Fix by rotations.
Meld

- T_L and T_R: treaps.
- all elements in T_L | all elements in T_R.
- Want to merge them into a single treap...

Treap – summary

Theorem

Let T be an empty treap, after a sequence of $m = n^c$ insertions, where c is some constant.

d: arbitrary constant.

The probability depth T ever exceed $d \log n$ is $\leq 1/n^{O(1)}$.

A treap can handle insertion/deletion in $O(\log n)$ time with high probability.

Proof

Proof.

- T_1, \ldots, T_m: sequence of treaps.
- T_i is treap after ith operation.
- $\alpha_i = \Pr[\text{depth}(T_i) > tc' \log n] = \Pr[\text{depth}(T_i) > c't \left(\frac{\log n}{\log |T_i|} \right) \cdot \log |T_i|] \leq \frac{1}{n^{d \log n}}$.
- Use union bound...

Bibliographical Notes

- Chernoff inequality was a rediscovery of Bernstein inequality.
- ...published in 1924 by Sergei Bernstein.
- Treaps were invented by Siedel and Aragon Seidel and Aragon [1996].
- Experimental evidence suggests that Treaps performs reasonably well in practice see Cho and Sahni [2000].
- Old implementation of treaps I wrote in C is available here: http://valis.cs.uiuc.edu/blog/?p=6060.