Chapter 9

Randomized Algorithms

9.1 Randomized Algorithms

9.2 Some Probability

9.2.1 Probability - quick review

9.2.1.1 Definitions

Definition 9.2.1 (Informal). Random variable: a function from probability space to \mathbb{R}. Associates value \forall atomic events in probability space.

Definition The conditional probability of X given Y is

$$\Pr[X = x \mid Y = y] = \frac{\Pr[(X = x) \cap (Y = y)]}{\Pr[Y = y]}.$$

Equivalent to

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x \mid Y = y] \cdot \Pr[Y = y].$$

9.2.2 Probability - quick review

9.2.2.1 Even more definitions

Definition 9.2.2. The events $X = x$ and $Y = y$ are independent, if

$$\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$$

$\equiv \Pr[X = x \mid Y = y] = \Pr[X = x].$

Definition 9.2.3. The expectation of a random variable X its average value:

$$\mathbf{E}[X] = \sum_x x \cdot \Pr[X = x],$$
9.2.2.2 Linearity of expectations

Lemma 9.2.4 (Linearity of expectation.). \(\forall \) random variables \(X \) and \(Y \): \(\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \).

Proof: Use definitions, do the math. See notes for details.

9.2.3 Probability - quick review

9.2.3.1 Conditional Expectation

Definition 9.2.5. \(X, Y \): random variables. The conditional expectation of \(X \) given \(Y \) (i.e., you know \(Y = y \)):

\[
\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid Y = y] = \sum_x x \cdot \Pr[X = x \mid Y = y].
\]

\(\mathbb{E}[X] \) is a number.

\(f(y) = \mathbb{E}[X \mid Y = y] \) is a function.

9.2.3.2 Conditional Expectation

Lemma 9.2.6. \(\forall X, Y \) (not necessarily independent): \(\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]] \).

\[
\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}_y[\mathbb{E}[X \mid Y = y]]
\]

Proof: Use definitions, and do the math. See class notes.
Problem 9.3.1 (Sorting Nuts and Bolts). (A)

Input: Set n nuts + n bolts.

(B) Every nut have a matching bolt.

(C) All diff sizes.

(D) Task: Match nuts to bolts. (In sorted order).

(E) Restriction: You can only compare a nut to a bolt.

(F) Q: How to match the n nuts to the n bolts quickly?
9.3.1 Sorting nuts & bolts...

9.3.1.1 Algorithm

(A) Naive algorithm...
(B) ...better algorithm?

9.3.1.2 Sorting nuts & bolts...

\[
\text{MatchNutsAndBolts}(N: \text{nuts}, B: \text{bolts})
\]
\[
\begin{align*}
\text{Pick a random nut } n_{\text{pivot}} \text{ from } N \\
\text{Find its matching bolt } b_{\text{pivot}} \text{ in } B \\
B_L \leftarrow \text{All bolts in } B \text{ smaller than } n_{\text{pivot}} \\
N_L \leftarrow \text{All nuts in } N \text{ smaller than } b_{\text{pivot}} \\
B_R \leftarrow \text{All bolts in } B \text{ larger than } n_{\text{pivot}} \\
N_R \leftarrow \text{All nuts in } N \text{ larger than } b_{\text{pivot}} \\
\text{MatchNutsAndBolts}(N_R, B_R) \\
\text{MatchNutsAndBolts}(N_L, B_L)
\end{align*}
\]

QuickSort style...

9.3.2 Running time analysis

9.3.3 What is running time for randomized algorithms?

9.3.3.1 Definitions

Definition 9.3.2. $\mathcal{RT}(U)$: random variable – running time of the algorithm on input U.

Definition 9.3.3. Expected running time $E[\mathcal{RT}(U)]$ for input U.

Definition 9.3.4. expected running-time of algorithm for input size n:

\[
T(n) = \max_U \text{ E[} \mathcal{RT}(U) \text{]}.
\]

9.3.4 What is running time for randomized algorithms?

9.3.4.1 More definitions

Definition 9.3.5. rank(x): rank of element $x \in S = \text{number of elements in } S \text{ smaller or equal to } x$.

9.3.4.2 Nuts and bolts running time

Theorem 9.3.6. Expected running time $\text{MatchNutsAndBolts (QuickSort)}$ is $T(n) = O(n \log n)$. Worst case is $O(n^2)$.

Proof: \(\Pr[\text{rank}(n_{\text{pivot}}) = k] = \frac{1}{n} \). Thus,

\[
T(n) = \mathbb{E}_{k=\text{rank}(n_{\text{pivot}})} \left[O(n) + T(k - 1) + T(n - k) \right]
= O(n) + \mathbb{E}_k \left[T(k - 1) + T(n - k) \right]
= O(n) + \sum_{k=1}^{n} \Pr[\text{Rank}(\text{Pivot}) = k]
= O(n) + \sum_{k=1}^{n} \frac{1}{n} \cdot (T(k - 1) + T(n - k)),
\]

Solution is \(T(n) = O(n \log n) \).

9.3.4.3 Alternative incorrect solution

9.3.5 Alternative intuitive analysis...

9.3.5.1 Which is not formally correct

(A) MatchNutsAndBolts is lucky if \(\frac{n}{4} \leq \text{rank}(n_{\text{pivot}}) \leq \frac{3n}{4} \).

(B) \(\Pr[\text{lucky}] = \frac{1}{2} \).

(C) \(T(n) \leq O(n) + \Pr[\text{lucky}] \cdot (T(n/4) + T(3n/4)) + \Pr[\text{unlucky}] \cdot T(n) \).

(D) \(T(n) = O(n) + \frac{1}{2} \cdot \left(T(n/4) + T(3n/4) \right) + \frac{1}{2} T(n) \).

(E) Rewriting: \(T(n) = O(n) + T(n/4) + T((3/4)n) \).

(F) ... solution is \(O(n \log n) \).

9.3.6 What are randomized algorithms?

9.3.6.1 Worst case vs. average case

Expected running time of a randomized algorithm is

\[
T(n) = \max_{U \text{ is an input of size } n} \mathbb{E}[\mathcal{T}(U)],
\]

Worst case running time of deterministic algorithm:

\[
T(n) = \max_{U \text{ is an input of size } n} \mathcal{T}(U),
\]

9.3.6.2 High Probability running time...

Definition 9.3.7. Running time \(\text{Alg} \) is \(O(f(n)) \) with high probability if

\[
\Pr[\mathcal{T}(\text{Alg}(n)) \geq c \cdot f(n)] = o(1).
\]

\[\implies \Pr[\mathcal{T}(\text{Alg}) > c \cdot f(n)] \rightarrow 0 \text{ as } n \rightarrow \infty.\]

Usually use weaker def:

\[
\Pr[\mathcal{T}(\text{Alg}(n)) \geq c \cdot f(n)] \leq \frac{1}{n^d},
\]

Technical reasons... also assume that \(\mathbb{E}[\mathcal{T}(\text{Alg}(n))] = O(f(n)) \).
9.4 Slick analysis of QuickSort

9.4.0.3 A Slick Analysis of QuickSort

Let $Q(A)$ be number of comparisons done on input array A:

(A) For $1 \leq i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.

(B) X_{ij}: indicator random variable for R_{ij}.

$X_{ij} = 1 \iff$ rank i element compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$$

and hence by linearity of expectation,

$$E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].$$

9.4.0.4 A Slick Analysis of QuickSort

$R_{ij} =$ rank i element is compared with rank j element.

Question: What is $\Pr[R_{ij}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

(B) If pivot too large (say 9 [rank 8]):

(C) If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.
9.4.2 A Slick Analysis of QuickSort

9.4.2.1 Question: What is $\Pr[R_{i,j}]$?

Conclusion:

$R_{i,j}$ happens if and only if:

\[
i\text{th or } j\text{th ranked element is the first pivot out of } i\text{th to } j\text{th ranked elements.}
\]

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in $[0, 1]$).

(B) Choose pivot to be the element with lowest priority in subproblem.

(C) Equivalent to picking pivot uniformly at random (as QuickSort do).

9.4.3 A Slick Analysis of QuickSort

9.4.3.1 Question: What is $\Pr[R_{ij}]$?

How to analyze this?

Thinking acrobatics!

(A) Assign every element in the array a random priority (say in $[0, 1]$).

(B) Choose pivot to be the element with lowest priority in subproblem.

\[
\implies R_{i,j} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements rank } i \text{ to } j,
\]

There are $k = j - i + 1$ relevant elements.

\[
\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}.
\]

9.4.3.2 A Slick Analysis of QuickSort

Question: What is $\Pr[R_{ij}]$?

Lemma 9.4.1. $\Pr[R_{ij}] = \frac{2}{j-i+1}$.

Proof: Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.
9.4.4 A Slick Analysis of QuickSort

9.4.4.1 Continued...

Lemma 9.4.2. \(\Pr[R_{ij}] = \frac{2}{j-i+1} \).

Proof: Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \). Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \).

Observation: \(a_i \) is compared with \(a_j \) if and only if either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.

Observation: Given that pivot is chosen from \(S \) the probability that it is \(a_i \) or \(a_j \) is exactly \(\frac{2}{|S|} = \frac{2}{j-i+1} \) since the pivot is chosen uniformly at random from the array. \(\blacksquare \)

9.4.5 A Slick Analysis of QuickSort

9.4.5.1 Continued...

\[
E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
\]

Lemma 9.4.3. \(\Pr[R_{ij}] = \frac{2}{j-i+1} \).

\[
E[Q(A)] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}
\]
\[
= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\]
\[
\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_n
\]
\[
\leq 2n H_n = O(n \log n)
\]

9.5 Quick Select

9.6 Randomized Selection

9.6.0.2 Randomized Quick Selection

Input Unsorted array \(A \) of \(n \) integers

Goal Find the \(j \)th smallest number in \(A \) (rank \(j \) number)

Randomized Quick Selection

(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(C) Return pivot if rank of pivot is \(j \).
(D) Otherwise recurse on one of the arrays depending on \(j \) and their sizes.
9.6.0.3 Algorithm for Randomized Selection

Assume for simplicity that \(A \) has distinct elements.

9.6.0.4 QuickSelect analysis

(A) \(S_1, S_2, \ldots, S_k \) be the subproblems considered by the algorithm.

Here \(|S_1| = n\).

(B) \(S_i \) would be successful if \(|S_i| \leq (3/4)|S_{i-1}|\)

(C) \(Y_1 \) = number of recursive calls till first successful iteration.

Clearly, total work till this happens is \(O(Y_1n) \).

(D) \(n_i = \) size of the subproblem immediately after the \((i-1)\)th successful iteration.

(E) \(Y_i = \) number of recursive calls after the \((i-1)\)th successful call, till the \(i\)th successful iteration.

(F) Running time is \(O(\sum_i n_i Y_i) \).

9.6.0.5 QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call

\(|S_i| = \) size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst'</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
<th>(S_8)</th>
<th>(S_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ'</td>
<td>(Y_1 = 2)</td>
<td>(Y_2 = 4)</td>
<td>(Y_3 = 2)</td>
<td>(Y_1 = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td>(n_2 = 60)</td>
<td>(n_3 = 25)</td>
<td>(n_4 = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A) All the subproblems after \((i-1)\)th successful iteration till \(i\)th successful iteration have size \(\leq n_i \).

(B) Total work: \(O(\sum_i n_i Y_i) \).

9.6.0.6 QuickSelect analysis

Total work: \(O(\sum_i n_i Y_i) \).

We have:

(A) \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).

(B) \(Y_i \) is a random variable with geometric distribution

Probability of \(Y_i = k \) is \(1/2^k \).

(C) \(E[Y_i] = 2 \).

As such, expected work is proportional to

\[
E \left[\sum_i n_i Y_i \right] = \sum_i E [n_i Y_i] \leq \sum_i E [(3/4)^{i-1} n Y_i] = \sum_i (3/4)^{i-1} E [Y_i] = \sum_{i=1}^{\infty} (3/4)^{i-1} 2 \leq 8n.
\]
9.6.0.7 QuickSelect analysis

Theorem 9.6.1. The expected running time of QuickSelect is $O(n)$.