Approximation Algorithms

Lecture 7

September 17, 2013
Don’t give up on **NP-Hard** problems:

(A) Faster exponential time algorithms: $n^{O(n)}$, 3^n, 2^n, etc.

(B) Fixed parameter tractable.

(C) Find an approximate solution.
Part I

Greedy algorithms and approximation algorithms
Greedy algorithms

(A) *greedy algorithms*: do locally the right thing...

(B) ...and they suck.

VertexCoverMin

Instance: A graph G.

Question: Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.

(C) **GreedyVertexCover:**

pick vertex with highest degree, remove, repeat.

(D) Returns 4, but opt is 3!
Greedy algorithms

(A) **greedy algorithms**: do locally the right thing...
(B) ...and they suck.

VertexCoverMin

Instance: A graph G.

Question: Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.

(C) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.

(D) Returns 4, but opt is 3!
Greedy algorithms

(A) *greedy algorithms*: do locally the right thing...
(B) ...and they suck.

VertexCoverMin

Instance: A graph G.
Question: Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.

(C) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.

(D) Returns 4, but opt is 3!
Greedy algorithms

(A) greedy algorithms: do locally the right thing…
(B) …and they suck.

VertexCoverMin

Instance: A graph G.

Question: Return the smallest subset $S \subseteq V(G)$, s.t. S touches all the edges of G.

(C) GreedyVertexCover:
 pick vertex with highest degree, remove, repeat.

(D) Returns 4, but opt is 3!
Good enough...

Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

1. **VertexCoverMin**: $\text{Opt}(G) = \min_{S \subseteq V(G), S \text{ cover of } G} |S|$.
2. **VertexCover**(G): set realizing sol.
3. **Opt**(G): value of the target function for the optimal solution.
Good enough...

Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

1. **VertexCoverMin**: \(\text{Opt}(G) = \min_{S \subseteq V(G), S \text{ cover of } G} |S| \).
2. **VertexCover** \(G \): set realizing sol.
3. **Opt** \(G \): value of the target function for the optimal solution.
Definition

In a *minimization* optimization problem, one looks for a valid solution that minimizes a certain target function.

1. **VertexCoverMin**: \(\text{Opt}(G) = \min_{S \subseteq V(G), S \text{ cover of } G} |S| \).
2. **VertexCover**\((G)\): set realizing sol.
3. **Opt**\((G)\): value of the target function for the optimal solution.

Definition

Alg is *\(\alpha\)-approximation algorithm* for problem **Min**, achieving an approximation \(\alpha \geq 1\), if for all inputs \(G\), we have:

\[
\frac{\text{Alg}(G)}{\text{Opt}(G)} \leq \alpha.
\]
Our **GreedyVertexCover** Example

(A) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.

(B) Returns 4, but opt is 3!

(C) Can not be better than a 4/3-approximation algorithm.

(D) Actually it is much worse!
Our **GreedyVertexCover** Example

(A) **GreedyVertexCover:**

pick vertex with highest degree, remove, repeat.

(B) Returns 4, but opt is 3!

(C) Can **not** be better than a $4/3$-approximation algorithm.

(D) Actually it is much worse!
Our **GreedyVertexCover** Example

(A) **GreedyVertexCover**: pick vertex with highest degree, remove, repeat.

(B) Returns 4, but opt is 3!

(C) Can **not** be better than a $4/3$-approximation algorithm.

(D) Actually it is much worse!
Our GreedyVertexCover Example

(A) **GreedyVertexCover:** pick vertex with highest degree, remove, repeat.

(B) Returns 4, but opt is 3!

(C) Can **not** be better than a $4/3$-approximation algorithm.

(D) Actually it is much worse!
How bad is \textbf{GreedyVertexCover}?

Build a bipartite graph.

Let the top partite set be of size \(n \).
How bad is \textbf{GreedyVertexCover}?

Build a bipartite graph.

In the bottom set add \(\lfloor n/2 \rfloor\) vertices of degree 2, such that each edge goes to a different vertex above.
How bad is GreedyVertexCover?

Build a bipartite graph.

Repeatedly add \(\lfloor n/i \rfloor \) bottom vertices of degree \(i \), for \(i = 2, \ldots, n \).
How bad is GreedyVertexCover?

Build a bipartite graph.

Repeatedly add $\left\lfloor \frac{n}{i} \right\rfloor$ bottom vertices of degree i, for $i = 2, \ldots, n$.
Build a bipartite graph.

Repeatedly add $\left\lfloor \frac{n}{i} \right\rfloor$ bottom vertices of degree i, for $i = 2, \ldots, n$.
How bad is GreedyVertexCover?

Build a bipartite graph.

Repeatedly add \(\lfloor n/i \rfloor \) bottom vertices of degree \(i \), for \(i = 2, \ldots, n \).
How bad is **GreedyVertexCover**?

Build a bipartite graph.

Bottom row has $\sum_{i=2}^{n} \lfloor n/i \rfloor = \Theta(n \log n)$ vertices.
How bad is **GreedyVertexCover**?
How bad is \textbf{GreedyVertexCover}?
How bad is \textbf{GreedyVertexCover}?
How bad is **GreedyVertexCover**?
How bad is **GreedyVertexCover**?
How bad is GreedyVertexCover?
How bad is **GreedyVertexCover**?

1. Bottom row taken by Greedy.
How bad is `GreedyVertexCover`?

1. Bottom row taken by Greedy.
2. Top row was a smaller solution.
How bad is \textbf{GreedyVertexCover}?

1. Bottom row taken by Greedy.
2. Top row was a smaller solution.

\textbf{Lemma}

The algorithm \textbf{GreedyVertexCover} is $\Omega(\log n)$ approximation to the optimal solution to \textbf{VertexCoverMin}.

See notes for details!
Greedy Vertex Cover

Theorem

The greedy algorithm for *VertexCover* achieves $\Theta(\log n)$ approximation, where n (resp. m) is the number of vertices (resp., edges) in the graph. Its running time is $O(mn^2)$.

Proof

Lower bound follows from lemma.
Upper bound follows from analysis of greedy algorithm for *Set Cover*, which will be done shortly.
As for the running time, each iteration of the algorithm takes $O(mn)$ time, and there are at most n iterations.
ApproxVertexCover(G):

\[
S \leftarrow \emptyset \\
\text{while } E(G) \neq \emptyset \text{ do} \\
\quad uv \leftarrow \text{any edge of } G \\
\quad S \leftarrow S \cup \{u, v\} \\
\quad \text{Remove } u, v \text{ from } V(G) \\
\quad \text{Remove all edges involving } u \text{ or } v \text{ from } E(G)
\]

return \(S \)

Theorem

ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin that runs in \(O(n^2) \) time.

Proof...
Part II

Fixed parameter tractability, approximation, and fast exponential time algorithms (to say nothing of the dog)
What if the vertex cover is small?

1. $G = (V, E)$ with n vertices
2. $K \leftarrow$ Approximate VertexCoverMin up to a factor of two.
3. Any vertex cover of G is of size $\geq K/2$.
4. Naively compute optimal in $O(n^{K+2})$ time.
Induced subgraph

Definition

\[N_G(v) : \textit{Neighborhood} \text{ of } v \]

– set of vertices of \(G \) adjacent to \(v \).
Induced subgraph

Definition

\(N_G(v) \): *Neighborhood* of \(v \) – set of vertices of \(G \) adjacent to \(v \).

Let \(G = (V, E) \) be a graph. For a subset \(S \subseteq V \), let \(G_S \) be the *induced subgraph* over \(S \).
Definition

\(N_G(v) \): *Neighborhood* of \(v \) – set of vertices of \(G \) adjacent to \(v \).

Definition

Let \(G = (V, E) \) be a graph. For a subset \(S \subseteq V \), let \(G_S \) be the *induced subgraph* over \(S \).
Induced subgraph

Definition

$N_G(v)$: *Neighborhood* of v – set of vertices of G adjacent to v.

Definition

Let $G = (V, E)$ be a graph. For a subset $S \subseteq V$, let G_S be the *induced subgraph* over S.
Computes minimum vertex cover for the induced graph G_X:

```plaintext
fpVCI(X, β)
// β: size of VC computed so far.
if X = ∅ or $G_X$ has no edges then return β

\[ e \leftarrow \text{any edge } uv \text{ of } G_X. \]
\[ β_1 = fpVCI(X \setminus \{u, v\}, β + 2) \]
\[ β_2 = fpVCI(X \setminus (\{u\} \cup N_{G_X}(v)), β + |N_{G_X}(v)|) \]
\[ β_3 = fpVCI(X \setminus (\{v\} \cup N_{G_X}(u)), β + |N_{G_X}(u)|) \]
return min(β₁, β₂, β₃).
```

```
algFPVertexCover(G = (V, E))
return fpVCI(V, 0)
```
Depth of recursion

Lemma

The algorithm algFPVertexCover returns the optimal solution to the given instance of VertexCoverMin.

Proof...
Lemma

The depth of the recursion of $\text{algFPVertexCover}(G)$ is at most α, where α is the minimum size vertex cover in G.

Proof.

1. When the algorithm takes both u and v - one of them in opt. Can happen at most α times.
2. Algorithm picks $N_{G_x}(v)$ (i.e., β_2). Conceptually add v to the vertex cover being computed.
3. Do the same thing for the case of β_3.
4. Every such call add one element of the opt to conceptual set cover. Depth of recursion is $\leq \alpha$.
Vertex Cover

Exact fixed parameter tractable algorithm

Theorem

Let G be a graph with n vertices. Min vertex cover of size α. Then, algFPVertexCover returns opt. vertex cover. Running time is $O(3^\alpha n^2)$.

Proof:

1. By lemma, recursion tree has depth α.
2. Rec-tree contains $\leq 2 \cdot 3^\alpha$ nodes.
3. Each node requires $O(n^2)$ work.

Algorithms with running time $O(n^c f(\alpha))$, where α is some parameter that depends on the problem are fixed parameter tractable.
Vertex Cover

Exact fixed parameter tractable algorithm

Theorem

G: graph with \(n \) vertices. Min vertex cover of size \(\alpha \). Then, \texttt{algFPVertexCover} returns opt. vertex cover. Running time is \(O(3^\alpha n^2) \).

Proof:

1. By lemma, recursion tree has depth \(\alpha \).
2. Rec-tree contains \(\leq 2 \cdot 3^\alpha \) nodes.
3. Each node requires \(O(n^2) \) work.

Algorithms with running time \(O(n^c f(\alpha)) \), where \(\alpha \) is some parameter that depends on the problem are **fixed parameter tractable**.
Part III

Traveling Salesperson Problem
TSP-Min

Instance: $G = (V, E)$ a complete graph, and $\omega(e)$ a cost function on edges of G.

Question: The cheapest tour that visits all the vertices of G exactly once.

Solved exactly naively in $\approx n!$ time.
Using DP, solvable in $O(n^22^n)$ time.
TSP-Min

Instance: \(G = (V, E) \) a complete graph, and \(\omega(e) \) a cost function on edges of \(G \).

Question: The cheapest tour that visits all the vertices of \(G \) exactly once.

Solved exactly naively in \(\approx n! \) time.

Using DP, solvable in \(O(n^2 2^n) \) time.
Theorem

TSP-Min can not be approximated within *any* factor unless \(\text{NP} = \text{P} \).

Proof.

1. Reduction from **Hamiltonian Cycle** into **TSP**.
2. \(G = (V, E) \): instance of Hamiltonian cycle.
3. \(H \): Complete graph over \(V \).
 \[
 \forall u, v \in V \quad w_H(uv) = \begin{cases}
 1 & uv \in E \\
 2 & \text{otherwise}
 \end{cases}
 \]
4. \(\exists \) tour of price \(n \) in \(H \) \(\iff \) \(\exists \) Hamiltonian cycle in \(G \).
5. No Hamiltonian cycle \(\implies \) TSP price at least \(n + 1 \).
6. But... replace \(2 \) by \(cn \), for \(c \) an arbitrary number
Theorem

TSP-Min cannot be approximated within any factor unless \(\text{NP} = \text{P} \).

Proof.

1. Reduction from Hamiltonian Cycle into TSP.
2. \(G = (V, E) \): instance of Hamiltonian cycle.
3. \(H \): Complete graph over \(V \).

 \[\forall u, v \in V \quad w_H(uv) = \begin{cases}
 1 & uv \in E \\
 2 & \text{otherwise}.
 \end{cases} \]
4. \(\exists \) tour of price \(n \) in \(H \) \iff \(\exists \) Hamiltonian cycle in \(G \).
5. No Hamiltonian cycle \(\implies \) TSP price at least \(n + 1 \).
6. But... replace \(2 \) by \(cn \), for \(c \) an arbitrary number.
TSP Hardness

Theorem

TSP-Min can not be approximated within any factor unless \(\text{NP} = \text{P} \).

Proof.

1. Reduction from Hamiltonian Cycle into TSP.
2. \(G = (V, E) \): instance of Hamiltonian cycle.
3. \(H \): Complete graph over \(V \).
 \[
 \forall u, v \in V \quad w_H(uv) = \begin{cases}
 1 & uv \in E \\
 2 & \text{otherwise}.
 \end{cases}
 \]
4. \(\exists \) tour of price \(n \) in \(H \) \(\iff \) \(\exists \) Hamiltonian cycle in \(G \).
5. No Hamiltonian cycle \(\implies \) TSP price at least \(n + 1 \).
6. But... replace 2 by \(cn \), for \(c \) an arbitrary number.
Theorem

TSP-Min can not be approximated within any factor unless \(\text{NP} = \text{P} \).

Proof.

1. Reduction from **Hamiltonian Cycle** into **TSP**.
2. \(G = (V, E) \): instance of Hamiltonian cycle.
3. \(H \): Complete graph over \(V \).
 \[
 \forall u, v \in V \quad w_H(uv) = \begin{cases} 1 & uv \in E \\ 2 & \text{otherwise} \end{cases}
 \]
4. \(\exists \) tour of price \(n \) in \(H \) \(\iff \exists \) Hamiltonian cycle in \(G \).
5. No Hamiltonian cycle \(\implies \) **TSP** price at least \(n + 1 \).
6. But... replace \(2 \) by \(cn \), for \(c \) an arbitrary number.
Proof.

1. Price of all tours are either:
 (i) n (only if \exists Hamiltonian cycle in G),
 (ii) larger than $cn + 1$ (actually, $\geq cn + (n - 1)$).

2. Suppose you had a poly time c-approximation to TSP-Min.

3. Run it on H:
 (i) If returned value $\geq cn + 1 \implies$ no Ham Cycle since $(cn + 1)/c > n$
 (ii) If returned value $\leq cn \implies$ Ham Cycle since $OPT \leq cn < cn + 1$

4. c-approximation algorithm to TSP \implies poly-time algorithm for NP-Complete problem. Possible only if $P = NP$.

Sariel (UIUC)
CS573 21
Fall 2013 21 / 35
Proof.

1. Price of all tours are either:
 (i) n (only if \(\exists \) Hamiltonian cycle in \(G \)),
 (ii) larger than $cn + 1$ (actually, \(\geq cn + (n - 1) \)).

2. Suppose you had a poly time c-approximation to TSP-Min.

3. Run it on \(H \):
 (i) If returned value $\geq cn + 1 \implies$ no Ham Cycle since \((cn + 1)/c > n \)
 (ii) If returned value $\leq cn \implies$ Ham Cycle since \(OPT \leq cn < cn + 1 \)

4. c-approximation algorithm to TSP \implies poly-time algorithm for \text{NP-Complete} problem. Possible only if \(P = NP \).
Proof.

1. Price of all tours are either:
 (i) \(n \) (only if \(\exists \) Hamiltonian cycle in \(G \)),
 (ii) larger than \(cn + 1 \) (actually, \(\geq cn + (n - 1) \)).

2. Suppose you had a poly time \(c \)-approximation to TSP-Min.

3. Run it on \(H \):
 (i) If returned value \(\geq cn + 1 \) \(\implies \) no Ham Cycle since \((cn + 1)/c > n \)
 (ii) If returned value \(\leq cn \) \(\implies \) Ham Cycle since \(OPT \leq cn < cn + 1 \)

4. \(c \)-approximation algorithm to TSP \(\implies \) poly-time algorithm for NP-Complete problem. Possible only if \(P = NP \).
TSP Hardness - proof continued

Proof.

1. Price of all tours are either:
 (i) n (only if \exists Hamiltonian cycle in G),
 (ii) larger than $cn + 1$ (actually, $\geq cn + (n - 1)$).

2. Suppose you had a poly time c-approximation to TSP-Min.

3. Run it on H:
 (i) If returned value $\geq cn + 1 \implies$ no Ham Cycle since $(cn + 1)/c > n$
 (ii) If returned value $\leq cn \implies$ Ham Cycle since $OPT \leq cn < cn + 1$

4. c-approximation algorithm to TSP \implies poly-time algorithm for NP-Complete problem. Possible only if $P = NP$.
TSP with the triangle inequality

Because it is not that bad after all.

TSP\(\bigtriangleup \neq\)-Min

Instance: \(G = (V, E)\) is a complete graph. There is also a cost function \(\omega(\cdot)\) defined over the edges of \(G\), that complies with the triangle inequality.

Question: The cheapest tour that visits all the vertices of \(G\) exactly once.

triangle inequality: \(\omega(\cdot)\) if

\[
\forall u, v, w \in V(G), \quad \omega(u, v) \leq \omega(u, w) + \omega(w, v).
\]

Shortcutting

\(\sigma\): a path from \(s\) to \(t\) in \(G\) \(\implies \omega(st) \leq \omega(\sigma)\).
TSP with the triangle inequality

Because it is not that bad after all.

TSP \(\nabla \neq\text{-Min}\)

Instance: \(G = (V, E)\) is a complete graph. There is also a cost function \(\omega(\cdot)\) defined over the edges of \(G\), that complies with the triangle inequality.

Question: The cheapest tour that visits all the vertices of \(G\) exactly once.

triangle inequality: \(\omega(\cdot)\) if

\[
\forall u, v, w \in V(G), \quad \omega(u, v) \leq \omega(u, w) + \omega(w, v).
\]

Shortcutting

\(\sigma:\) a path from \(s\) to \(t\) in \(G\) \(\implies\) \(\omega(st) \leq \omega(\sigma)\).
TSP with the triangle inequality
Because it is not that bad after all.

TSP \(\triangle \neq \text{Min}\)

Instance: \(G = (V, E)\) is a complete graph. There is also a cost function \(\omega(\cdot)\) defined over the edges of \(G\), that complies with the triangle inequality.

Question: The cheapest tour that visits all the vertices of \(G\) exactly once.

triangle inequality: \(\omega(\cdot)\) if

\[
\forall u, v, w \in V(G), \quad \omega(u, v) \leq \omega(u, w) + \omega(w, v).
\]

Shortcutting

\(\sigma\): a path from \(s\) to \(t\) in \(G\) \(\implies\) \(\omega(st) \leq \omega(\sigma)\).
Definition

Cycle in G is **Eulerian** if it visits every edge of G exactly once.

Assume you already seen the following:

Lemma

A graph G has a cycle that visits every edge of G exactly once (i.e., an Eulerian cycle) if and only if G is connected, and all the vertices have even degree. Such a cycle can be computed in $O(n + m)$ time, where n and m are the number of vertices and edges of G, respectively.
1. C_{opt} optimal TSP tour in G.

2. Observation:
 \[\omega(C_{opt}) \geq \text{weight(cheapest spanning graph of } G) \].

3. MST: cheapest spanning graph of G.
 \[\omega(C_{opt}) \geq \omega(\text{MST}(G)) \]

4. $O(n \log n + m) = O(n^2)$: time to compute MST.

 $n = |V(G)|$, $m = \binom{n}{2}$.
TSP with the triangle inequality

Continued...

1. C_{opt} optimal TSP tour in G.

2. **Observation:**
 \[\omega(C_{\text{opt}}) \geq \text{weight(cheapest spanning graph of } G) \].

3. MST: cheapest spanning graph of G.
 \[\omega(C_{\text{opt}}) \geq \omega(\text{MST}(G)) \]

4. $O(n \log n + m) = O(n^2)$: time to compute MST.
 $n = |V(G)|$, $m = \binom{n}{2}$.

Sariel (UIUC)
CS573
Fall 2013
24 / 35
TSP with the triangle inequality

Continued...

1. C_{opt} optimal TSP tour in G.

2. **Observation:**
 \[\omega(C_{\text{opt}}) \geq \text{weight(cheapest spanning graph of } G) \].

3. **MST:** cheapest spanning graph of G.
 \[\omega(C_{\text{opt}}) \geq \omega(\text{MST}(G)) \]

4. $O(n \log n + m) = O(n^2)$: time to compute MST.
 \[n = |V(G)|, \; m = \binom{n}{2} \].
TSP with the triangle inequality

Continued...

1. C_{opt} optimal TSP tour in G.

2. **Observation:**
 \[\omega(C_{\text{opt}}) \geq \text{weight}\left(\text{cheapest spanning graph of } G\right). \]

3. **MST:** cheapest spanning graph of G.
 \[\omega(C_{\text{opt}}) \geq \omega(\text{MST}(G)) \]

4. $O(n \log n + m) = O(n^2)$: time to compute MST.
 \[n = |V(G)|, \ m = \binom{n}{2}. \]
TSP with the triangle inequality

2-approximation

1. \(T \leftarrow \text{MST}(G) \)
2. \(H \leftarrow \text{duplicate very edge of } T \).
3. \(H \) has an Eulerian tour.
4. \(C \): Eulerian cycle in \(H \).
5. \(\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{\text{opt}}) \).
6. \(\pi \): Shortcut \(C \) so visit every vertex once.
7. \(\omega(\pi) \leq \omega(C) \)
TSP with the triangle inequality

2-approximation

1. \(T \leftarrow \text{MST}(G) \)
2. \(H \leftarrow \text{duplicate very edge of } T \).
3. \(H \) has an Eulerian tour.
4. \(C \): Eulerian cycle in \(H \).
5. \(\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{\text{opt}}) \).
6. \(\pi \): Shortcut \(C \) so visit every vertex once.
7. \(\omega(\pi) \leq \omega(C) \)
TSP with the triangle inequality

2-approximation

1. \(T \leftarrow \text{MST}(G) \)
2. \(H \leftarrow \text{duplicate very edge of } T \).
3. \(H \) has an Eulerian tour.
4. \(C \): Eulerian cycle in \(H \).
5. \(\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{\text{opt}}) \).
6. \(\pi \): Shortcut \(C \) so visit every vertex once.
7. \(\omega(\pi) \leq \omega(C) \)
TSP with the triangle inequality

2-approximation

1. \(T \leftarrow \text{MST}(G) \)
2. \(H \leftarrow \text{duplicate very edge of } T \).
3. \(H \) has an Eulerian tour.
4. \(C \): Eulerian cycle in \(H \).
5. \(\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{opt}) \).
6. \(\pi \): Shortcut \(C \) so visit every vertex once.
7. \(\omega(\pi) \leq \omega(C) \)
TSP with the triangle inequality

2-approximation

1. \(T \leftarrow \text{MST}(G) \)
2. \(H \leftarrow \text{duplicate very edge of } T. \)
3. \(H \) has an Eulerian tour.
4. \(C: \) Eulerian cycle in \(H. \)
5. \(\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{\text{opt}}). \)
6. \(\pi: \) Shortcut \(C \) so visit every vertex once.
7. \(\omega(\pi) \leq \omega(C) \)
TSP with the triangle inequality

2-approximation

1. $T \leftarrow \text{MST}(G)$
2. $H \leftarrow$ duplicate very edge of T.
3. H has an Eulerian tour.
4. C: Eulerian cycle in H.
5. $\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{opt})$.
6. π: Shortcut C so visit every vertex once.
7. $\omega(\pi) \leq \omega(C)$
TSP with the triangle inequality

2-approximation

1. $T \leftarrow \text{MST}(G)$
2. $H \leftarrow$ duplicate very edge of T.
3. H has an Eulerian tour.
4. C: Eulerian cycle in H.
5. $\omega(C) = \omega(H) = 2\omega(T) = 2\omega(\text{MST}(G)) \leq 2\omega(C_{\text{opt}})$.
6. π: Shortcut C so visit every vertex once.
7. $\omega(\pi) \leq \omega(C)$
TSP with the triangle inequality

2-approximation algorithm in figures
TSP with the triangle inequality

2-approximation algorithm in figures
TSP with the triangle inequality

2-approximation algorithm in figures

(a) (b) (c) (d)
TSP with the triangle inequality

2-approximation algorithm in figures

(a) (b) (c) (d)

Euler Tour: **VUVWVSV**
First occurrences: **VUVWVSV**
Shortcut String: **VUWSV**
Theorem

\(G \): Instance of TSP\(_\triangle \neq \text{Min} \).
\(C_{\text{opt}} \): min cost TSP tour of \(G \).

\[\implies \text{Compute a tour of } G \text{ of length } \leq 2\omega(C_{\text{opt}}). \]

Running time of the algorithm is \(O(n^2) \).

\(G \): \(n \) vertices, cost function \(\omega(\cdot) \) on the edges that comply with the triangle inequality.
TSP with the triangle inequality

2-approximation - result

Theorem

\(G \): Instance of \(TSP_{\triangle \neq Min} \).

\(C_{opt} \): min cost TSP tour of \(G \).

\[\implies \text{Compute a tour of } G \text{ of length } \leq 2\omega(C_{opt}). \]

Running time of the algorithm is \(O(n^2) \).

\(G \): \(n \) vertices, cost function \(\omega(\cdot) \) on the edges that comply with the triangle inequality.
Theorem

G: Instance of $TSP_{\forall \neq \text{Min}}$.
c_{opt}: min cost TSP tour of G.

\implies Compute a tour of G of length $\leq 2\omega(c_{\text{opt}})$.

Running time of the algorithm is $O(n^2)$.

G: n vertices, cost function $\omega(\cdot)$ on the edges that comply with the triangle inequality.
Theorem

G: Instance of $TSP_{\triangle \neq Min}$.

C_{opt}: min cost TSP tour of **G**.

\implies Compute a tour of **G** of length $\leq 2\omega(C_{opt})$.

Running time of the algorithm is $O(n^2)$.

G: n vertices, cost function $\omega(\cdot)$ on the edges that comply with the triangle inequality.
TSP with the triangle inequality

$3/2$-approximation

Definition

$G = (V, E)$, a subset $M \subseteq E$ is a **matching** if no pair of edges of M share endpoints.

A **perfect matching** is a matching that covers all the vertices of G.

w: weight function on the edges. **Min-weight perfect matching**, is the minimum weight matching among all perfect matching, where

$$\omega(M) = \sum_{e \in M} \omega(e).$$
TSP with the triangle inequality

3/2-approximation

The following is known:

Theorem

Given a graph G and weights on the edges, one can compute the min-weight perfect matching of G in polynomial time.
Min weight perfect matching vs. TSP

Lemma

\[G = (V, E): \text{complete graph.} \]
\[S \subseteq V: \text{even size.} \]
\[\omega(\cdot): \text{a weight function over } E. \]
\[\implies \text{min-weight perfect matching in } G_S \text{ is } \leq \frac{\omega(\text{TSP}(G))}{2}. \]
Lemma

\(G = (V, E) \): complete graph.

\(S \subseteq V \): even size.

\(\omega(\cdot) \): a weight function over \(E \).

\(\implies \) min-weight perfect matching in \(G_S \) is \(\leq \frac{\omega(\text{TSP}(G))}{2} \).

\(\pi \)
Lemma

\(G = (V, E) \): complete graph.

\(S \subseteq V \): even size.

\(\omega(\cdot) \): a weight function over \(E \).

\(\Rightarrow \) min-weight perfect matching in \(G_S \) is \(\leq \frac{\omega(\text{TSP}(G))}{2} \).
Lemma

\(G = (V, E) \): complete graph.
\(S \subseteq V \): even size.
\(\omega(\cdot) \): a weight function over \(E \).
\(\implies \) min-weight perfect matching in \(G_S \) is \(\leq \frac{\omega(\text{TSP}(G))}{2} \).
A more perfect tree?

1. How to make the tree Eulerian?

 ![Diagram of a tree with vertices and edges labeled 1 to 7]

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. \(H = \text{MST} + \text{min-weight matching} \) is Eulerian.

6. Weight of resulting cycle in \(H \leq (3/2)\omega(\text{TSP}) \).
A more perfect tree?

1. How to make the tree Eulerian?

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. $H = \text{MST} + \text{min-weight matching}$ is Eulerian.

6. Weight of resulting cycle in $H \leq (3/2)\omega(\text{TSP})$.
A more perfect tree?

1. How to make the tree Eulerian?

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. $H = \text{MST} + \text{min-weight matching}$ is Eulerian.

6. Weight of resulting cycle in $H \leq (3/2)\omega(\text{TSP})$.
A more perfect tree?

1. How to make the tree Eulerian?

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. $H = \text{MST} + \text{min-weight-matching}$ is Eulerian.

6. Weight of resulting cycle in $H \leq (3/2)\omega(TSP)$.

Sariel (UIUC) CS573 Fall 2013
A more perfect tree?

1. How to make the tree Eulerian?

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. \(H = \text{MST} + \min - \text{weight} - \text{matching} \) is Eulerian.

6. Weight of resulting cycle in \(H \leq (3/2)\omega(\text{TSP}) \).
A more perfect tree?

1. How to make the tree Eulerian?

2. Pesky odd degree vertices must die!

3. Number of odd degree vertices in a graph is even!

4. Compute min-weight matching on odd vertices, and add to MST.

5. \(H = \text{MST} + \text{min-weight matching} \) is Eulerian.

6. Weight of resulting cycle in \(H \leq \frac{3}{2}\omega(TSP) \).
Even number of odd degree vertices

Lemma

The number of odd degree vertices in any graph \(G' \) is even.

Proof:

\[
\mu = \sum_{v \in V(G')} d(v) = 2 |E(G')| \quad \text{and thus even.}
\]

\[
U = \sum_{v \in V(G'), d(v) \text{ is even}} d(v) \quad \text{even too.}
\]

Thus,

\[
\alpha = \sum_{v \in V, d(v) \text{ is odd}} d(v) = \mu - U = \text{even number,}
\]

since \(\mu \) and \(U \) are both even.

Number of elements in sum of all odd numbers must be even, since the total sum is even.
Lemma

The number of odd degree vertices in any graph \(G' \) is even.

Proof:

\[
\mu = \sum_{v \in V(G')} d(v) = 2|E(G')| \text{ and thus even.}
\]

\[
U = \sum_{v \in V(G'), d(v) \text{ is even}} d(v) \text{ even too.}
\]

Thus,

\[
\alpha = \sum_{v \in V, d(v) \text{ is odd}} d(v) = \mu - U = \text{even number,}
\]

since \(\mu \) and \(U \) are both even.

Number of elements in sum of all odd numbers must be even, since the total sum is even.
Even number of odd degree vertices

Lemma

The number of odd degree vertices in any graph G' is even.

Proof:

Let $\mu = \sum_{v \in V(G')} d(v) = 2|E(G')|$ and thus even. Let $U = \sum_{v \in V(G') \mid d(v) \text{ is even}} d(v)$ be even too.

Thus,

$$\alpha = \sum_{v \in V \mid d(v) \text{ is odd}} d(v) = \mu - U = \text{even number},$$

since μ and U are both even. Number of elements in sum of all odd numbers must be even, since the total sum is even.
3/2-approximation algorithm for TSP

Animated!
3/2-approximation algorithm for TSP

Animated!
3/2-approximation algorithm for TSP

Animated!
\(3/2\)-approximation algorithm for TSP
3/2-approximation algorithm for TSP

Animated!
3/2-approximation algorithm for TSP

Animated!
$\frac{3}{2}$-approximation algorithm for TSP

Animated!
3/2-approximation algorithm for TSP

Animated!
$3/2$-approximation algorithm for TSP

Animated!
$3/2$-approximation algorithm for TSP

Animated!
$\frac{3}{2}$-approximation algorithm for TSP

Animated!
3/2-approximation algorithm for TSP

Animated!
$3/2$-approximation algorithm for TSP

Animated!
The result

Theorem

Given an instance of TSP with the triangle inequality, one can compute in polynomial time, a \((3/2)\)-approximation to the optimal TSP.
The $3/2$-approximation for TSP with the triangle inequality is due to Christofides [1976].
