Introduction to Dynamic Programming

Lecture 5
September 10, 2013

Recursion

Reduction:
Reduce one problem to another

Recursion

Recursion is a special case of reduction, where:
- reduce problem to a smaller instance of itself, and
- self-reduction.

- Problem instance of size \(n \) is reduced to one or more instances of size \(n - 1 \) or less.
- For termination, problem instances of small size are solved by some other method as base cases.

Recursion in Algorithm Design

- **Tail Recursion**: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
- **Divide and Conquer**: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort.
- **Dynamic Programming**: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \] and \(F(0) = 0, F(1) = 1. \)

These numbers have many interesting and amazing properties. A journal *The Fibonacci Quarterly!*

It is known that

\[F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] = \Theta(\phi^n), \]

\[F(n) = (\phi^n - (1 - \phi)^n)/\sqrt{5} \] where \(\phi = (1 + \sqrt{5})/2 \approx 1.618. \)

\[\lim_{n \to \infty} F(n + 1)/F(n) = \phi. \]

An iterative algorithm for Fibonacci numbers

\textbf{FibIter} \((n) : \)

\begin{algorithmic}
 \STATE if \((n = 0) \) then
 \STATE \hspace{1em} return 0
 \STATE if \((n = 1) \) then
 \STATE \hspace{1em} return 1
 \STATE \hspace{2em} \(F[0] = 0 \)
 \STATE \hspace{2em} \(F[1] = 1 \)
 \STATE for \(i = 2 \) to \(n \) do
 \STATE \hspace{2em} \(F[i] \leftarrow F[i - 1] + F[i - 2] \)
 \STATE return \(F[n] \)
\end{algorithmic}

What is the running time of the algorithm? \(O(n) \) additions.

Recursive Algorithm for Fibonacci Numbers

\textbf{Fib} \((n) : \)

\begin{algorithmic}
 \STATE if \((n = 0) \) then
 \STATE \hspace{1em} return 0
 \STATE else if \((n = 1) \) then
 \STATE \hspace{1em} return 1
 \STATE else
 \STATE \hspace{2em} return \(\text{Fib}(n - 1) + \text{Fib}(n - 2) \)
\end{algorithmic}

Running time? Let \(T(n) \) be the number of additions in \(\text{Fib}(n) \).

\[T(n) = T(n - 1) + T(n - 2) + 1 \] and \(T(0) = T(1) = 0 \)

Roughly same as \(F(n) \)

\[T(n) = \Theta(\phi^n) \]

The number of additions is exponential in \(n \). Can we do better?

Recursion tree for Fibonacci
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:
Finding a recursion that can be *effectively/efficiently* memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

Automatic Memoization
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

Fib(n):
```
if (n = 0)
    return 0
if (n = 1)
    return 1
if (Fib(n) was previously computed)
    return stored value of Fib(n)
else
    return Fib(n − 1) + Fib(n − 2)
```

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Automatic explicit memoization
Initialize table/array M of size n such that M[i] = −1 for i = 0, ..., n.

Fib(n):
```
if (n = 0)
    return 0
if (n = 1)
    return 1
if (M[n] ≠ −1) (* M[n] has stored value of Fib(n) *)
    return M[n]
M[n] ⇐ Fib(n − 1) + Fib(n − 2)
return M[n]
```

Need to know upfront the number of subproblems to allocate memory.
Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

$\text{Fib}(n)$:
- if $n = 0$
 - return 0
- if $n = 1$
 - return 1
- if (n is already in D)
 - return value stored with n in D
 - $\text{val} \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$
 - Store (n, val) in D
 - return val

Explicit vs Implicit Memoization

1. Explicit memoization or iterative algorithm preferred if one can analyze problem ahead of time. Allows for efficient memory allocation and access.
2. Implicit and automatic memoization used when problem structure or algorithm is either not well understood or in fact unknown to the underlying system.
 - Need to pay overhead of data-structure.
 - Functional languages such as LISP automatically do memoization, usually via hashing based dictionaries.

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take $O(n)$ time?
1. Input is n and hence input size is $\Theta(\log n)$
2. Output is $F(n)$ and output size is $\Theta(n)$. Why?
3. Hence output size is exponential in input size so no polynomial time algorithm possible!
4. Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are $O(n)$ bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?
5. Running time of recursive algorithm is $O(n\phi^n)$ but can in fact shown to be $O(\phi^n)$ by being careful. Doubly exponential in input size and exponential even in output size.

More on fast Fibonacci numbers

\[
\begin{pmatrix}
 y \\
 x + y
\end{pmatrix}
= \begin{pmatrix}
 0 & 1 \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}.
\]

As such,
\[
\begin{pmatrix}
 F_{n-1} \\
 F_n
\end{pmatrix}
= \begin{pmatrix}
 0 & 1 \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 F_{n-2} \\
 F_{n-1}
\end{pmatrix}
= \begin{pmatrix}
 0 & 1 \\
 1 & 1
\end{pmatrix}
^2
\begin{pmatrix}
 F_{n-3} \\
 F_{n-2}
\end{pmatrix}
= \begin{pmatrix}
 0 & 1 \\
 1 & 1
\end{pmatrix}
^{n-3}
\begin{pmatrix}
 F_2 \\
 F_1
\end{pmatrix}.
\]

Thus, computing the nth Fibonacci number can be done by computing $\begin{pmatrix}
 0 & 1 \\
 1 & 1
\end{pmatrix}^{n-3}$. Which can be done in $O(\log n)$ time (how?). What is wrong?
Part II

Brute Force Search, Recursion and Backtracking

Maximum Independent Set in a Graph

Definition

Given undirected graph $G = (V, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above:

Maximum Independent Set Problem

Input Graph $G = (V, E)$
Goal Find maximum sized independent set in G

Maximum Weight Independent Set Problem

Input Graph $G = (V, E)$, weights $w(v) \geq 0$ for $v \in V$
Goal Find maximum weight independent set in G
Maximum Weight Independent Set Problem

- No one knows an *efficient* (polynomial time) algorithm for this problem.
- Problem is **NP-Complete** and it is *believed* that there is no polynomial time algorithm.

Brute-force algorithm:
Try all subsets of vertices.

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

There is an algorithm to find the size of the maximum weight independent set.

MaxIndSet ($G = (V, E)$):

1. **max** = 0
2. for each subset $S \subseteq V$
 - check if S is an independent set
 - if S is an independent set and $w(S) > \text{max}$ then
 - **max** = $w(S)$

Output **max**

Running time: Suppose G has n vertices and m edges
- 2^n subsets of V
- checking each subset S takes $O(m)$ time
- total time is $O(m2^n)$

A Recursive Algorithm

Let $V = \{v_1, v_2, \ldots, v_n\}$.
For a vertex u let $N(u)$ be its neighbors.

Observation

v_n: Vertex in the graph.

One of the following two cases is true:
- **Case 1**: v_n is in some maximum independent set.
- **Case 2**: v_n is in no maximum independent set.

RecursiveMIS (G):

1. if G is empty then Output 0
2. $a = \text{RecursiveMIS}(G - v_n)$
3. $b = w(v_n) + \text{RecursiveMIS}(G - v_n - N(v_n))$
4. Output $\max(a, b)$

Recursive Algorithms

for Maximum Independent Set

Running time:

$$T(n) = T(n - 1) + T(n - 1 - \text{deg}(v_n)) + O(1 + \text{deg}(v_n))$$

where $\text{deg}(v_n)$ is the degree of v_n. $T(0) = T(1) = 1$ is base case.

Worst case is when $\text{deg}(v_n) = 0$ when the recurrence becomes

$$T(n) = 2T(n - 1) + O(1)$$

Solution to this is $T(n) = O(2^n)$.
Backtrack Search via Recursion

- Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem).
- Simple recursive algorithm computes/explores the whole tree blindly in some order.
- Backtrack search is a way to explore the tree intelligently to prune the search space.

 - Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method.
 - Memoization to avoid recomputing same problem.
 - Stop the recursion at a subproblem if it is clear that there is no need to explore further.
 - Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.

Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.

Definition

a_{i_1}, \ldots, a_{i_k} is a **subsequence** of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition

A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.

Part III

Longest Increasing Subsequence
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naïve Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

algLISNaive($A[1..n]$):

- $max = 0$
- for each subsequence B of A do
 - if B is increasing and $|B| > max$ then
 - $max = |B|$

Output max

Running time: $O(n2^n)$.

2^n subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.

Recursive Approach: Take 1

Can we find a recursive algorithm for LIS?

LIS($A[1..n]$):

- Case 1: Does not contain $A[n]$ in which case
 LIS($A[1..n]$) = LIS($A[1..(n-1)]$)
- Case 2: contains $A[n]$ in which case LIS($A[1..n]$) is not so clear.

Observation

if $A[n]$ *is in the longest increasing subsequence then all the elements before it must be smaller.*

algLIS($A[1..n]$):

- if ($n = 0$) then return 0
- $m = \text{algLIS}(A[1..(n-1)])$
- B is subsequence of $A[1..(n-1)]$ with only elements less than $A[n]$
 (* let h be size of B, $h \leq n-1$ *)
- $m = \max(m, 1 + \text{algLIS}(B[1..h]))$

Output m

Recursion for running time: $T(n) \leq 2T(n-1) + O(n)$.

Easy to see that $T(n)$ is $O(n2^n)$.
Recursive Approach: Take 2

LIS(A[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n - 1)])
- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation

For second case we want to find a subsequence in A[1..(n - 1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Recursive Algorithm: Take 2

Observation

The number of different subproblems generated by LIS_smaller(A[1..n], x) is O(n^2).

Memoization the recursive algorithm leads to an O(n^2) running time!

Question: What are the recursive subproblem generated by LIS_smaller(A[1..n], x)?
- For 0 ≤ i < n LIS_smaller(A[1..i], y) where y is either x or one of A[i + 1],...,A[n].

Observation

previous recursion also generates only O(n^2) subproblems. Slightly harder to see.

Recursive Approach: Take 2

LIS_smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

LIS_smaller(A[1..n], x):
 if (n = 0) then return 0
 m = LIS_smaller(A[1..(n - 1)], x)
 if (A[n] < x) then
 m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))
 Output m

LIS(A[1..n]):
 return LIS_smaller(A[1..n], ∞)

Recursion for running time: T(n) ≤ 2T(n - 1) + O(1).

Question: Is there any advantage?

Recursive Algorithm: Take 3

Definition

LISEnding(A[1..n]) : length of longest increasing sub-sequence that ends in A[n].

Question: can we obtain a recursive expression?

LISEnding(A[1..n]) = \max_{i:A[i] < A[n]} \left(1 + LISEnding(A[1..i]) \right)
Recursive Algorithm: Take 3

LIS_ending_alg(A[1..n])):
 if (n = 0) return 0
 m = 1
 for i = 1 to n - 1 do
 if (A[i] < A[n]) then
 m = max(m, 1 + LIS_ending_alg(A[1..i]))
 return m

LIS(A[1..n]):
 return max_i=1\^n LIS_ending_alg(A[1..i])

Question:

How many distinct subproblems generated by LIS_ending_alg(A[1..n])? n.

Iterative Algorithm via Memoization

Simplifying:

LIS(A[1..n]):
 Array L[1..n] (* L[i] stores the value LIS_ending_alg(A[1..i]) *)
 m = 0
 for i = 1 to n do
 L[i] = 1
 for j = 1 to i - 1 do
 if (A[j] < A[i]) do
 L[i] = max(L[i], 1 + L[j])
 m = max(m, L[i])
 return m

Correctness: Via induction following the recursion
Running time: $O(n^2)$, Space: $\Theta(n)$

Example

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Longest increasing subsequence: 3, 5, 7, 8

- $L[i]$ is value of longest increasing subsequence ending in $A[i]$
- Recursive algorithm computes $L[i]$ from $L[1]$ to $L[i - 1]$
- Iterative algorithm builds up the values from $L[1]$ to $L[n]$
Memoizing

LIS\((A[1..n])\):

\[A[n + 1] = \infty \text{ (* add a sentinel at the end *)}\]

Array \(L[\{n + 1\}, \{n + 1\}]\) (* two-dimensional array*)

(* \(L[i,j]\) for \(j \geq i\) stores the value \(LIS_{smaller}(A[1..i], A[j])\) *)

for \(j = 1\) to \(n + 1\) do

\[L[0,j] = 0\]

for \(i = 1\) to \(n + 1\) do

\[L[i,j] = L[i-1,j]\]

if \((A[i] < A[j])\) then

\[L[i,j] = \max(L[i,j], 1 + L[i-1,i])\]

return \(L[n, (n + 1)]\)

Correctness: Via induction following the recursion (take 2)

Running time: \(O(n^2)\), **Space:** \(\Theta(n^2)\)

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
3. Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.
4. Optimize the resulting algorithm further

Longest increasing subsequence

Another way to get quadratic time algorithm

\[G = \{\{s, 1, \ldots, n\}, \{\}\}\]: directed graph.

\(\forall i, j:\) If \(i < j\) and \(A[i] < A[j]\) then add the edge \(i \rightarrow j\) to \(G\).

\(\forall i:\) Add \(s \rightarrow i\).

The graph \(G\) is a DAG. LIS corresponds to longest path in \(G\) starting at \(s\).

We know how to compute this in \(O(|V(G)| + |E(G)|) = O(n^2)\).

Comment: One can compute LIS in \(O(n \log n)\) time with a bit more work.

Part IV

Weighted Interval Scheduling
Weighted Interval Scheduling

Input A set of jobs with start times, finish times and *weights* (or profits).

Goal Schedule jobs so that total weight of jobs is maximized.

- Two jobs with overlapping intervals cannot both be scheduled!

<table>
<thead>
<tr>
<th>Start</th>
<th>Finish</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Greedy Strategies

- Earliest finish time first
- Largest weight/profit first
- Largest weight to length ratio first
- Shortest length first
- ...

None of the above strategies lead to an optimum solution.

Moral: Greedy strategies often don’t work!

Interval Scheduling

Greedy Solution

Input A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1.

Goal Schedule as many jobs as possible.

- Greedy strategy of considering jobs according to finish times produces optimal schedule (to be seen later).

Greedy Strategies

<table>
<thead>
<tr>
<th>Start</th>
<th>Finish</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Reduction to...

Max Weight Independent Set Problem

- Given weighted interval scheduling instance I create an instance of max weight independent set on a graph $G(I)$ as follows.

 - For each interval i create a vertex v_i with weight w_i.
 - Add an edge between v_i and v_j if i and j overlap.

- Claim: max weight independent set in $G(I)$ has weight equal to max weight set of intervals in I that do not overlap.
Reduction to...
Max Weight Independent Set Problem

- There is a reduction from Weighted Interval Scheduling to Independent Set.
- Can use structure of original problem for efficient algorithm?
- Independent Set in general is NP-Complete.

Towards a Recursive Solution

Observation

Consider an optimal schedule \(O \)

Case \(n \in O \) : None of the jobs between \(n \) and \(p(n) \) can be scheduled. Moreover \(O \) must contain an optimal schedule for the first \(p(n) \) jobs.

Case \(n \notin O \) : \(O \) is an optimal schedule for the first \(n - 1 \) jobs.

A Recursive Algorithm

Let \(O_i \) be value of an optimal schedule for the first \(i \) jobs.

\[
\text{Schedule}(n) : \\
\text{if } n = 0 \text{ then return 0} \\
\text{if } n = 1 \text{ then return } w(v_1) \\
O_{p(n)} \leftarrow \text{Schedule}(p(n)) \\
O_{n-1} \leftarrow \text{Schedule}(n - 1) \\
\text{if } (O_{p(n)} + w(v_n) < O_{n-1}) \text{ then} \\
\quad O_n = O_{n-1} \\
\text{else} \\
\quad O_n = O_{p(n)} + w(v_n) \\
\text{return } O_n
\]

Time Analysis

Running time is \(T(n) = T(p(n)) + T(n - 1) + O(1) \) which is ...
Bad Example

Running time on this instance is

\[T(n) = T(n-1) + T(n-2) + O(1) = \Theta(\phi^n) \]

where \(\phi \approx 1.618 \) is the golden ratio.

Analysis of the Problem

Memoization

Observation
- Number of different sub-problems in recursive algorithm is \(O(n) \); they are \(O_1, O_2, \ldots, O_{n-1} \)
- Exponential time is due to recomputation of solutions to sub-problems

Solution
Store optimal solution to different sub-problems, and perform recursive call only if not already computed.

Recursive Solution with Memoization

\[
\text{schdlMem}(j) \\
\text{if } j = 0 \text{ then return 0} \\
\text{if } M[j] \text{ is defined then } (* \text{ sub-problem already solved } *) \\
\quad \text{return } M[j] \\
\text{if } M[j] \text{ is not defined then} \\
\quad M[j] = \max(w(v_j) + \text{schdlMem}(p(j)), \text{schdlMem}(j-1)) \\
\text{return } M[j]
\]

Time Analysis
- Each invocation, \(O(1) \) time plus: either return a computed value, or generate 2 recursive calls and fill one \(M[\cdot] \)
- Initially no entry of \(M[\cdot] \) is filled; at the end all entries of \(M[\cdot] \) are filled
- So total time is \(O(n) \) (Assuming input is presorted...)

Figure: Label of node indicates size of sub-problem. Tree of sub-problems grows very quickly
Automatic Memoization

Fact
Many functional languages (like LISP) automatically do memoization for recursive function calls!

Back to Weighted Interval Scheduling

Iterative Solution

\[
M[0] = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
M[i] = \max(w(v_i) + M[p(i)], M[i-1])
\]

\(M\): table of subproblems

- Implicitly dynamic programming fills the values of \(M\).
- Recursion determines order in which table is filled up.
- Think of decomposing problem first (recursion) and then worry about setting up table — this comes naturally from recursion.

Example

\[
\begin{array}{cccc}
30 & 70 & 3 \\
20 & 2 & 10 & 5 \\
\end{array}
\]

\(p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0\)

Computing Solutions + First Attempt

- Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

\[
M[0] = 0 \\
S[0] \text{ is empty schedule} \\
\text{for } i = 1 \text{ to } n \text{ do} \\
M[i] = \max(w(v_i) + M[p(i)], M[i-1]) \\
\text{if } w(v_i) + M[p(i)] < M[i-1] \text{ then} \\
S[i] = S[i-1] \\
\text{else} \\
S[i] = S[p(i)] \cup \{i\}
\]

- Naïvely updating \(S[]\) takes \(O(n)\) time
- Total running time is \(O(n^2)\)
- Using pointers and linked lists running time can be improved to \(O(n)\).
Computing Implicit Solutions

Observation
Solution can be obtained from $M[]$ in $O(n)$ time, without any additional information.

```text
findSolution(j)
  if (j = 0) then return empty schedule
  if ($v_j + M[p(j)] > M[j - 1]$) then
    return findSolution(p(j)) ∪ {j}
  else
    return findSolution(j - 1)
```

Makes $O(n)$ recursive calls, so `findSolution` runs in $O(n)$ time.

Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:

1. Keep track of the decision in computing the optimum value of a sub-problem. Decision space depends on recursion.
2. Once the optimum values are computed, go back and use the decision values to compute an optimum solution.

Question: What is the decision in computing $M[i]$?
A: Whether to include i or not.

```text
M[0] = 0
for i = 1 to n do
  $M[i] = \max(v_i + M[p(i)], M[i - 1])$
  if ($v_i + M[p(i)] > M[i - 1]$) then
    Decision[i] = 1 (* 1: $i$ included in solution $M[i]$ *)
  else
    Decision[i] = 0 (* 0: $i$ not included in solution $M[i]$ *)

S = ∅, i = n
while (i > 0) do
  if (Decision[i] = 1) then
    S = S ∪ {i}
    i = p(i)
  else
    i = i - 1
return S
```