Certifiers

Definition
An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $s \in X$ there is some string t such that $C(s, t) =$ "yes", and conversely, if for some s and t, $C(s, t) =$ "yes" then $s \in X$.

The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that

1. $|t| \leq p(|s|)$,
2. $C(s, t) =$ "yes",
3. and C runs in polynomial time.

NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

- $X \in \text{NP}$, and
- (Hardness) For any $Y \in \text{NP}$, $Y \leq_p X$.

Part I

NP Completeness
Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.
\[
\Rightarrow \quad \text{Suppose } X \text{ can be solved in polynomial time}
\]
\[
\quad \text{Let } Y \in \text{NP}. \text{ We know } Y \leq_p X.
\]
\[
\quad \text{We showed that if } Y \leq_p X \text{ and } X \text{ can be solved in polynomial time, then } Y \text{ can be solved in polynomial time.}
\]
\[
\quad \text{Thus, every problem } Y \in \text{NP} \text{ is such that } Y \in P; \text{ NP} \subseteq P.
\]
\[
\quad \text{Since } P \subseteq \text{NP}, \text{ we have } P = \text{NP}.
\]
\[
\Leftarrow \quad \text{Since } P = \text{NP}, \text{ and } X \in \text{NP}, \text{ we have a polynomial time algorithm for } X.
\]

Consequences of proving NP-Completeness
If X is NP-Complete
\[
\quad \text{Since we believe } P \neq \text{NP},
\]
\[
\quad \text{and solving } X \text{ implies } P = \text{NP}.
\]
\[
\quad X \text{ is unlikely to be efficiently solvable.}
\]

At the very least, many smart people before you have failed to find an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
Circuits

Definition
A circuit is a directed acyclic graph with

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled ∨, ∧ or ¬.
3. Single node **output** vertex with no outgoing edges.

Claim
CSAT is in NP.

- **Certificate:** Assignment to input variables.
- **Certifier:** Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Cook-Levin Theorem

Definition (Circuit Satisfaction (**CSAT**).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)
CSAT is NP-Complete.

Need to show

1. **CSAT** is in **NP**.
2. every **NP** problem **X** reduces to **CSAT**.

CSAT is NP-hard: Idea

Need to show that every **NP** problem **X** reduces to **CSAT**.

What does it mean that **X** ∈ **NP**?

X ∈ **NP** implies that there are polynomials **p()** and **q()** and certifier/verifier program **C** such that for every string **s** the following is true:

- If **s** is a YES instance (**s** ∈ **X**) then there is a **proof** **t** of length **p(|s|)** such that **C(s, t)** says YES.
- If **s** is a NO instance (**s** ∉ **X**) then for every string **t** of length at **p(|s|)**, **C(s, t)** says NO.
- **C(s, t)** runs in time **q(|s| + |t|)** time (hence polynomial time).
Reducing X to CSAT

X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$.

What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
How are $p()$ and $q()$ given? As numbers.
Example: if 3 is given then $p(n) = n^3$.

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm \mathcal{A} that
- takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
- G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!
- Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
- We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
- Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.

Example: Independent Set

Problem: Does $G = (V, E)$ have an Independent Set of size $\geq k$?
- Certificate: Set $S \subseteq V$.
- Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

Formally, why is Independent Set in NP?
Example: Independent Set

Formally why is Independent Set in \(\text{NP} \)?

- **Input:**

 \(< n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k >\) encodes \(< G, k >\).

- \(n \) is number of vertices in \(G \)
- \(y_{i,j} \) is a bit which is 1 if edge \((i, j)\) is in \(G \) and 0 otherwise (adjacency matrix representation)
- \(k \) is size of independent set.

- **Certificate:** \(t = t_1 t_2 \ldots t_n \). Interpretation is that \(t_i \) is 1 if vertex \(i \) is in the independent set, 0 otherwise.

Certifier for Independent Set

Certifier \(C(s, t) \) for Independent Set:

- if \((t_1 + t_2 + \ldots + t_n < k)\) then
 - return \(\text{NO} \)
- else
 - for each \((i, j)\) do
 - if \((t_i \land t_j \land y_{i,j})\) then
 - return \(\text{NO} \)
 - return \(\text{YES} \)

Example: Independent Set

A certifier circuit for Independent Set

![Diagram of a certifier circuit for Independent Set]

Programs, Turing Machines and Circuits

Consider “program” \(A \) that takes \(f(|s|) \) steps on input string \(s \).

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- can simulate real computers with \textit{polynomial} slow down
- all moves are \textit{local} (head moves only one cell)
Certifiers that at TMs

Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

There is an algorithm A that can reduce above problem to $CSAT$ mechanically as follows.

1. A first computes $p(|s|)$ and $q(|s|)$.
2. Knows that M can use at most $q(|s|)$ memory/tape cells.
3. Knows that M can run for at most $q(|s|)$ time.
4. Simulates the evolution of the state of M and memory over time using a big circuit.

NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity.
2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance.
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time.

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.

SAT is NP-Complete

- We have seen that $SAT \in NP$.
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT.

Instance of CSAT (we label each node):

Output: $\neg a \land (b \land c) \lor (d \land e)$

Inputs: x_0, x_1, x_2, x_3, x_4
Converting a circuit into a CNF formula

Label the nodes

(A) Input circuit
(B) Label the nodes.

Converting a circuit into a CNF formula

Introduce a variable for each node

(B) Label the nodes.
(C) Introduce var for each node.

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.

XXX

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula

x_k	$x_k = x_i \land x_e$	$x_k = x_i \land x_k$
$x_k = x_i \land x_k$	$x_j = x_g \land x_h$	$x_j = x_g \land x_h$
$x_i = \neg x_f$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
$x_h = x_d \lor x_e$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
$x_g = x_b \lor x_c$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
$x_f = x_a \land x_e$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
$x_d = 0$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
$x_a = 1$	$x_i = \neg x_f$	$x_i = \neg x_i \lor \neg x_f$
Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

\[x_k \land (\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor v) \land (x_k \lor x_f) \land \ldots \]

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: \(\text{CSAT} \leq_{P} \text{SAT} \)

Continued...

- Case \(\lor \): So \(x_v = x_u \lor x_w \). In SAT formula generated, add clauses \((x_v \lor \neg x_u), (x_v \lor \neg x_w)\), and \((\neg x_v \lor x_u \lor x_w)\). Again, observe that

\[
\begin{align*}
(x_v = x_u \lor x_w) \text{ is true } & \iff (x_v \lor \neg x_u), \\
(x_v \lor \neg x_u) \text{ all true.} & \iff (\neg x_v \lor x_u \lor x_w)
\end{align*}
\]

Reduction: \(\text{CSAT} \leq_{P} \text{SAT} \)

Continued...

- Case \(\land \): So \(x_v = x_u \land x_w \). In SAT formula generated, add clauses \((\neg x_v \lor x_u), (\neg x_v \lor x_w)\), and \((x_v \lor \neg x_u \lor \neg x_w)\). Again, observe that

\[
\begin{align*}
x_v = x_u \land x_w \text{ is true } & \iff (\neg x_v \lor x_u), \\
(\neg x_v \lor x_u) \text{ all true.} & \iff (x_v \lor \neg x_u \lor \neg x_w)
\end{align*}
\]
Reduction: \(\text{CSAT} \leq_p \text{SAT} \)

Continued...

- If \(v \) is an input gate with a fixed value then we do the following.
 - If \(x_v = 1 \) add clause \(x_v \).
 - If \(x_v = 0 \) add clause \(\neg x_v \).
- Add the clause \(x_v \) where \(v \) is the variable for the output gate.

Correctness of Reduction

Need to show circuit \(C \) is satisfiable iff \(\varphi_C \) is satisfiable

\[\Rightarrow \]
- Consider a satisfying assignment \(a \) for \(C \)
 1. Find values of all gates in \(C \) under \(a \)
 2. Give value of gate \(v \) to variable \(x_v \); call this assignment \(a' \)
 3. \(a' \) satisfies \(\varphi_C \) (exercise)

\[\Leftarrow \]
- Consider a satisfying assignment \(a \) for \(\varphi_C \)
 1. Let \(a' \) be the restriction of \(a \) to only the input variables
 2. Value of gate \(v \) under \(a' \) is the same as value of \(x_v \) in \(a \)
 3. Thus, \(a' \) satisfies \(C \)

Theorem

\(\text{SAT} \) is \text{NP-Complete}.\

Proving that a problem \(X \) is \text{NP-Complete}

To prove \(X \) is \text{NP-Complete}, show

- \(X \) is in \text{NP}.
 1. Certificate/proof of polynomial size in input
 2. Polynomial time certifier \(C(s, t) \)
- Reduction from a known \text{NP-Complete} problem such as \(\text{CSAT} \) or \(\text{SAT} \) to \(X \)

\(\text{SAT} \leq_p X \) implies that every \text{NP} problem \(Y \leq_p X \). Why?

Transitivity of reductions:

\(Y \leq_p \text{SAT} \) and \(\text{SAT} \leq_p X \) and hence \(Y \leq_p X \).

NP-Completeness via Reductions

- \(\text{CSAT} \) is \text{NP-Complete}.
- \(\text{CSAT} \leq_p \text{SAT} \) and \(\text{SAT} \) is in \text{NP} and hence \(\text{SAT} \) is \text{NP-Complete}.
- \(\text{SAT} \leq_p 3\text{-SAT} \) and hence 3-SAT is \text{NP-Complete}.
- 3-SAT \(\leq_p \text{Independent Set} \) (which is in \text{NP}) and hence \text{Independent Set} is \text{NP-Complete}.
- \text{Vertex Cover} is \text{NP-Complete}.
- \text{Clique} is \text{NP-Complete}.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be \text{NP-Complete}.

A surprisingly frequent phenomenon!