CS 573: Algorithms, Fall 2013
 Homework 6 - not for submission.

Version 1.0

Solutions to this homework would not be provided. Questions from this homework might appear in the final exam.

Practice problems

1. Naive. (20 PTS.)

We wish to compress a sequence of independent, identically distributed random variables X_{1}, X_{2}, \ldots.. Each X_{j} takes on one of n values. The i th value occurs with probability p_{i}, where $p_{1} \geq p_{2} \geq \ldots \geq$ p_{n}. The result is compressed as follows. Set

$$
T_{i}=\sum_{j=1}^{i-1} p_{j}
$$

and let the i th codeword be the first $\left\lceil\lg \left(1 / p_{i}\right)\right\rceil$ bits (in the binary representation) of T_{i}. Start with an empty string, and consider X_{j} in order. If X_{j} takes on the i th value, append the i th codeword to the end of the string.
(A) Show that no codeword is the prefix of any other codeword.
(B) Let Z be the average number of bits appended for each random variable X_{j}. Show that

$$
\mathbb{H}\left(X_{j}\right) \leq z \leq \mathbb{H}\left(X_{j}\right)+1
$$

2. Codification. (20 PTS.)

Arithmetic coding is a standard compression method. In the case when the string to be compressed is a sequence of biased coin flips, it can be described as follows. Suppose that we have a sequence of bits $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where each X_{i} is independently 0 with probability p and 1 with probability $1-p$. The sequences can be ordered lexicographically, so for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, we say that $x<y$ if $x_{i}=0$ and $y_{i}=1$ in the first coordinate i such that $x_{i} \neq y_{i}$. If $z(x)$ is the number of zeroes in the string x, then define $p(x)=p^{z(x)}(1-p)^{n-z(x)}$ and

$$
q(x)=\sum_{y<x} p(y)
$$

(A) Suppose we are given $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Explain how to compute $q(X)$ in time $O(n)$ (assume that any reasonable operation on real numbers takes constant time).
(B) Argue that the intervals $[q(x), q(x)+p(x))$ are disjoint subintervals of $[0,1)$.
(C) Given (A) and (B), the sequence X can be represented by any point in the interval $I(X)=$ $[q(X), q(X)+p(X))$. Show that we can choose a codeword in $I(X)$ with $\lceil\lg (1 / p(X))\rceil+1$ binary digits to represent X in such a way that no codeword is the prefix of any other codeword.
(D) Given a codeword chosen as in (C), explain how to decompress it to determine the corresponding sequence $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(E) (Extra credit.) Using the Chernoff inequality, argue that $\lg (1 / p(X))$ is close to $n \mathbb{H}(p)$ with high probability. Thus, this approach yields an effective compression scheme.
3. Maximizing Entropy (20 PTS.)

Consider an n-sided die, where the i th face comes up with probability p_{i}. Show that the entropy of a die roll is maximized when each face comes up with equal probability $1 / n$.
4. Extraction to the limit, (20 PTS.)

We have shown that we can extract, on average, at least $\lfloor\lg m\rfloor-1$ independent, unbiased bits from a number chosen uniformly at random from $\{0, \ldots, m-1\}$. It follows that if we have k numbers chosen independently and uniformly at random from $\{0, \ldots, m-1\}$ then we can extract, on average, at least $k\lfloor\lg m\rfloor-k$ independent, unbiased bits from them. Give a better procedure that extracts, on average, at least $k\lfloor\lg m\rfloor-1$ independent, unbiased bits from these numbers.
5. Easy inequality. (20 PTS.)

Assume you have a (valid) prefix code with n codewords, where the i th codeword is made out of ℓ_{i} bits. Prove that

$$
\sum_{i=1}^{n} \frac{1}{2^{l_{i}}} \leq 1
$$

6. Computing entropy. (20 PTS.)
(a) Let $S=\sum_{i=1}^{10} 1 / i^{2}$. Consider a random variable X such that $\operatorname{Pr}[X=i]=1 /\left(S i^{2}\right)$, for $i=1, \ldots, 10$. Compute $\mathbb{H}(X)$.
(b) Let $S=\sum_{i=1}^{10} 1 / i^{3}$. Consider a random variable X such that $\operatorname{Pr}[X=i]=1 /\left(S i^{3}\right)$, for $i=1, \ldots, 10$. Compute $\mathbb{H}(X)$.
(c) Let $S(\alpha)=\sum_{i=1}^{10} 1 / i^{\alpha}$, for $\alpha>1$. Consider a random variable X such that $\operatorname{Pr}[X=i]=$ $1 /\left(S(\alpha) i^{\alpha}\right)$, for $i=1, \ldots, 10$. Prove that $\mathbb{H}(X)$ is either increasing or decreasing as a function of α (you can assume that α is an integer).
7. Conditional Entropy (20 PTS.)

The conditional entropy $\mathbb{H}(Y \mid X)$ is defined by

$$
\mathbb{H}(Y \mid X)=\sum_{x, y} \operatorname{Pr}[(X=x) \cap(Y=y)] \lg \frac{1}{\operatorname{Pr}[Y=y \mid X=x]}
$$

If $Z=(X, Y)$, prove that

$$
\mathbb{H}(Z)=\mathbb{H}(X)+\mathbb{H}(Y \mid X)
$$

