
CS 573: Algorithms, Fall 2013
Homework 5, due Monday, December 2, 23:59:59, 2013

Version 1.0
Neatly print your name(s), NetID(s) on each submitted question. Remember that you have to submit
each question on a separate page. each student should submit his own homework. If you are on campus,
submit the homework by submitting it in the homework boxes in the basement of SC.

“Is there anything in the Geneva Convention about the rules of war in peacetime?” Stanko wanted to
know, crawling back toward the truck.
“Absolutely nothing,” Caulec assured him. “The rules of war apply only in wartime. In peacetime,
anything goes.”

– Gasp, Romain Gary

Required Problems

1. Sorting networks stuff (40 pts.)
(A) (5 pts.) Prove that an n-input sorting network must contain at least one comparator between

the ith and (i + 1)st lines for all i = 1, 2, ..., n − 1.
(B) (20 pts.) Prove that in a sorting network for n inputs, there must be at least Ω(n log n) gates.

For full credit, your answer should be short, and self contained (i.e., no reduction please).
[As an exercise, you should think why your proof does not imply that a regular sorting
algorithm takes Ω(n log n) time in the worst case.]

(C) (5 pts.)
Suppose that we have 2n elements ⟨a1, a2, ..., a2n⟩ and wish to partition them into the n
smallest and the n largest. Prove that we can do this in constant additional depth after
separately sorting ⟨a1, a2, ..., an⟩ and ⟨an+1, an+2, ..., a2n⟩.

(D) (10 pts.)
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a
merging network with 2k inputs. Suppose that we have a sequence of n numbers to be sorted
and we know that every number is within k positions of its correct position in the sorted
order, which means that we need to move each number at most (k − 1) positions to sort the
inputs. For example, in the sequence 3 2 1 4 5 8 7 6 9, every number is within 3 positions
of its correct position. But in sequence 3 2 1 4 5 9 8 7 6, the number 9 and 6 are outside 3
positions of its correct position.
Show that we can sort the n numbers in depth S(k)+2M(k). (You need to prove your answer
is correct.)

2. Computing Polynomials Quickly (30 pts.)
In the following, assume that given two polynomials p(x), q(x) of degree at most n, one can
compute the polynomial remainder of p(x) mod q(x) in O(n log n) time. The remainder of r(x) =
p(x) mod q(x) is the unique polynomial of degree smaller than this of q(x), such that p(x) =
q(x) ∗ d(x) + r(x), where d(x) is a polynomial.
Let p(x) = ∑n−1

i=0 aix
i be a given polynomial.

(A) (8 pts.) Prove that p(x) mod (x − z) = p(z), for all z.
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(B) (8 pts.) We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pij(x) =
j∏

k=i

(x − xk)

and
Qij(x) = p(x) mod Pij(x).

Observe that the degree of Qij is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

(C) (6 pts.) Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qij(x) mod Pik(x)

and
∀x Qkj(x) = Qij(x) mod Pkj(x).

(D) (8 pts.) Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1). Here x0, . . . , xn−1
are n given real numbers.

3. Linear time Union-Find. (30 pts.)
(A) (3 pts.) With path compression and union by rank, during the lifetime of a Union-Find

data-structure, how many elements would have rank equal to ⌊lg n − 5⌋, where there are n
elements stored in the data-structure?

(B) (3 pts.) Same question, for rank ⌊(lg n)/2⌋.
(C) (6 pts.) Prove that in a set of n elements, a sequence of n consecutive Find operations take

O(n) time in total.
(D) (3 pts.) Write a non-recursive version of Find with path compression.
(E) (9 pts.) Show that any sequence of m MakeSet, Find, and Union operations, where all

the Union operations appear before any of the Find operations, takes only O(m) time if both
path compression and union by rank are used.

(F) (6 pts.) What happens in the same situation if only the path compression is used?
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