
CS 573: Algorithms, Fall 2013
Homework 3, due Monday, October 28, 23:59:59, 2013

Version 1.0

Neatly print your name(s), NetID(s) on each submitted question. Remember that you have to submit each
question on a separate page. each student should submit his own homework. If you are on campus, submit the
homework by submitting it in the homework boxes in the basement of SC.

At other times you seemed to me either pitiable or contemptible, eunuchs, artificially confined to an eternal childhood, childlike
and childish in your cool, tightly fenced, neatly tidied playground and kindergarten, where every nose is carefully wiped and every
troublesome emotion is soothed, every dangerous thought repressed, where everyone plays nice, safe, bloodless games for a lifetime
and every jagged stirring of life, every strong feeling, every genuine passion, every rapture is promptly checked, deflected and
neutralized by meditation therapy.

– The Glass Bead Game, Hermann Hesse

Required Problems

1. Prove infeasibility. (25 pts.)
You are trying to solve a circulation problem, but it is not feasible. The problem has demands, but no
capacity limits on the edges. More formally, there is a graph G = (V, E), and demands dv for each node
v (satisfying

∑
v∈V dv = 0), and the problem is to decide if there is a flow f such that f(e) ≥ 0 and

f in(v) − fout(v) = dv for all nodes v ∈ V . Note that this problem can be solved via the circulation
algorithm from Section 7.7 by setting ce = +∞ for all edges e ∈ E. (Alternately, it is enough to set ce to
be an extremely large number for each edge – say, larger than the total of all positive demands dv in the
graph.)
You want to fix up the graph to make the problem feasible, so it would be very useful to know why the
problem is not feasible as it stands now. On a closer look, you see that there is a subset U of nodes
such that there is no edge into U , and yet

∑
v∈U dv > 0. You quickly realize that the existence of such a

set immediately implies that the flow cannot exist: The set U has a positive total demand, and so needs
incoming flow, and yet U has no edges into it. In trying to evaluate how far the problem is from being
solvable, you wonder how big the demand of a set with no incoming edges can be.
Give a polynomial-time algorithm to find a subset S ⊂ V of nodes such that there is no edge into S and
for which

∑
v∈S dv is as large as possible subject to this condition.

2. Flow in vain. (50 pts.)
(A) (25 pts.) In a standard s− t Maximum-Flow Problem, we assume edges have capacities, and there is

no limit on how much flow is allowed to pass through a node. In this problem, we consider the variant
of the Maximum-Flow and Minimum-Cut problems with node capacities.
Let G = (V, E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative node capacities
{cv ≥ 0} for each v ∈ V . Given a flow f in this graph, the flow through a node v is defined as
f in(v). We say that a flow is feasible if it satisfies the usual flow-conservation constraints and the
node-capacity constraints: f in(v) ≤ cv for all nodes.
Give a polynomial-time algorithm to find an s-t maximum flow in such a node-capacitated network.
Define an s-t cut for node-capacitated networks, and show that the analogue of the Max-Flow Min-Cut
Theorem holds true.

(B) (13 pts.) Show that a maximum flow in a network G = (V, E) can always be found by a sequence of
at most |E| augmenting paths. [Hint: Determine the paths after finding the maximum flow.]

(C) (12 pts.) Suppose that a flow network G = (V, E) has symmetric edges, that is, (u, v) ∈ E if and
only (v, u) ∈ E. Show that the Edmonds-Karp algorithm terminates after at most |V ||E|/4 iterations.

1

[Hint: For any edge (u,v), consider how both δ(s, u) and δ(v, t) change between times at which (u,v)
is critical.]

3. Maximum Flow By Scaling (25 pts.)
Let G = (V, E) be a flow network with source s, sink t, and an integer capacity c(u, v) on each edge
(u, v) ∈ E. Let C = max(u,v)∈Ec(u, v).
(A) (2 pts.) Argue that a minimum cut of G has capacity at most C|E|.
(B) (6 pts.) For a given number K, show that an augmenting path of capacity at least K can be found

in O(E) time, if such a path exists.
The following modification of Ford-Fulkerson-Method can be used to compute a maximum flow
in G.

maxFlow-By-Scaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2⌊lg C⌋

4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f

(C) (4 pts.) Argue that maxFlow-By-Scaling returns a maximum flow.
(D) (5 pts.) Show that the capacity of a minimum cut of the residual graph Gf is at most 2K|E| each

time line 4 is executed.
(E) (5 pts.) Argue that the inner while loop of lines 5-6 is executed O(|E|) times for each value of K.
(F) (3 pts.) Conclude that maxFlow-By-Scaling can be implemented so that it runs in O(E2 lg C)

time.

2

