Chapter 26

Entropy, Randomness, and Information

By Sariel Har-Peled, December 17, $2012^{\text {(1) }}$

Abstract

"If only once - only once - no matter where, no matter before what audience - I could better the record of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is a time limit on all of us."

- -Romain Gary, The talent scout..

26.1 Entropy

Definition 26.1.1. The entropy in bits of a discrete random variable X is given by

$$
\mathbb{H}(X)=-\sum_{x} \operatorname{Pr}[X=x] \lg \operatorname{Pr}[X=x] .
$$

Equivalently, $\mathbb{H}(X)=\mathbf{E}\left[\lg \frac{1}{\operatorname{Pr}[X]}\right]$.
The binary entropy function $\mathbb{H}(p)$ for a random binary variable that is 1 with probability p, is $\mathbb{H}(p)=-p \lg p-(1-p) \lg (1-p)$. We define $\mathbb{H}(0)=\mathbb{H}(1)=0$. See Figure [6.].

The function $\mathbb{H}(p)$ is a concave symmetric around $1 / 2$ on the interval $[0,1]$ and achieves its maximum at $1 / 2$. For a concrete example, consider $\mathbb{H}(3 / 4) \approx 0.8113$ and $\mathbb{H}(7 / 8) \approx 0.5436$. Namely, a coin that has $3 / 4$ probably to be heads have higher amount of "randomness" in it than a coin that has probability $7 / 8$ for heads.

[^0]

Figure 26.1: The binary entropy function.

We have $\mathbb{H}^{\prime}(p)=-\lg p+\lg (1-p)=\lg \frac{1-p}{p}$ and $\mathbb{H}^{\prime \prime}(p)=\frac{p}{1-p} \cdot\left(-\frac{1}{p^{2}}\right)=-\frac{1}{p(1-p)}$. Thus, $\mathbb{H}^{\prime \prime}(p) \leq 0$, for all $p \in(0,1)$, and the $\mathbb{H}(\cdot)$ is concave in this range. Also, $\mathbb{H}^{\prime}(1 / 2)=0$, which implies that $\mathbb{H}(1 / 2)=1$ is a maximum of the binary entropy. Namely, a balanced coin has the largest amount of randomness in it.

Example 26.1.2. A random variable X that has probability $1 / n$ to be i, for $i=1, \ldots, n$, has entropy $\mathbb{H}(X)=-\sum_{i=1}^{n} \frac{1}{n} \lg \frac{1}{n}=\lg n$.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is sensitive only to the probability distribution. Thus, a random variables that accepts $-1,+1$ with equal probability has the same entropy (i.e., 1) as a fair coin.

Lemma 26.1.3. Let X and Y be two independent random variables, and let Z be the random variable (X, Y). Then $\mathbb{H}(Z)=\mathbb{H}(X)+\mathbb{H}(Y)$.

Proof: In the following, summation are over all possible values that the variables can have.

By the independence of X and Y we have

$$
\begin{aligned}
\mathbb{H}(Z)= & \sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \lg \frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]} \\
= & \sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]} \\
= & \sum_{x} \sum_{y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[X=x]} \\
& \quad+\sum_{y} \sum_{x} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[Y=y]} \\
= & \sum_{x} \operatorname{Pr}[X=x] \lg \frac{1}{\operatorname{Pr}[X=x]}+\sum_{y} \operatorname{Pr}[Y=y] \lg \frac{1}{\operatorname{Pr}[Y=y]} \\
= & \mathbb{H}(X)+\mathbb{H}(Y) .
\end{aligned}
$$

Lemma 26.1.4. Suppose that $n q$ is integer in the range $[0, n]$. Then $\frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{n q} \leq$ $2^{n H(q)}$.

Proof: This trivially holds if $q=0$ or $q=1$, so assume $0<q<1$. We know that

$$
\binom{n}{n q} q^{n q}(1-q)^{n-n q} \leq(q+(1-q))^{n}=1
$$

As such, since $q^{-n q}(1-q)^{-(1-q) n}=2^{n(-q \lg q-(1-q) \lg (1-q))}=2^{n \mathbb{H}(q)}$, we have

$$
\binom{n}{n q} \leq q^{-n q}(1-q)^{-(1-q) n}=2^{n \mathbb{H}(q)}
$$

As for the other direction, let $\mu(k)=\binom{n}{k} q^{k}(1-q)^{n-k}$. We claim that $\mu(n q)=\binom{n}{n q} q^{n q}(1-$ $q)^{n-n q}$ is the largest term in $\sum_{k=0}^{n} \mu(k)=1$. Indeed,

$$
\Delta_{k}=\mu(k)-\mu(k+1)=\binom{n}{k} q^{k}(1-q)^{n-k}\left(1-\frac{n-k}{k+1} \frac{q}{1-q}\right)
$$

and the sign of this quantity is the sign of the last term, which is

$$
\operatorname{sign}\left(\Delta_{k}\right)=\operatorname{sign}\left(1-\frac{(n-k) q}{(k+1)(1-q)}\right)=\operatorname{sign}\left(\frac{(k+1)(1-q)-(n-k) q}{(k+1)(1-q)}\right) .
$$

Now,

$$
(k+1)(1-q)-(n-k) q=k+1-k q-q-n q+k q=1+k-q-n q .
$$

Namely, $\Delta_{k} \geq 0$ when $k \geq n q+q-1$, and $\Delta_{k}<0$ otherwise. Namely, $\mu(k)<\mu(k+1)$, for $k<n q$, and $\mu(k) \geq \mu(k+1)$ for $k \geq n q$. Namely, $\mu(n q)$ is the largest term in $\sum_{k=0}^{n} \mu(k)=1$,
and as such it is larger than the average. We have $\mu(n q)=\binom{n}{n q} q^{n q}(1-q)^{n-n q} \geq \frac{1}{n+1}$, which implies

$$
\binom{n}{n q} \geq \frac{1}{n+1} q^{-n q}(1-q)^{-(n-n q)}=\frac{1}{n+1} 2^{n \mathbb{H}(q)}
$$

Lemma 26.1 .4 can be extended to handle non-integer values of q. This is straightforward, and we omit the easy but tedious details.

Corollary 26.1.5. We have:
(i) $q \in[0,1 / 2] \Rightarrow\binom{n}{\lfloor n q\rfloor} \leq 2^{n \mathbb{H}(q)}$. (ii) $q \in[1 / 2,1]\binom{n}{[n q\rceil} \leq 2^{n \mathbb{H}(q)}$.
(iii) $q \in[1 / 2,1] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{\lfloor n q\rfloor}$. (iv) $q \in[0,1 / 2] \Rightarrow \frac{2^{n \mathbb{H}(q)}}{n+1} \leq\binom{ n}{[n q\rceil}$.

The bounds of Lemma [26.1.4 and Corollary [26.1.S are loose but sufficient for our purposes. As a sanity check, consider the case when we generate a sequence of n bits using a coin with probability q for head, then by the Chernoff inequality, we will get roughly $n q$ heads in this sequence. As such, the generated sequence Y belongs to $\binom{n}{n q} \approx 2^{n \mathbb{H}(q)}$ possible sequences that have similar probability. As such, $\mathbb{H}(Y) \approx \lg \binom{n}{n q}=n \mathbb{H}(q)$, by Example [66.L.2, a fact that we already know from Lemma [6.1.3.

26.1.1 Extracting randomness

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random variable.

Definition 26.1.6. An extraction function Ext takes as input the value of a random variable X and outputs a sequence of bits y, such that $\operatorname{Pr}[\operatorname{Ext}(X)=y| | y \mid=k]=\frac{1}{2^{k}}$, whenever $\operatorname{Pr}[|y|=k]>0$, where $|y|$ denotes the length of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of $0, \ldots, 7$. All that $\operatorname{Ext}(X)$ has to do in this case, is to compute the binary representation of x. However, note that Definition [26.1.6] is somewhat more subtle, as it requires that all extracted sequence of the same length would have the same probability.

Thus, for X a uniform random integer variable in the range $0, \ldots, 11$, the function $\operatorname{Ext}(x)$ can output the binary representation for x if $0 \leq x \leq 7$. However, what do we do if x is between 8 and 11? The idea is to output the binary representation of $x-8$ as a two bit number. Clearly, Definition [Z6.1.6] holds for this extraction function, since $\operatorname{Pr}[\operatorname{Ext}(X)=00| | \operatorname{Ext}(X) \mid=2]=\frac{1}{4}$, as required. This scheme can be of course extracted for any range.

The following is obvious, but we provide a proof anyway.
Lemma 26.1.7. Let x / y be a faction, such that $x / y<1$. Then, for any i, we have $x / y<$ $(x+i) /(y+i)$.

Proof: We need to prove that $x(y+i)-(x+i) y<0$. The left size is equal to $i(x-y)$, but since $y>x$ (as $x / y<1$), this quantity is negative, as required.

Theorem 26.1.8. Suppose that the value of a random variable X is chosen uniformly at random from the integers $\{0, \ldots, m-1\}$. Then there is an extraction function for X that outputs on average at least $\lfloor\lg m\rfloor-1=\lfloor\mathbb{H}(X)\rfloor-1$ independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2 , namely $m=\sum_{i} a_{i} 2^{i}$, where $a_{i} \in$ $\{0,1\}$. Thus, we decomposed $\{0, \ldots, m-1\}$ into a disjoint union of blocks that have sizes which are distinct powers of 2 . If a number falls inside such a block, we output its relative location in the block, using binary representation of the appropriate length (i.e., k if the block is of size 2^{k}). One can verify that this is an extraction function, fulfilling Definition [E6.1.6].

Now, observe that the claim holds trivially if m is a power of two. Thus, consider the case that m is not a power of 2 . If X falls inside a block of size 2^{k} then the entropy is k. Thus, for the inductive proof, assume that are looking at the largest block in the decomposition, that is $m<2^{k+1}$, and let $u=\left|\lg \left(m-2^{k}\right)\right|<k$. There must be a block of size u in the decomposition of m. Namely, we have two blocks that we known in the decomposition of m, of sizes 2^{k} and 2^{u}. Note, that these two blocks are the largest blocks in the decomposition of m. In particular, $2^{k}+2 * 2^{u}>m$, implying that $2^{u+1}+2^{k}-m>0$.

Let Y be the random variable which is the number of bits output by the extractor algorithm.

By Lemma [26.1.], since $\frac{m-2^{k}}{m}<1$, we have

$$
\frac{m-2^{k}}{m} \leq \frac{m-2^{k}+\left(2^{u+1}+2^{k}-m\right)}{m+\left(2^{u+1}+2^{k}-m\right)}=\frac{2^{u+1}}{2^{u+1}+2^{k}}
$$

Thus, by induction (we assume the claim holds for all integers smaller than m), we have

$$
\begin{aligned}
\mathbf{E}[Y] & \geq \frac{2^{k}}{m} k+\frac{m-2^{k}}{m}(\underbrace{\left\lfloor\lg \left(m-2^{k}\right)\right\rfloor}_{u}-1)=\frac{2^{k}}{m} k+\frac{m-2^{k}}{m}(\underbrace{k-k}_{=0}+u-1) \\
& =k+\frac{m-2^{k}}{m}(u-k-1) \\
& \geq k+\frac{2^{u+1}}{2^{u+1}+2^{k}}(u-k-1)=k-\frac{2^{u+1}}{2^{u+1}+2^{k}}(1+k-u),
\end{aligned}
$$

since $u-k-1 \leq 0$ as $k>u$. If $u=k-1$, then $\mathbf{E}[Y] \geq k-\frac{1}{2} \cdot 2=k-1$, as required. If $u=k-2$ then $\mathbf{E}[Y] \geq k-\frac{1}{3} \cdot 3=k-1$. Finally, if $u<k-2$ then

$$
\mathbf{E}[Y] \geq k-\frac{2^{u+1}}{2^{k}}(1+k-u)=k-\frac{k-u+1}{2^{k-u-1}}=k-\frac{2+(k-u-1)}{2^{k-u-1}} \geq k-1
$$

since $(2+i) / 2^{i} \leq 1$ for $i \geq 2$.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

