
Chapter 24

The Perceptron Algorithm
By Sariel Har-Peled, December 17, 2012¬ Version: 0.2

24.1 The perceptron algorithm
Assume, that we are given examples, say a database of cars, and you would like to determine
which cars are sport cars, and which are regular cars. Each car record, can be interpreted
as a point in high dimensions. For example, a sport car with 4 doors, manufactured in 1997,
by Quaky (with manufacturer ID 6) will be represented by the point (4, 1997, 6), marked as
a sport car. A tractor made by General Mess (manufacturer ID 3) in 1998, would be stored
as (0, 1997, 3) and would be labeled as not a sport car.

Naturally, in a real database there might be hundreds of attributes in each record, for
engine size, weight, price, maximum speed, cruising speed, etc, etc, etc.

We would like to automate this classification process, so that tagging the records
whether they correspond to race cars be done automatically without a specialist being in-
volved. We would like to have a learning algorithm, such that given several classified exam-
ples, develop its own conjecture about what is the rule of the classification, and we can use
it for classifying new data.

That is, there are two stages for learning: training and classifying. More formally,
we are trying to learn a function

f : IRd → {−1, 1} .

The challenge is, of course, that f might have infinite complexity – informally, think
about a label assigned to items where the label is completely random – there is nothing to
learn except knowing the label for all possible items.

This situation is extremely rare is the real world, and we would limit ourselves to a set
of functions that can be easily described. For example, consider a set of red and blue points

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

`

Figure 24.1: Linear separable red and blue point sets.

that are linearly separable, as demonstrated in Figure 24.1. That is, we are trying to learn
a line ℓ that separates the red points from the blue points.

The natural question is now, given the red and blue points, how to compute the line
ℓ? Well, a line or more generally a plane (or even a hyperplane) is the zero set of a linear
function, that has the form

∀x ∈ IRd f(x) = ⟨a, x⟩+ b,

where a = (a1, . . . , ad) , b = (b1, . . . , bd) ∈ IR2, and ⟨a, x⟩ = ∑
i aixi is the dot product of

a and x. The classification itself, would be done by computing the sign of f(x); that is
sign(f(x)). Specifically, if sign(f(x)) is negative, it outside the class, if it is positive it is
inside.

A set of training examples is a set of pairs

S =
{
(x1, y1) , . . . ,(xn, yn)

}
,

where xi ∈ IRd and yi ∈ {-1,1}, for i = 1, . . . , n.
A linear classifier h is a pair (w, b) where w ∈ IRd and b ∈ IR. The classification

of x ∈ IRd is sign(⟨w, x⟩ + b). For a labeled example (x, y), h classifies (x, y) correctly if
sign(⟨w, x⟩+ b) = y.

Assume that the underlying label we are trying to learn has a linear classifier (this is a
problematic assumption – more on this later), and you are given “enough” examples (i.e.,
n). How to compute the linear classifier for these examples?

One natural option is to use linear programming. Indeed, we are looking for (w, b), such
that for an (xi, yi) we have sign(⟨w, xi⟩+ b) = yi, which is

⟨w, xi⟩+ b ≥ 0 if yi = 1,

and ⟨w, xi⟩+ b ≤ 0 if yi = −1.

Or equivalently, let xi =
(
x1

i , . . . , xd
i

)
∈ IRd, for i = 1, . . . , m, and let w =

(
w1, . . . , wd

)
, then

2

Algorithm perceptron(S: a set of l examples)
w0 ← 0,k ← 0
R = max(x,y)∈S

∥∥∥x∥∥∥ .
repeat

for (x, y) ∈ S do
if sign(⟨wk, x⟩) , y then

wk+1 ← wk + y ∗ x
k ← k + 1

until no mistakes are made in the classification
return wk and k

Figure 24.2: The perceptron algorithm.

we get the linear constraint

d∑
k=1

wkxk
i + b ≥ 0 if yi = 1,

and
d∑

k=1
wkxk

i + b ≤ 0 if yi = −1.

Thus, we get a set of linear constraints, one for each training example, and we need to
solve the resulting linear program.

The main stumbling block is that linear programming is very sensitive to noise. Namely,
if we have points that are misclassified, we would not find a solution, because no solution
satisfying all of the constraints exists. Instead, we are going to use an iterative algorithm
that converges to the optimal solution if it exists, see Figure 24.2.

Why does the perceptron algorithm converges to the right solution? Well, assume that
we made a mistake on a sample (x, y) and y = 1. Then, ⟨wk, x⟩ < 0, and

⟨wk+1, x⟩ = ⟨wk + y ∗ x, x⟩ = ⟨wk, x⟩+ y ⟨x, x⟩ = ⟨wk, x⟩+ y ∥x∥ > ⟨wk, x⟩ .

Namely, we are “walking” in the right direction, in the sense that the new value assigned to
x by wk+1 is larger (“more positive”) than the old value assigned to x by wk.

Theorem 24.1.1. Let S be a training set of examples, and let R = max(x,y)∈S

∥∥∥x∥∥∥. Suppose
that there exists a vector wopt such that

∥∥∥wopt

∥∥∥ = 1, and a number γ > 0, such that

y ⟨wopt, x⟩ ≥ γ ∀(x, y) ∈ S.

Then, the number of mistakes made by the online perceptron algorithm on S is at most(
R

γ

)2

.

3

Proof : Intuitively, the perceptron algorithm weight vector converges to wopt, To see that,
let us define the distance between wopt and the weight vector in the kth update:

αk =
∥∥∥∥∥wk −

R2

γ
wopt

∥∥∥∥∥
2

.

We next quantify the change between αk and αk+1 (the example being misclassified is (x, y)):

αk+1 =
∥∥∥∥∥wk+1 −

R2

γ
wopt

∥∥∥∥∥
2

=
∥∥∥∥∥wk + yx− R2

γ
wopt

∥∥∥∥∥
2

=
∥∥∥∥∥
(

wk −
R2

γ
wopt

)
+ yx

∥∥∥∥∥
2

=
⟨(

wk −
R2

γ
wopt

)
+ yx,

(
wk −

R2

γ
wopt

)
+ yx

⟩
.

Expanding this we get:

αk+1 =
⟨(

wk −
R2

γ
wopt

)
,

(
wk −

R2

γ
wopt

)⟩
+ 2y

⟨(
wk −

R2

γ
wopt

)
, x
⟩

+ ⟨x, x⟩

= αk + 2y

⟨(
wk −

R2

γ
wopt

)
, x

⟩
+
∥∥∥ x

∥∥∥2
.

As (x, y) is misclassified, it must be that sign(⟨wk, x⟩) , y, which implies that sign(y ⟨wk, x⟩) =
−1; that is y ⟨wk, x⟩ < 0. Now, since

∥∥∥x∥∥∥ ≤ R, we have

αk+1 ≤ αk + R2 + 2y ⟨wk, x⟩ − 2y

⟨
R2

γ
wopt, x

⟩

≤ αk + R2 + −2R2

γ
y ⟨wopt,x⟩ .

Next, since y ⟨wopt , x⟩ ≥ γ for ∀(x, y) ∈ S, we have that

αk+1 ≤ αk + R2 − 2R2

γ
γ

≤ αk + R2 − 2R2

≤ αk −R2.

We have: αk+1 ≤ αk −R2, and

α0 =
∥∥∥∥∥0− R2

γ
wopt

∥∥∥∥∥
2

= R4

γ2

∥∥∥wopt

∥∥∥2
= R4

γ2 .

4

Finally, observe that αi ≥ 0 for all i. Thus, what is the maximum number of classification
errors the algorithm can make?

(
R2

γ2

)
.

It is important to observe that any linear program can be written as the problem of
separating red points from blue points. As such, the perceptron algorithm can be used to
solve linear programs.

24.2 Learning A Circle
Given a set of red points, and blue points in the plane, we want to learn a circle that contains
all the red points, and does not contain the blue points.

σ

How to compute the circle σ ?
It turns out we need a simple but very clever trick. For every point (x, y) ∈ P map it to

the point (x, y, x2 + y2). Let z(P) =
{
(x, y, x2 + y2)

∣∣∣ (x, y) ∈ P
}

be the resulting point
set.

Theorem 24.2.1. Two sets of points R and B are separable by a circle in two dimensions,
if and only if z(R) and z(B) are separable by a plane in three dimensions.

Proof : Let σ ≡ (x − a)2 + (y − b)2 = r2 be the circle containing all the points of R and
having all the points of B outside. Clearly, (x− a)2 + (y − b)2 ≤ r2 for all the points of R.
Equivalently

−2ax− 2by +
(
x2 + y2

)
≤ r2 − a2 − b2.

Setting z = x2 + y2 we get that

h ≡ −2ax− 2by + z − r2 + a2 + b2 ≤ 0.

Namely, p ∈ σ if and only if h(z(p)) ≤ 0. We just proved that if the point set is separable
by a circle, then the lifted point set z(R) and z(B) are separable by a plane.

5

As for the other direction, assume that z(R) and z(B) are separable in 3d and let

h ≡ ax + by + cz + d = 0

be the separating plane, such that all the point of z(R) evaluate to a negative number by h.
Namely, for (x, y, x2 + y2) ∈ z(R) we have ax + by + c(x2 + y2) + d ≤ 0

and similarly, for (x, y, x2 + y2) ∈ B we have ax + by + c(x2 + y2) + d ≥ 0.
Let U(h) =

{
(x, y)

∣∣∣ h((x, y, x2 + y2)) ≤ 0
}
. Clearly, if U(h) is a circle, then this implies

that R ⊂ U(h) and B ∩ U(h) = ∅, as required.
So, U(h) are all the points in the plane, such that

ax + by + c
(
x2 + y2

)
≤ −d.

Equivalently
(

x2 + a

c
x
)

+
(

y2 + b

c
y

)
≤ −d

c

(
x + a

2c

)2
+
(

y + b

2c

)2

≤ a2 + b2

4c2 − d

c

but this defines the interior of a circle in the plane, as claimed.

This example show that linear separability is a powerful technique that can be used
to learn complicated concepts that are considerably more complicated than just hyperplane
separation. This lifting technique showed above is the kernel technique or linearization.

24.3 A Little Bit On VC Dimension
As we mentioned, inherent to the learning algorithms, is the concept of how complex is the
function we are trying to learn. VC-dimension is one of the most natural ways of capturing
this notion. (VC = Vapnik, Chervonenkis,1971).

A matter of expressivity. What is harder to learn:

1. A rectangle in the plane.

2. A halfplane.

3. A convex polygon with k sides.

Let X = {p1,p2, . . . , pm} be a set of m points in the plane, and let R be the set of all
halfplanes.

6

A half-plane r defines a binary vector

r(X) =(b1, . . . , bm)

where bi = 1 if and only if pi is inside r.
Let

U(X, R) = {r(X) | r ∈ R} .

A set X of m elements is shattered by R if

|U(X, R)| = 2m.

What does this mean?
The VC-dimension of a set of ranges R is the size of the largest set that it can shatter.

24.3.1 Examples
What is the VC dimensions of circles in the plane?

Namely, X is set of n points in the plane, and R is a set of all circles.
X = {p, q, r, s}
What subsets of X can we generate by circle?

p

q

r

s

{}, {r}, {p}, {q}, {s},{p, s}, {p, q}, {p, r},{r, q}{q, s} and {r, p, q}, {p, r, s}{p, s, q},{s, q, r}
and {r, p, q, s}

We got only 15 sets. There is one set which is not there. Which one?
The VC dimension of circles in the plane is 3.

Lemma 24.3.1 (Sauer Lemma). If R has VC dimension d then |U(X, R)| = O
(
md
)

,
where m is the size of X.

7

	24 The Perceptron Algorithm
	24.1 The perceptron algorithm
	24.2 Learning A Circle
	24.3 A Little Bit On VC Dimension
	24.3.1 Examples

