
Chapter 22

Approximation Algorithms using
Linear Programming

Version: 0.2
By Sariel Har-Peled, December 17, 2012¬

22.1 Weighted vertex cover
Consider the Weighted Vertex Cover problem. Here, we have a graph G = (V, E), and each
vertex v ∈ V has an associated cost cv. We would like to compute a vertex cover of minimum
cost – a subset of the vertices of G with minimum total cost so that each edge has at least
one of its endpoints in the cover. This problem is (of course) NP-Hard, since the decision
problem where all the weights are 1, is the Vertex Cover problem, which we had shown to be
NPC.

Let us first state this optimization problem is an integer programming. Indeed, for any
v ∈ V, let define a variable xv which is 1 if we decide to pick v to the vertex cover, and zero
otherwise. The restriction that xv is either 0 or 1, is written formally as xv ∈ {0, 1}. Next,
its required that every edge vu ∈ E is covered. Namely, we require that xv ∨ xu to be TRUE.
For reasons that would be come clearer shortly, we prefer to write this condition as a linear
inequality; namely, we require that xv + xu ≥ 1. Finally, we would like to minimize the
total cost of the vertices we pick for the cover; namely, we would like to minimize ∑v∈V xvcv.
Putting it together, we get the following integer programming instance:

min
∑
v∈V

cvxv,

such that xv ∈ {0, 1} ∀v ∈ V (22.1)
xv + xu ≥ 1 ∀vu ∈ E.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Naturally, solving this integer programming efficiently is NP-Hard, so instead let us
try to relax this optimization problem to be a LP (which we can solve efficiently, at least in
practice­). To do this, we need to relax the integer program. We will do it by allowing the
variables xv to get real values between 0 and 1. This is done by replacing the condition that
xv ∈ {0, 1} by the constraint 0 ≤ xv ≤ 1. The resulting LP is

min
∑
v∈V

cvxv,

such that 0 ≤ xv ∀v ∈ V,

xv ≤ 1 ∀v ∈ V, (22.2)
xv + xu ≥ 1 ∀vu ∈ E.

So, consider the optimal solution to this LP, assigning value x̂v to the variable Xv, for all
v ∈ V. As such, the optimal value of the LP solution is

α̂ =
∑
v∈V

cvx̂v.

Similarly, let the optimal integer solution to integer program (IP) Eq. (22.1) denoted by xI
v,

for all v ∈ V and αI , respectively. Note, that any feasible solution for the IP of Eq. (22.1),
is a feasible solution for the LP of Eq. (22.2). As such, we must have that

α̂ ≤ αI ,

where αI is the value of the optimal solution.
So, what happened? We solved the relaxed optimization problem, and got a fractional

solution (i.e., values of x̂v can be fractions). On the other hand, the cost of this fractional
solution is better than the optimal cost. So, the natural question is how to turn this fractional
solution into a (valid!) integer solution. This process is known as rounding.

To this end, it is beneficial to consider a vertex v and its fractional value x̂v. If x̂v = 1
then we definitely want to put it into our solution. If x̂v = 0 then the LP consider this
vertex to be useless, and we really do not want to use it. Similarly, if x̂v = 0.9, then the
LP considers this vertex to be very useful (0.9 useful to be precise, whatever this “means”).
Intuitively, since the LP puts its money where its belief is (i.e., α̂ value is a function of
this “belief” generated by the LP), we should trust the LP values as a guidance to which
vertices are useful and which are not. Which brings to forefront the following idea: Lets pick
all the vertices that are about certain threshold of usefulness according to the LP solution.
Formally, let

S =
{
v
∣∣∣ x̂v ≥ 1/2

}
.

We claim that S is a valid vertex cover, and its cost is low.
­And also in theory if the costs are integers, using more advanced algorithms than the Simplex algorithm.

2

Indeed, let us verify that the solution is valid. We know that for any edge vu, it holds

x̂v + x̂u ≥ 1.

Since 0 ≤ x̂v ≤ 1 and 0 ≤ x̂u ≤ 1, it must be either x̂v ≥ 1/2 or x̂u ≥ 1/2. Namely, either
v ∈ S or u ∈ A, or both of them are in S, implying that indeed S covers all the edges of G.

As for the cost of S, we have

cS =
∑
v∈S

cv =
∑
v∈S

1 · cv ≤
∑
v∈S

2x̂v · cv ≤ 2
∑
v∈V

x̂vcv = 2α̂ ≤ 2αI ,

since x̂v ≥ 1/2 as v ∈ S.
Since αI is the cost of the optimal solution, we got the following result.

Theorem 22.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a
single LP. Assuming computing the LP takes polynomial time, the resulting approximation
algorithm takes polynomial time.

What lessons can we take from this example? First, this example might be simple, but
the resulting approximation algorithm is non-trivial. In particular, I am not aware of any
other 2-approximation algorithm for the weighted problem that does not use LP. Secondly,
the relaxation of an optimization problem into a LP provides us with a way to get some
insight into the problem in hand. It also hints that in interpreting the values returned by
the LP, and how to use them to do the rounding, we have to be creative.

22.2 Revisiting Set Cover
In this section, we are going to revisit the Set Cover problem, and provide an approximation
algorithm for this problem. This approximation algorithm would not be better than the
greedy algorithm we already saw, but it would expose us to a new technique that we would
use shortly for a different problem.

Set Cover
Instance: (S, F)

S - a set of n elements
F - a family of subsets of S, s.t. ∪X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X
covers S.

As before, we will first define an IP for this problem. In the following IP, the second
condition just states that any s ∈ s, must be covered by some set.

min α =
∑
U∈F

xU ,

s.t. xU ∈ {0, 1} ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

3

Next, we relax this IP into the following LP.

min α =
∑
U∈F

xU ,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

As before, consider the optimal solution to the LP: ∀U ∈ F, x̂U , and α̂. Similarly, let the
optimal solution to the IP (and thus for the problem) be: ∀U ∈ F, xI

U , and αI . As before,
we would try to use the LP solution to guide us in the rounding process. As before, if x̂U

is close to 1 then we should pick U to the cover and if x̂U is close to 0 we should not. As
such, its natural to pick U ∈ F into the cover by randomly choosing it into the cover with
probability x̂U . Consider the resulting family of sets G. Let ZS be an indicator variable
which is one if S ∈ G. We have that the cost of G is ∑S∈F ZS, and the expected cost is

E
[
cost of G

]
= E

∑
S∈F

ZS

 =
∑
S∈F

E
[
ZS

]
=
∑
S∈F

Pr
[
S ∈ G

]
=
∑
S∈F

x̂S = α̂ ≤ αI . (22.3)

As such, in expectation, G is not too expensive. The problem, of course, is that G might fail
to cover some element s ∈ S. To this end, we repeat this algorithm

m = 10 ⌈lg n⌉ = O(log n)

times, where n = |S|. Let Gi be the random cover computed in the ith iteration, and let
H = ∪iGi. We return H as the required cover.

The solution H covers S. For an element s ∈ S, we have that∑
U∈F,s∈U

x̂U ≥ 1, . (22.4)

and consider the probability that s is not covered by Gi, where Gi is the family computed in
the ith iteration of the algorithm. Since deciding if the include each set U into Gi is done
independently for each set, we have that the probability that s is not covered is

Pr
[
s not covered by Gi

]
= Pr

[
none of U ∈ F, such that s ∈ U were picked into Gi

]
=

∏
U∈F,s∈U

Pr
[
U was not picked into Gi

]
=

∏
U∈F,s∈U

(1 − x̂U)

≤
∏

U∈F,s∈U

exp(−x̂U) = exp

−
∑

U∈F,s∈U

x̂U


≤ exp(−1) ≤ 1

2
,

4

by Eq. (22.4). As such, the probability that s is not covered in all m iterations is at most(1
2

)m

<
1

n10 ,

since m = O(log n). In particular, the probability that one of the n elements of S is not
covered by H is at most n(1/n10) = 1/n9.

Cost. By Eq. (22.3), in each iteration the expected cost of the cover computed is at most
the cost of the optimal solution (i.e., αI). As such the expected cost of the solution computed
is

cH ≤
∑

i

cBi
≤ mαI = O

(
αI log n

)
.

. Putting everything together, we get the following result.

Theorem 22.2.1. By solving an LP one can get an O(log n)-approximation to set cover by
a randomized algorithm. The algorithm succeeds with high probability.

22.3 Minimizing congestion
Let G be a graph with n vertices, and let πi and σi be two paths with the same endpoints
vi, ui ∈ V(G), for i = 1, . . . , t. Imagine that we need to send one unit of flow from vi to ui,
and we need to choose whether to use the path πi or σi. We would like to do it in such a
way that not edge in the graph is being used too much.

Definition 22.3.1. Given a set X of paths in a graph G, the congestion of X is the
maximum number of paths in X that use the same edge.

Consider the following linear program:

min w

s.t. xi ≥ 0 i = 1, . . . , t,

xi ≤ 1 i = 1, . . . , t,∑
e∈πi

xi +
∑
e∈σi

(1 − xi) ≤ w ∀e ∈ E.

Let x̂i be the value of xi in the optimal solution of this LP, and let ŵ be the value of w
in this solution. Clearly, the optimal congestion must be bigger than ŵ.

Let Xi be a random variable which is one with probability x̂i, and zero otherwise. If
Xi = 1 then we use π to route from vi to ui, otherwise we use σi. Clearly, the congestion of
e is

Ye =
∑
e∈πi

Xi +
∑
e∈σi

(1 − Xi).

5

And in expectation

αe = E
[
Ye
]

= E
[∑

e∈πi

Xi +
∑
e∈σi

(1 − Xi)
]

=
∑
e∈πi

E
[
Xi

]
+
∑
e∈σi

E
[
(1 − Xi)

]
=
∑
e∈πi

x̂i +
∑
e∈σi

(1 − x̂i) ≤ ŵ.

Using the Chernoff inequality, we have that

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−αeδ

2

4

)
≤ exp

(
−ŵδ2

4

)
.

(Note, that this works only if δ < 2e − 1, see Theorem 22.3.4). Let δ =
√

400
ŵ

ln t. We have
that

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−δ2ŵ

4

)
≤ 1

t100 ,

which is very small. In particular, if t ≥ n1/50 then all the edges in the graph do not have
congestion larger than (1 + δ)ŵ.

To see what this result means, let us play with the numbers. Let assume that t = n, and
ŵ ≥

√
n. Then, the solution has congestion larger than the optimal solution by a factor of

1 + δ = 1 +
√

20
ŵ

ln t ≤ 1 +
√

20 ln n

n1/4 ,

which is of course extremely close to 1, if n is sufficiently larger.

Theorem 22.3.2. Given a graph with n vertices, and t pairs of vertices, such that for every
pair (si, ti) there are two possible paths to connect si to ti. Then one can choose for each
pair which path to use, such that the most congested edge, would have at most (1 + δ)opt,
where opt is the congestion of the optimal solution, and δ =

√
20
ŵ

ln t.

When the congestion is low. Assume that ŵ is a constant. In this case, we can get a
better bound by using the Chernoff inequality in its more general form, see Theorem 22.3.4.
Indeed, set δ = c ln t/ ln ln t, where c is a constant. For µ = αe, we have that

Pr
[
Ye ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ

= exp

µ
(
δ − (1 + δ) ln(1 + δ)

) = exp

− µc′ ln t


≤ 1

tO(1) ,

where c′ is a constant that depends on c and grows if c grows. We thus proved that
if the optimal congestion is O(1), then the algorithm outputs a solution with congestion
O(log t/ log log t), and this holds with high probability.

6

22.3.0.1 The Chernoff Bound — General Case

We remind the reader about the Chernoff inequality that we used in the above analysis.
Here we present the Chernoff bound in a more general settings.

Problem 22.3.3. Let X1, . . . Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi, Pr

[
Xi = 0

]
= 1 − pi,

Y =
∑

i

Xi, and µ = E
[
Y
]

.

We are interested in bounding the probability that Y ≥ (1 + δ)µ.

Theorem 22.3.4 (Chernoff inequality). For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ

.

Or in a more simplified form, for any δ ≤ 2e − 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

and

Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e − 1.

Theorem 22.3.5. Under the same assumptions as the theorem above, we have

Pr
[
Y < (1 − δ)µ

]
≤ exp

(
−µ

δ2

2

)
.

7

	22 Approximation Algorithms using Linear Programming
	22.1 Weighted vertex cover
	22.2 Revisiting Set Cover
	22.3 Minimizing congestion

