
Chapter 17

Network Flow VI - Min-Cost Flow
Applications
By Sariel Har-Peled, December 17, 2012¬ Version: 0.1

17.1 Efficient Flow
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A flow f would be considered to be effi-
cient if it contains no cycles in it. Surpris-
ingly, even the Ford-Fulkerson algorithm
might generate flows with cycles in them. As
a concrete example consider the picture on
the right. A disc in the middle of edges in-
dicate that we split the edge into multiple
edges by introducing a vertex at this point.
All edges have capacity one. For this graph,
Ford-Fulkerson would first augment along
s → w → u → t. Next, it would aug-
ment along s → u → v → t, and finally
it would augment along s → v → w → t.
But now, there is a cycle in the flow; namely,
u → v → w → u.

One easy way to avoid such cycles is to
first compute the max flow in G. Let α be
the value of this flow. Next, we compute the min-cost flow in this network from s to t with
flow α, where every edge has cost one. Clearly, the flow computed by the min-cost flow
would not contain any such cycles. If it did contain cycles, then we can remove them by
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pushing flow against the cycle (i.e., reducing the flow along the cycle), resulting in a cheaper
flow with the same value, which would be a contradiction. We got the following result.

Theorem 17.1.1. Computing an efficient (i.e., acyclic) max-flow can be done in polynomial
time.

(BTW, this can also be achieved directly by removing cycles directly in the flow. Natu-
rally, this flow might be less efficient than the min-cost flow computed.)

17.2 Efficient Flow with Lower Bounds
Consider the problem AFWLB (acyclic flow with lower-bounds) of computing efficient flow,
where we have lower bounds on the edges. Here, we require that the returned flow would be
integral, if all the numbers involved are integers. Surprisingly, this problem which looks like
very similar to the problems we know how to solve efficiently is NP-Complete. Indeed,
consider the following problem.

Hamiltonian Path
Instance: A directed graph G and two vertices s and t.
Question: Is there a Hamiltonian path (i.e., a path visiting every vertex exactly
once) in G starting at s and ending at t?

It is easy to verify that Hamiltonian Path is NP-Complete­. We reduce this problem to
AFWLB by replacing each vertex of G with two vertices and a direct edge in between them
(except for the source vertex s and the sink vertex t). We set the lower-bound and capacity
of each such edge to 1. Let H denote the resulting graph.

Consider now acyclic flow in H of capacity 1 from s to t which is integral. Its 0/1-flow,
and as such it defines a path that visits all the special edges we created. In particular, it
corresponds to a path in the original graph that starts at s, visits all the vertices of G and
ends up at t. Namely, if we can compute an integral acyclic flow with lower-bounds in H in
polynomial time, then we can solve Hamiltonian path in polynomial time. Thus, AFWLB is
NP-Hard.

Theorem 17.2.1. Computing an efficient (i.e., acyclic) max-flow with lower-bounds is NP-
Hard (where the flow must be integral). The related decision problem (of whether such a
flow exist) is NP-Complete.

By this point you might be as confused as I am. We can model an acyclic max-flow
problem with lower bounds as min-cost flow, and solve it, no? Well, not quite. The solution
returned from the min-cost flow might have cycles and we can not remove them by cycling
the cycles. That was only possible when there was no lower bounds on the edge capacities.
Namely, the min-cost flow algorithm would return us a solution with cycles in it if there are
lower bounds on the edges.

­Verify that you know to do this — its a natural question for the exam.

2



17.3 Shortest Edge-Disjoint Paths
Let G be a directed graph. We would like to compute k-edge disjoint paths between vertices
s and t in the graph. We know how to do it using network flow. Interestingly, we can find the
shortest k-edge disjoint paths using min-cost flow. Here, we assign cost 1 for every edge, and
capacity 1 for every edge. Clearly, the min-cost flow in this graph with value k, corresponds
to a set of k edge disjoint paths, such that their total length is minimized.

17.4 Covering by Cycles
Given a direct graph G, we would like to cover all its vertices by a set of cycles which are
vertex disjoint. This can be done again using min-cost flow. Indeed, replace every vertex u
in G by an edge (u′ → u′′). Where all the incoming edges to u are connected to u′ and all
the outgoing edges from u are now starting from u′′. Let H denote the resulting graph. All
the new edges in the graph have a lower bound and capacity 1, and all the other edges have
no lower bound, but their capacity is 1. We compute the minimum cost circulation in H.
Clearly, this corresponds to a collection of cycles in G covering all the vertices of minimum
cost.

Theorem 17.4.1. Given a directed graph G and costs on the edges, one can compute a
cover of G by a collection of vertex disjoint cycles, such that the total cost of the cycles is
minimized.

17.5 Minimum weight bipartite matching
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Given an undirected bipartite graph G, we would
like to find the maximum cardinality matching in G
that has minimum cost. The idea is to reduce this
to network flow as we did in the unweighted case, and
compute the maximum flow – the graph constructed is
depicted on the right. Here, any edge has capacity 1.
This gives us the size ϕ of the maximum matching in
G. Next, we compute the min-cost flow in G with this
value ϕ, where the edges connected to the source or the
sing has cost zero, and the other edges are assigned
their original cost in G. Clearly, the min-cost flow
in this graph corresponds to a maximum cardinality
min-cost flow in the original graph.

Here, we are using the fact that the flow computed is integral, and as such, it is a 0/1-flow.

Theorem 17.5.1. Given a bipartite graph G and costs on the edges, one can compute the
maximum cardinality minimum cost matching in polynomial time.
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17.6 The transportation problem
In the transportation problem, we are given m facilities f1, . . . , fm. The facility fi con-
tains xi units of some commodity, for i = 1, . . . , m. Similarly, there are u1, . . . , un customers
that would like to buy this commodity. In particular, ui would like to by di units, for
i = 1, . . . , n. To make things interesting, it costs cij to send one unit of commodity from
facility i to costumer j. The natural question is how to supply the demands while minimizing
the total cost.

To this end, we create a bipartite graph with f1, . . . , fm on one side, and u1, . . . , un on the
other side. There is an edge from (fi → uj) with costs cij, for i = 1, . . . , m and j = 1, . . . , n.
Next, we create a source vertex that is connected to fi with capacity xi, for i = 1, . . . , m.
Similarly, we create an edges from uj to the sink t, with capacity di, for j = 1, . . . n. We
compute the min-cost flow in this network that pushes ϕ = ∑

j dk units from the source to
the sink. Clearly, the solution encodes the required optimal solution to the transportation
problem.

Theorem 17.6.1. The transportation problem can be solved in polynomial time.
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